当前位置:文档之家› 保护胶体在高固含量弹性丙烯酸酯乳液聚合中的应用

保护胶体在高固含量弹性丙烯酸酯乳液聚合中的应用

保护胶体在高固含量弹性丙烯酸酯乳液聚合中的应用
保护胶体在高固含量弹性丙烯酸酯乳液聚合中的应用

丙烯酸酯的乳液聚合

丙烯酸酯的乳液聚合 1 前言 丙烯酸酯类聚合物是工业生产中应用比较广泛的原料,可以用于生产涂料、粘合剂、塑料等产品,具有良好的性能,价格便宜。丙烯酸酯类单体多是通过乳液聚合的方式进行聚合反应。乳液聚合是高分子合成过程中常用的一种合成方法,因为它以水作溶剂,在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。其特点是聚合热易扩散,聚合反应温度易控制; 聚合体系即使在反应后期粘度也很低,因而也适于制备高粘性的聚合物; 能获得高分子量的聚合产物; 可直接以乳液形式使用。本实验利用丙烯酸酯乳液聚合来探究其性质以及应用。 2 实验目的 1)掌握丙烯酸酯乳液合成的基本方法和工艺路线; 2)理解乳液聚合中各组成成分的作用和乳液聚合的机理; 3)了解高聚物不同玻璃化转变温度对产品性能的影响; 3 实验原理 在乳液聚合过程中,乳液的稳定性会发生变化。乳化剂的种类、用量与用法、pH值、引发剂的类型与加入方式、单体的种类与配比、加料方式、聚合工艺、搅拌形状与搅拌速度等都会影响到聚合物乳液的稳定性及最终乳液的性能。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因其具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,会产生絮凝作用,极易破乳。因此选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要的意义。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。 乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 因此乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳

乳液聚合的影响因素讲课讲稿

乳液聚合的影响因素

乳液聚合的影响因素 (2007-03-09 15:48:57) 转载 分类:现代水性涂料 一、乳化剂影响 (1)乳化剂浓度[s]的影响 [s]越大,胶束数目越多,按胶束机理成核的乳胶粒数Np也就越多,乳胶粒的直径Dp也就越小 对于水中溶解度不大的单体的乳液聚合,Np∝[s]0.6 [s]越大,分子量Mn越高,聚合反应速率Rp越大。 (2)乳化剂种类的影响 特性临界参数CMC,聚集数及单体的增溶度各不相同 CMC越小和聚集数越大的乳化剂成核几率大,所生成的乳胶粒数Np就越大,乳胶粒直径Dp越小,且聚合反应速率Rp大及聚合物分子量高;增溶度大的乳化剂所生成的增溶胶束多,成核几率高,故可生成更多的乳胶粒。 二、引发剂的影响 引发剂浓度[I]增大,Mn降低 Rp提高 三、搅拌速度的影响 搅拌的一个重要作用就是把单体分散成单体珠滴,并有利于传热和传质。(1)搅拌速度对乳胶粒直径的影响

在乳液聚合中的分散阶段,搅拌强度不宜太高,否则会使单体分散成更小的单体珠滴,每立方厘米水中单体珠滴的表面积更大,在单体珠滴表面所吸附的乳化剂量增多,致使每立方厘米水中胶束数目减少,胶束成核几率下降,故生成的乳胶粒数目减少、乳胶粒直径增大。 所以搅拌强度增大时,乳胶粒的直径不但不减小,反而增大。 (2)搅拌速度对聚合反应速率的影响 一方面,每立方厘米中乳胶粒数目减少,反应中心减少,聚合反应速率降低;另一方面,会使混入乳液聚合体系中的空气增多,而空气中的氧是自由基反应的阻聚剂,会使聚合反应速率降低。 (3)搅拌对乳液稳定性的影响 过于激烈的搅拌同时会使乳液产生凝胶,甚至破乳。 四、反应温度的影响 温度高,Mn降低,Rp增大 温度高,乳胶粒数目Np增大,粒径Dp减小。 温度高,乳液稳定性降低。 五、单体相比的影响 相比M0为乳液聚合中初始加入的单体和水的质量比 乳胶粒的平均直径随相比的增大而增大 单体转化率随相比的增大而降低 六、电解质的影响 电解质的用量盐析降低CMC 提高乳化剂有效比率

抗果冻增稠剂

产品名称:抗果冻增稠剂FR-2001 产品简介: ◆FR-2001是一种无嗅、无味、无毒的白色粉末,在水中充分溶解以后,会形成半透明的粘稠状胶体 产品应用: ◆日用化工:用做洗发水、洗头膏,做增稠剂,我公司速溶型产品透明度(透光度)高,冷水中分散性好,纯度高,性质稳定,很适合洗发用品的生产。 产品性能: 1、性状:本品是一种白色或稍带微黄色的粉末,而且无嗅、无味、无毒。 2、水溶性和增稠能力:本品冷水速溶型能溶于冷水,形成透明的粘稠溶液。 3、在有机溶剂中的溶解:由于含有一定量的疏水性甲氧基,故本品能溶于一些有机溶剂,也可溶于水和有机物混合的溶剂。 4、PH稳定性:本品水溶液的粘度在PH3.0—11.0范围内都比较稳定。 5、表面活性:本产品的水溶液具有表面活性,使其具有乳化作用,保护胶体和相对稳定性。 6、热胶凝作用:当加热到一定温度之上时本品水溶液能成为不透明,生成沉淀,使溶液失去粘度。但是它在逐渐冷却后又转变成原来的溶液状态。凝结和沉淀出现的温度决定于产品的类型、溶液的浓度和加

热速率。 7、低灰份含量:由于本品是非离子型,在制备过程中能用热水洗涤,有效地精制,因此它的灰份含量很低。 8、抗盐性:由于本品是非离子和非聚合电解质,因此,它在金属盐或有机电解质的水溶液中比较稳定。 9、保水性作用:由于本品是亲水性的和它的水溶液是高粘度的。它添加到灰浆、石膏、涂料等中,在制品中维持高保水作用。 10、形状保持:与其他水溶性聚合物相比,本品的水溶液具有特殊的粘弹性能。它的加入有改善挤压陶瓷制品的形状不变的能力等。11、润滑性:加入本品能够减小磨擦系数和提高挤压陶瓷制品与水泥制品的润滑性。 12、成膜性:本品能生成结实的柔韧的,透明的薄片,有良好的耐油耐酯性能。 建议用量:0.5%-2%,先用冷水浸泡搅拌20分钟即可溶胀 包装贮藏:25kg/袋(桶),贮存于阴凉通风处

丙烯酸及酯产品介绍及用途

一、产品介绍丙烯酸AA又称败脂酸分子式C3H4O2无色液体有刺激气味相对密度1.0511熔点13℃沸点141.6℃溶于水、乙醇和乙醚化学性质活跃易聚合而成透明白色粉末还原时生成丙酸与盐酸加成时生成2-氯丙酸。通常加甲氧基氢醌或氢醌作阻聚剂它主要用于制备丙烯酸树脂等也用于其他有机合成。强有机酸有腐蚀性。下游分类丙烯酸酯AE——丙烯酸及其同系物的酯类的总称主要有丙烯酸甲酯MA、丙烯酸乙酯EA、丙烯酸正丁酯n-BA和丙烯酸异辛酯2-EHA等能自聚或和其他单体共聚是制造粘合剂、合成树脂和塑料的单体。丙烯酸甲酯CH2CHCOOCH3无色液体相对密度0.9535熔点-76.5℃沸点80.5℃溶于乙醇、乙醚易挥发、易聚合也能与其他单体共聚用于制造塑料、树脂、涂料和粘合剂也用于皮革、纺织品和纸张的加工。丙烯酸乙酯CH2CHCOOCH2CH3也是无色液体相对密度0.924熔点为-72℃沸点100-101℃几乎不溶于水溶于乙醇和乙醚易聚合也能与其他单体共聚用于制备塑料、树脂等高聚物也可用作有机合成中间体。丙烯酸丁酯CH2CHCOOCH23CH3系无色液体易燃相对密度0.898熔点-64℃沸点145-146℃折射率1.4185易聚合微溶于水能与乙醇、乙醚混溶遇热很快聚合用于制造合成树脂、合成纤维、合成橡胶、塑料、涂料、粘合剂等。丙烯酸酯是重要的高分子单体和基本有机化工原料在精细化工的应用中占有相当重要的地位其系列产品成千上万几乎涉及到工业领域各部门广泛应用于涂料、粘合剂、塑料、纺织、造纸、橡胶、石油、水处理、化纤、制革等行业。以丙烯酸及其酯制得的高聚物具有优良的耐候、耐紫外光、耐水、耐热等特性从而使其在涂料、粘合剂、皮革、化纤、造纸等方面得以广泛应用。特别是近年高吸水性树脂消费的快速增长促进了世界丙烯酸工业的发展。丙烯酸及其系列产品主要是其酯类近年得到迅速发展。如像乙烯、丙烯、氯乙烯、丙烯腈等产品发展成为重要的高分子化学工业的原料。丙烯酸及其酯类作为高分子化合物的单体世界总产量已超过200万吨而由其制成的聚合物和共聚物树脂主要是乳液型树脂的产量将近1000万吨。这些树脂的应用遍及涂料、塑料、纺织、皮革、造纸、建材以及包装材料等众多部门。丙烯酸系列产品主要是其酯类作为高分子化合物的单体可分为非官能单体、官能单体和多丙烯酸多元醇酯三大类有商品生产的四、五十种。但最主要的是丙烯酸甲酯MA、丙烯酸乙酯EA、丙烯酸丁酯n-BA、丙烯酸-2-乙基酯和丙烯酸其产量约占丙烯酸系列单体产量的95以上。丙烯酸及酯含甲基丙烯酸及酯目前在种类上呈高度丰富的发展迹象丙烯酸除聚合级与酯化级种类外其酯类已从通用酯甲酯MA、乙酯EA、丁酯BA、2-乙基己酯EHA迅速开发出十多种特种酯产品。特别是甲基丙烯酸及酯类的产品开发迈出新里程除常规指MMA、MBA外已能生产10多种甲基丙烯酸特殊酯类。中国齐鲁石化分公司研究院已建有能生产多种甲基丙烯酸特殊酯的kt/a级生产装置。在辐射固化加工用稀释剂中丙烯酸特种酯更为突出目前已经开发出第三代产品如三羟甲基丙烷三丙烯酸酯第一代代表、乙氧基化三羟甲基丙烷三丙烯酸酯第二代代表及性能质量更优异的乙氧基化新戊二醇甲氧基单丙烯酸酯第三代代表。由于丙烯酸具有α、β不饱和羧酸双碳键结构衍生加工能力甚强可构筑成千上万种聚合物配方因而下游产品极丰富。甲基丙烯酸及酯能与聚氨酯、有机硅、环氧树脂、聚醚、聚酯、乙烯-醋酸乙烯共聚物、氯乙烯等复合加工而制得高品质的化工商品。目前甲基丙烯酸及酯类衍生物的应用范畴已迅速拓展。已从常规的高吸水性树脂、纤维、胶粘剂及涂料发展到辐射固化、互穿聚合物网络、多类特殊化工助剂、液晶化合物、等离子液体与离子胶、阻尼材料、特殊印刷油墨、水性聚合物、高性能屏蔽材料、聚合物合金、特种弹性体碳氟橡胶、塑料抗冲击改性剂、星形聚合物、高固体系分散体、SGO固态低分子量聚合物、共聚物发泡制品、异型建材等众多方面应用范畴迅速拓宽。二、生产方法工业化生产丙烯酸的方法有5种即丙烯氧化法、改良Reppe法、丙烯腈水解法、氰乙醇法和烯酮法。这些方法都曾作为生产丙烯酸及酯的主要方法。后两种方法由于效率低、消耗大已被淘汰。丙烯腈水解法只限于生产MA、EA。生产高级酯时尚需进一步采用酯交换法。改良Reppe法在煤化工发展时期曾一度占统治地位。至今仍有一些企业还在采用丙烯腈水解法及改良Reppe法但近

LEAC丙烯酸聚合物水泥防水涂料施工工法

LEAC丙烯酸聚合物水泥防水涂料施工工法 青岛城建集团有限公司 徐鑫邱换亮张伟成 1.前言 LEAC防水材料是中国政府出资于上世纪80年代末研发的军工技术转民用技术的产品。2015年工信部、国防科工局将LEAC列为军工技术转民用10大重点推荐技术。向全国推广,并经多名国家级专家评审,给予了“技术水平国际领先”的评价。LEAC是由高分子丙烯酸水泥改性专用乳液和水泥基粉剂共同构成的产品,涵盖了三项复合技术,即无机材料和有机材料的复合,化学网状结构和物理网状结构双网互穿、双网合一的复合。防水涂料和防水卷材优势复合。它的施工是涂料方式,成型后是卷材结构。LEAC既有满沾不串水、无搭接、异形面封闭可靠的涂料优势,又有拉力大,抗裂性好,施工效率高的卷材优势。 2.工法特点 2.1施工工艺简单、施工周期短。LEAC丙烯酸聚合物水泥防水涂料,工人技术要求低,喷涂简便、快捷。采用喷涂机喷涂,大大缩短了施工工期,降低了工程造价。 2.2LEAC丙烯酸聚合物水泥防水涂料弹性好,抵抗基体开裂能力强。2mm厚拉力可达1000N/50mm,是SBS的2.8倍。满沾条件下最大可抵抗基本10mm的开裂和12mm的沉降变形。 2.3环保、节能效果好。LEAC丙烯酸聚合物水泥防水涂料具有很好的环保性,可通过食品卫生级检测。施工机械化程度高,工作效益高,材料利用率高,能源消耗低。现场只进行喷涂作业,无任何拼装、切割、焊接作业。储运施工暴露使用,均可达到不自燃、不助燃、无安全隐患。 3.适用范围 本工法适用于工业与民用建筑、国家军事工程、国家大型基础建设工程的地下室防水施工。 4.工艺原理 LEAC丙烯酸聚合物水泥防水涂料施工是将防水涂料涂刷在结构主体迎水面的基面上,从而在结构主体外侧和底部形成交圈的封闭防水层,既能保护主体结构不受侵蚀介质的作用,同时又达到防御外部压力水渗入结构主体内部的作用。

影响乳液聚合的因素

影响聚醋酸乙烯乳液质量的因素 单体质量的影响 醋酸乙烯单体应该用新精馏的,并控制一定的质量指标。 外观——无色透明液体 活化度(10ml单体加过氧化苯甲醚——<30min 沸点——72-73℃——20ml在70℃时测定) 含醛(以乙醛计)——<0.02% 含酸(以乙酸计)——<0.01% 醋类是醋酸乙烯单体中的主要杂质,能起到明显的阻聚作用,阻聚作用使得聚合物的分子量不易长大,并且使聚合过程变复杂。在本体聚合和悬浮聚合时经常使用乙醛调节分子量大小。酸对乳液聚合也有影响,活化度实际上是醛、酸和其他杂质在单体中的综合影响,杂质多聚合诱导期变长。杂质少,诱导期短,活化时间也短。活化度太差的单体在乳液聚合反应进行时会出现聚合反应时行缓慢,回流一直很大,使连续加入单体有困难。加单体太慢或中途停止加单体则反应放热少而回流带出的热量多,反应温度就会下降,反应难于控制,无法平稳进行。 引发剂的影响 在乳液聚合中都用水溶性的引发剂,如过硫酸盐和过氧化氢,而不能用溶解于单体中的过氧化苯甲酰和偶氮二异丁腈,引发剂溶解在单体中不好。过氧化氢在存放中易变化,而硫酸盐比过氧化氢易控制,在操作时加水溶解后即加入反应釜内,因此比较稳定,所以一般多采用过硫酸钾、过硫酸铵等。 一般情况下过硫酸钾的用量为单体量的0.2%,实际上在反应中只加入2/3,其余1/3是在反应最后阶段加入的,目的是为了减少乳液中的游离单体。引发剂用量根据设备情况、投料量确定,反应设备越大,投料量越大,引发剂的用量就相应减少些。做小试验的时候,引发剂使用的比例比中试、实际生产的比例要大一点。而在每次反应时间中初加的部分也需视反应情况而稍有不同。 用过硫酸盐为引发剂时,乳液的pH值需加以控制,因为在反应中加入过硫酸盐会使反应液的酸性不断增加,而pH值太低(如小于2时),则反应速度很慢,有时会破坏了乳液聚合反应的正常进行,使乳液粒子变粗,甚至会使反应时间过长或使反应无法进行。若所用聚乙烯醇是碱醇解的产品,水溶液呈弱碱性,则在反应前可不调整pH值,而在反应结束后加入部分碳酸氢钠中和至pH值4-6间。 乳化剂的影响 乳化剂是一种表面活性剂,在乳液聚合过程中能降低单体和水的表面张力,并增加单体在水中的溶解度,形成胶束和乳化的单体液滴。乳化剂的选择对乳液的稳定性和质量有很大影响,乳化剂的用量多少也对乳液的稳定性有影响,乳化剂用量太少乳液的稳定性差,而用量太大耐水性则差。 聚乙烯醇是聚醋酸乙烯乳液聚合中最常用的乳化剂,由于对乳液的质量要求不同,聚乙烯醇的规格和用量也有所不同。聚乙烯醇在乳液中起乳化作用,也起保护胶体的的作用,但也有使胶体增稠的作用,所以其用量不仅以乳化的角度也从增稠的角度,聚乙烯醇地一般用量是为单体的5%左右。

pva做保护胶体

‘28' 浆料的新进展 西安大华化工有限公司技术开发部 摘要:‘28'浆料在二十多年的发展中虽有改进,但仍旧是丙烯酰胺与醋酸乙烯酯二元共聚浆料。作者依据黏合剂理论,应用制造聚丙烯酸酯浆料的某些技术,对‘28'浆料组成作了大的改动,使性能进一步提高。 一、前言 ‘28'浆料自上世纪70年代末问世以来,已有20多年的历史。在20多年的历史中,盛行于上世纪80年代,无论在纯棉上还是在涤/棉混纺上浆中都用到它。90年代末期,新‘28'浆料增添了活力。虽然浆料组成上依然是丙烯酰胺和醋酸乙烯酯二元共聚,PVA做保护胶体,但含固量几乎提高了一倍达30±2%,还因醋酸乙烯酯含量有所增加,提高了对涤纶纤维的粘附力。然而由于醋酸乙烯酯含量不占主体,浆膜柔韧性仍不够高,对涤纶纤维的粘附力也不够高,有鉴于以上原因,我们利用研制生产聚丙烯酸酯浆料的某些技术应用于‘28'浆料,制得改进型‘28'浆料,起名DH-AE01,表明是丙烯乙烯浆料。其理论依据如下:聚醋酸乙烯酯的侧基是醋酸-CH2-CH-O-C-CH3,与聚丙烯酸酯的侧基是酯基-CH2-CH-C-O-R,是有区别的,聚丙烯酸酯对涤纶纤维的粘附力更强。在黏合剂领域,为提高聚醋酸乙烯酯的粘附力,在组成上要减少醋酸乙烯酯用量,增加丙烯酸酯成份,此外,为保持浆料对亲水性棉纤维的粘附力,以及在水中的分散性,增加了丙烯酸成分。最后考虑为使浆料长期储存也不易霉变,适量的添加了丙烯腈成分。因此,DH-AE01浆料已从‘28'浆料的二元共聚发展成醋酸乙烯酯,丙烯酸酯,丙烯酰胺,丙烯酸和丙烯腈组成的五元共聚浆料,与‘28'浆料相同之处仅保留仍用PVA作保护胶体,生产工艺相仿。若去掉了PVA作保护胶体,即成了完全聚丙烯酸酯,醋酸乙烯酯共聚浆料。 二、 DH-AE01的制备 1、原材料: 单体:醋酸乙烯酯、丙烯酸酯、丙烯酰胺、丙烯酸、丙烯腈 乳化剂:自配 保护胶体: PVA 辅料:引发剂,碱剂 2、制备方法 在反应缸中先加适量的水,加PVA升温溶解,降温至50-60℃,加部分单体,乳化剂和引发剂进行预聚合。30分钟后缓慢加入其余单体,乳化剂和引发剂反应2小时左右,升温到85℃左右保温30分钟降温到60℃左右加碱中和,检验后出料装桶。 3、红外光谱图与解读: AE01红外光谱图如下:(图略) 从图中可以看到最大吸收峰为表征酯基团的1737.17cm-1峰,他是聚醋酸乙烯酯与聚丙烯酸酯二者酯基团的γC=O吸收峰的重叠,表征聚醋酸乙烯酯的二个特征峰是γC-O位于1243.47 cm-1峰和δCH3位于1375.34cm-1峰,而表征聚丙烯酸酯也有二个特征峰,γC-O一个位于1170.41 cm-1峰,一个重叠于1243.47 cm-1处。聚丙烯酰胺的最大吸收峰位于1670.56 cm-1处与1620cm-1处的小峰可谓十分特征。印证聚丙烯酸盐的二个特征峰是位于1572.38cm-1处的δasc=o峰和位于1410 cm-1处的δsc=o峰,而聚丙烯腈的特征峰γC≡N,则位于2335 cm-1处。 由五种单体的各自最大吸收峰值的大小,基本看出AE01组成中主要成份醋酸乙烯酯与丙烯酸酯,依次

乳液聚合中乳胶粒粒径大小的影响因素

乳液聚合中乳胶粒粒径大小的影响因素 概述 乳液聚合中,乳胶粒子的直径大小及其分布是表征聚合物乳液的重要指标之一。目前分子设计中的核心体现在乳液聚合中乳胶粒大小及分布的控制上。粒径大小不同的乳液有不同的应用价值,如微乳液,粒径在 10~100nm 之间,是理想的小粒径、单分散聚合物颗粒的合成介质,在食品、医药、透明材料的填料等领域都有广泛的应用;大粒径(即微米级)、单分散、具有不同颗粒形态和表面特征的聚合物微球已经应用到高档涂料、粘合剂、浸渍剂、化妆品等科学技术领域,尤其是应用到高分子、生物医学和临床医学等高新技术领域中,成为不可缺少的材料和工作物质。 影响乳胶粒粒径大小有以下各种因素。 1乳化剂的影响 在乳液聚合中,乳液稳定是因为分界面上亲水基团的存在,这种基团为残留的引发剂、共聚单体,大部分是被吸附的乳化剂。乳化剂作为乳液聚合体系中关键组分之一,它的组成、结构与性能直接影响最终乳液体系的稳定性、粒径大小及分布。乳化剂用量越大,形成的胶束就越多,乳胶粒也越多,乳胶粒粒径就越小。随着乳化剂用量增加,乳液聚合转化率提高,乳胶粒粒径减小。 在乳液聚合中,阴离子乳化剂因其能使乳胶粒子外层具有静电荷,防止离子聚集,使乳液的机械稳定性好,在工业中应用最广泛。而阳离子型乳化剂中胺类化合物具有阻聚作用,且易被过氧化物引发剂氧化而发生副反应,因此阳离子乳化剂的应用较少。非离子型乳化剂不怕硬水,化学稳定性好。一般而言,单纯用非离子型乳化剂进行乳液聚合反应,反应速率低于阴离子乳化剂参加的反应,且生产出的乳胶粒子粒径较大,涂膜光泽差。与非离子型乳化剂相比,由于乳化剂离子带电荷,同时还会产生一定程度的水化作用,在乳胶粒子间静电斥力和水化层的空间位阻的双重作用下可使聚合物乳液更稳定,另一方面离子型乳化剂比非离子型乳化剂相对分子质量小得多,加入质量相同的乳化剂时,离子型乳化剂所产生的胶束数目多,成核几率大,会生成更多的乳胶粒,聚合反应速率大,合成的乳胶粒径小。因此在有离子型和非离子型乳化剂可供选择时,优先选择离子型乳化剂。两性乳化剂由于价格昂贵,尚未能在乳液聚合工业上体现其独特的性

乳液聚合中乳胶粒粒径大小及分布的影响因素

乳液聚合中乳胶粒粒径大小及分布的影响因素 王竹青葛圣松 (山东科技大学化学与环境工程学院山东青岛 266510) 摘要在乳液聚合中,乳胶粒的大小及分布对乳液的性能及其应用有很大的影响,同时也反映了乳液聚合反应进行的过程。本文综述了影响乳胶粒粒径大小及分布的各种因素,如聚合工艺、乳化剂、单体种类、聚合温度、引发剂等,并介绍了不同粒径乳液的性能及其应用。关键词乳液聚合;乳胶粒粒径;影响因素;应用 引言 乳液聚合中,乳胶粒子的直径大小及其分布是表征聚合物乳液的重要指标之一。目前分子设计中的核心体现在乳液聚合中乳胶粒大小及分布的控制上[1]。粒径大小不同的乳液有不同的应用价值,如微乳液,粒径在 10~100nm 之间,是理想的小粒径、单分散聚合物颗粒的合成介质[2],在食品、医药、透明材料的填料等领域都有广泛的应用[3];大粒径(即微米级)、单分散、具有不同颗粒形态和表面特征的聚合物微球已经应用到高档涂料、粘合剂、浸渍剂、化妆品等科学技术领域,尤其是应用到高分子、生物医学和临床医学等高新技术领域中,成为不可缺少的材料和工作物质[4]。 本文综述了影响乳胶粒粒径大小的各种因素,并介绍了不同粒径乳液的性能及其应用。 1乳化剂的影响 在乳液聚合中,乳液稳定是因为分界面上亲水基团的存在,这种

基团为残留的引发剂、共聚单体,大部分是被吸附的乳化剂[5]。乳化剂作为乳液聚合体系中关键组分之一,它的组成、结构与性能直接影响最终乳液体系的稳定性、粒径大小及分布[6]。乳化剂用量越大,形成的胶束就越多,乳胶粒也越多,乳胶粒粒径就越小。付永祥[7]通过实验总结出随着乳化剂用量增加,乳液聚合转化率提高,乳胶粒粒径减小的结论。张文兴[8]讨论了高固含量条件下各因素对微胶乳粒径及分布的影响,通过控制乳化剂用量制备了固含量 40%、粒径50nm、分布 0.050 级别的纳米微胶乳。 在乳液聚合中,阴离子乳化剂因其能使乳胶粒子外层具有静电荷,防止离子聚集,使乳液的机械稳定性好,在工业中应用最广泛。而阳离子型乳化剂中胺类化合物具有阻聚作用,且易被过氧化物引发剂氧化而发生副反应,因此阳离子乳化剂的应用较少。非离子型乳化剂不怕硬水,化学稳定性好。一般而言,单纯用非离子型乳化剂进行乳液聚合反应,反应速率低于阴离子乳化剂参加的反应,且生产出的乳胶粒子粒径较大,涂膜光泽差[9]。与非离子型乳化剂相比,由于乳化剂离子带电荷,同时还会产生一定程度的水化作用,在乳胶粒子间静电斥力和水化层的空间位阻的双重作用下可使聚合物乳液更稳定,另一方面离子型乳化剂比非离子型乳化剂相对分子质量小得多,加入质量相同的乳化剂时,离子型乳化剂所产生的胶束数目多,成核几率大,会生成更多的乳胶粒,聚合反应速率大,合成的乳胶粒径小。因此在有离子型和非离子型乳化剂可供选择时,优先选择离子型乳化剂。两性乳化剂由于价格昂贵,尚未能在乳液聚合工业上体现其独特的性能

专业实验 以PVA为保护胶体聚醋酸乙烯乳液合成

专业实验以PVA为保护胶体聚醋酸乙烯乳液合成、改性与应用 一、实验目的 1、了解自由基型加聚反应的原理。 2、掌握聚醋酸乙烯乳液的合成方法 3、掌握聚醋酸乙烯乳液的性能检测方法 4、了解聚醋酸乙烯乳液的改性方法及其应用。 二、实验原理 1.主要性质和用途 聚醋酸乙烯(polyvinyl acetate,简称PVAC)乳液,别名白乳胶,为乳白色粘稠浓厚液体,具有优良的粘接能力,可在5-40℃的温度范围内使用。具有良好的成膜性,且无毒、无臭、无腐蚀性,但耐水性差。本品主要用于木材、纸张、纺织等材料的粘接以及掺入水泥中提髙强度,也用作醋酸乙烯乳胶涂料的原料。 2.聚合反应原理 醋酸乙烯很容易聚合,也很容易与其他单体共聚。醋酸乙烯单体的聚合反应是自由基型加聚反应,属连锁聚合反应,整个过程包括链引发、链增长和链终止三个基元反应。通常本体聚合、溶液聚合和悬浮聚合都用过氧化苯甲酰和偶氮二异丁腈为引发剂,而乳化聚合则都用水溶性的引发剂过硫酸盐和过氧化氧等。 乳液聚合是借助于乳化剂的作用把单体分散在介质中进行聚合,乳化剂以阴离子型和非离子型表面活性剂为主,阴离子型表面活性剂有SDS、LAS等,用量为单体质量分数0.5%~2%,制得的乳液粘度较低,与盐混合时稳定性差。非离子型乳化剂如环氧乙烷的各种烷基醚或缩醛,用量较多,一般为单体质量分数的1%~5%,制得的乳液粘度大,与盐类、颜料等配合稳定性好。 3.保护胶体聚乙烯醇 聚乙烯醇的物理性质受化学结构、醇解度、聚合度的影响。在聚乙烯醇分子中存在着两种化学结构,即1,3和1,2乙二醇结构,但主要的结构是1,3乙二醇结构,即“头.尾”结构。聚乙烯醇的聚合度分为超髙聚合度(分子量25~30万)、高聚合度(分子量17-22万)、中聚合度(分子量12~15万)和低聚合度(2. 5~3.5万)。醇解度一般有78%、88%、98%三种。部分醇解的醇解度通常为87%~89%,完全醇解的醇解度为98%~100%。常取平均聚合度的千、百位数放在前面,将醇解度的百分数放在后面,如17—88即表聚合度为1700,醇解度为88%。一般来说,聚合度增大,水溶液粘度增大,成膜后的强度和耐溶剂性提髙,但水中溶解性、成膜后伸长率下降。 醋酸乙烯乳液聚合一般以聚乙烯醇作保护胶体,在保护胶体的作用下进行聚合反应,保护胶体还有提高乳液稳定性和调节乳液粘度的作用。 4.丙烯酸酯改性乙酸乙烯酯乳液 (1)丙烯酸酯改性乙酸乙烯酯乳液配比为VAc: BA:AA=85:15:2 (质量比)时,乳液剥离强度高,弹性好、耐低温且储存期长。 (2)聚合反应时,水溶性官能基单体AA的存在,可提高聚合稳定性,相对增大滴加后期AA的量,则可大大提高乳液黏度和机械稳定性。

丙烯酸乳液聚合的一些改性

室温交联丙烯酸乳液的制备和性能研究 摘要:本文介绍丙烯酸、双丙酮丙烯酰胺、交联功能单体NHAM、软硬单体配比的改变或增加对苯丙乳液的性能影响。 0 引言 苯丙乳液由于具有良好的耐候性、耐碱性和耐水性等优点,在涂料等行业中得到了广泛的应用。但其涂膜的光泽、耐溶剂性和耐污染性较差,硬度和抗张强度等力学性能也相对不足,限制了它的应用领域。但丙烯酸树脂价格低, 性能价格比较高, 还有发展的优势。为此, 人们采用接技、共聚、交联、核壳聚合等方法对其进行改性。 1 丙烯酸的影响 少量含有羧基、羟基等官能单体的引入,对苯丙乳液殷其膜性能将产生较大的影响。随着丙烯酸用量的增加,凝聚率降低,表明丙烯酸在聚合过程中起到稳定乳胶粒子的作用。但是聚合物胶膜吸水性随着丙烯酸用量增加而增大,耐水性下降,因此,丙烯酸加进的量要控制在一定范围。 2 双丙酮丙烯酰胺的影响 双丙酮丙烯酰胺( DAAM) 作为官能单体, 合成了一种含有酮羰基的丙烯酸酯乳液, 以肼作为交联剂, 制备了一种交联型丙烯酸酯乳液, 使涂膜的耐水、耐溶剂性及膜的强度都得到了极大的提高。双丙酮丙烯酰胺是一种含酮羰基的乙烯基单体, 很容易与其它乙烯基单体共聚, 得到含有酮羰基的丙烯酸酯乳液, 该乳液中加入肼后, 由于酮羰基与肼容易发生脱水反应, 因而在成膜过程中聚合物发生交联。其用量决定了涂膜的交联密度和性能, 加人D A A M 可明显改善涂膜的光泽度、耐溶剂性(交联度提高意味着涂膜耐甲苯等溶剂的性能提高)、耐水性和硬度(玻璃化温度提高), 在用量为总单体质量的2. 2 % 一6.5 % 的范围内。随着D A A M 用量增加。涂膜的耐溶剂性、耐水性和玻璃化温度提高, 但光泽度变化不大。当D A A M 用量约为总单体质量的6. 5 %时, 涂膜的性能最好。 3 交联功能单体NHAM的影响 自交联功能单体NHAM含量对乳液粘度的具有影响,随着NHAM的增加,乳液的粘度开始上升,上升到一个峰值后开始下降。乳液分子量随NHAM用量增大而上升,分子量增大;同时聚合时乳液分子量不均匀性提高。随着交联单体NHAM用量的增加,涂膜的Tg呈上升趋势。考虑乳液性能,NHAM含量以0.8%--0.9%为宜。所以,当乳液组分中含自交联功能单体NHAM 时,其耐水性、耐擦洗性均成倍增长;而当再添加改性碳酸钙晶须时,两者性能更有大幅度提高,同时涂料抗沉降性提高,涂膜的强度及耐开裂性更佳。这是由于碳酸钙晶须能够在涂层中起到骨架作用,能增加触变性,提高涂料的抗开裂、附着力、粘接强度等性能。 4 软硬单体的影响 乳液聚合的配方设计,必须兼顾性能与价格因素。因此,根据木器漆用聚丙烯酸酯乳液的性能要求、原料来源及价格 等,选用MMA、St为硬睢体,赋予漆膜光泽、硬度、耐磨性、较高的内聚力和结构强度;

丙烯酸酯乳液聚合的影响因素

丙烯酸酯乳液聚合的影响因素 前言 乳液聚合是在用水或其它液体作介质的乳液中,按胶束(Miceell)机理或低聚物(oligmer)机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合来生产高聚物的一种聚合方法[ 1 ]。作为高分子合成手段之一的核- 壳乳液聚合以其独特的结构形态大大改善了聚合物乳液的性能,其应用非常广泛。例如,(1)用于抗冲改性剂和增韧剂[ 2 ]:许多树脂本身脆性较大,限制了它们在许多领域的应用。在脆性聚合物中引入橡胶态聚合物,是提高脆性聚合物 抗冲击性和韧性的有效方法。但是由于橡胶相与基体树脂常存在兼容性的问题,导致了橡胶相的聚集,影响了增韧改性的效果。而在弹性粒子表面包覆一层与基体树脂兼容或能与其反应的聚合物,则就可以解决上述问题,并能增加两相接口的相互作用。所以,以橡胶态聚合物为核,硬聚合物为壳的复合粒子被广泛用做高分子材料的抗冲改性剂和增韧剂,这也是核- 壳聚合物最多和最重要的研究领域[ 3 ];(2)特种涂料和胶黏剂[ 4 ]:由于核- 壳结构乳 胶粒子的核与壳之间存在着某种特定的相互作用,在相同原料组成的情况下,这种核- 壳化结构可以显著提高聚合物的耐水、耐磨、耐候、抗污及粘合强度等力学性能,并可显著降低乳胶的最低成膜温度,且核- 壳结构聚合物一般都是由乳液聚合得到的,因此它首先被用做涂料和胶黏剂[5 ]。以PSi 为种子、丙烯酸酯类为第二单体进行乳液聚合所得胶乳,具有很好的耐水性和耐候性,用于涂料、胶黏剂和密封剂等领域可直接作为金属、塑料和纸张等的胶黏剂[6 ]。具有核- 壳结构的P(St/MMA)的乳液可以配成上光涂料;采用不同玻璃化温度的聚合物为核或壳,可以设计理想的具有较低成膜温度的涂料,成膜性有明显的改进和提高[ 7 ]。将乳液混合到水泥中形成聚合物水泥砂浆,能显著改善水泥的性能,提高水泥的抗张强度,使水泥不易龟裂,还能增加水泥的粘接力和抗磨性、防止土壤侵蚀,是合成乳液的一个新用途。聚丙烯酰胺胶乳还可用作造纸、采油、污水处理等场合的絮凝剂;另外一些核- 壳 结构聚合物对水、油以及某些溶剂有良好的阻透能力[8 ],可应用于包装材料上,从而有效地提高材料的阻透能力。除此之外,有望在核层或壳层中加入其它物质,制备具有特殊功能的复合材料[9 ]。 1 实验部分 1.1 实验原料 环氧树脂,牌号E- 51,工业级,无锡树脂厂;丙烯酸丁酯(BA),分析纯,北京益利精细化学品有限公司;甲基丙烯酸甲酯(MMA),化学纯,天津市化学试剂研究所;十二烷基磺酸钠(SDS),化学纯,上海英鹏添加剂化工有限公司试剂公司;过硫酸钾(KPS),分析纯,天津市光复科技发展有限公司;甲基丙烯酸缩水甘油酯(GMA),分析纯,天津市津东化工厂;NaHSO3,分析纯,北京益利精细化学品有限公司;NH3·H2O,分析纯,莱阳市双双化工有限公司;去离子水,自制。 1.2 核壳结构乳胶粒的合成方法种子乳液聚合技术是研究最多、应用最广的制备核- 壳结构聚合物粒子的方法,根据所用单体和制备工艺的不同,粒子的不同层次分别富集不同的 聚合物。其基本工艺为:首先用通常的乳液聚合合成核聚合物粒子(称种子乳液),

丙烯酸酯类单体的物理性质

丙烯酸酯类单体的性质 单体名称分子量沸点/℃相对密度 (d25)折射率 (n D25) 溶解度(25℃)/ (份/100份 水) 用途健康危害玻璃化温 度/℃ 丙烯酸AA 72 141.6(凝固 点:13)1.051 1.4185 ∞涂料、塑料、 纺织、皮革、 造纸、建材 健康危害:该品对皮肤、眼睛和 呼吸道有强烈刺激作用 燃爆危险:该品易燃,具腐蚀性、 强刺激性,可致人体灼伤 106 丙烯酸甲酯MA 86 80.5 0.9574 1.401 5 橡胶、医药、 皮革、造纸、 粘合剂 健康危害:高浓度接触,引起流 涎、眼及呼吸道的刺激症状,长 期接触可致皮肤损害,亦可致肺、 肝、皮肤病变。 8 丙烯酸乙酯EA 100 100 0.917 1.404 1.5 涂料、粘合 剂、助剂健康危害:对呼吸道有刺激性, 高浓度吸入引起肺水肿。有麻醉 作用。眼直接接触可致灼伤。对 皮肤有明显的刺激和致敏作用。 燃爆危险:该品易燃,具刺激性, 具致敏性。[1] -22 丙烯酸正丁酯(n-BA)128 147 0.894 1.416 0.15 有机合成中 间体 低毒,轻度刺激性-55 丙烯酸异丁酯(i-BA)128 62(6.65kpa)0.884 1.412 0.2 有机合成中 间体 健康危害:吸入、口服或经皮肤 吸收对身体有害。其蒸气或雾对 眼睛、粘膜和呼吸道有刺激作用。 中毒表现有烧灼感、咳嗽、喘息、 -17 ’.

喉炎、气短、头痛、恶心和呕吐。 丙烯酸仲丁酯128 131 0.887 1.4110 0.21 -6 丙烯酸叔丁酯128 120 0.879 1.4080 0.15 纸张涂饰剂、 丙烯酸树脂 55 丙烯酸正丙酯 PA 114 114 0.904 1.410 1.5 -25 丙烯酸环己酯CHA 154 75(1.46kpa)0.9766 1.460 丙烯酸乳液 聚合物、丙烯 酸树脂 16 丙烯酸月桂酯240 129(3.8kpa)0.881 1.4332 0.001 涂料、粘合 剂、纺织整理 剂 -17 丙烯酸-2-乙基己酯2-EHA 184 213 0.880 1.4332 0.01 用于软性聚 合物,在共聚 物中起内增 塑作用 -67 丙烯酸-2-羟基乙酯HEA 116 82(655pa) 1.138 1.427 ∞辐射固化体 系的稀释剂 和交联剂 中毒,可燃;加热分解释放刺激烟 雾 -15 丙烯酸-2-羟基 丙酯HPA 130 77(655pa) 1.057 1.445 ∞胶黏剂、涂料-7 甲基丙烯酸MAA 86 163(凝固点: 15) 1.015 1.4185 ∞涂料、绝缘材 料、粘合剂 健康危害:本品对鼻、喉有刺 激性;高浓度接触可能引起肺 部改变。对皮肤有刺激性,可 130 ’.

丙烯酸树脂类药用辅料的分类、结构性能及合成研究概况

丙烯酸树脂类药用辅料的分类、结构 性能及合成研究概况 广州迈特兴华制药厂有限公司 张建国 摘要:本文通过论述丙烯酸树脂药用辅料的分类、结构与性能;综述合成研究概况,展望了丙烯酸树脂药用辅料合成研究的发展方向。 关键词:丙烯酸树脂;分类;结构;合成研究 药用辅料的丙烯酸树脂是一类由丙烯酸(或甲基丙烯酸及它们的酯如:甲酯、乙酯等)以本体(一种单体)聚合,或者与甲基丙烯酸(或它的酯如:甲酯、乙酯、二甲胺基乙酯等)以二种单体(二元)或以三种单体(三元)按一定比例共聚而形成的高分子化合物。其合成反应可以用下列通式表示: R (或R 1或R 2或R 3 )+R 1 (或R 2或R 3或R 4 丙烯酸树脂 R =丙烯酸 R 1 =甲基丙烯酸 R 2 = 丙烯酸酯类 R 3 = 甲基丙烯酸酯类 R 4 = 其它酯类 本体聚合:R=R 1=R 2=R 3 =R 4 二元聚合:R 、R 1、R 2、R 3 、R 4中任意二种R 共聚 三元聚合:R 、R 1、R 2、R 3 、R 4中任意三种R 共聚 该类化合物在体内不降解,安全无毒,由于其结构特点,可以使药物按预期 设计或在胃或在肠溶出;并可以用于缓(控)释制剂(1)(2);更有可能以此类辅料将药物制成靶向制剂(3)(4)。因此,在药剂中应用日益广泛。本文试以“分类”、 “结构与性能”、“合成研究概况”等三方面作一概述。 1 分类 1.1 按制造原料(单体)分类 1.1.1 本体聚合而形成 即自身聚合而形成的高分子化合物,如:“部分被中和的聚丙烯酸”(国际特品公司NP600、NP700、NP800)

1.1.2 二元聚合而形成的高分子化合物,如:聚丙烯酸树脂l (甲基丙烯酸、甲基丙烯酸丁酯35;65共聚物)、聚丙烯酸树脂Ⅱ(甲基丙烯酸和丙烯酸甲酯(1:1)共聚物)、聚丙烯酸树脂Ⅲ(甲基丙烯酸和丙烯酸甲酯(1:2)共聚物)、Eudragit(尤特奇)NE 30D (丙烯酸乙酯和甲基丙烯酸甲酯(2:1)共聚物)、尤特奇L 100—55(甲基丙烯酸和丙烯酸乙酯(1:1)共聚物)等等。 1.1.3 三元聚合而形成的高分子化合物如:聚丙烯酸树脂lV (甲基丙烯酸丁酯、甲基丙烯酸二甲胺基乙酯和甲基丙烯酸甲酯(1:2:1)共聚物)、聚甲丙烯酸铵酯Ⅰ(丙烯酸乙酯、甲基丙烯酸甲酯和甲基丙烯酸氯化三甲胺基乙酯(1:2:0.2)共聚物)、聚甲丙烯酸铵酯Ⅱ(丙烯酸乙酯、甲基丙烯酸甲酯和甲基丙烯酸氯化三甲胺基乙酯(1:2:0.1)共聚物)、尤特奇FS 30D (甲基丙烯酸、丙烯酸甲酯和甲基丙烯酸甲酯(1:1:1)共聚物)等等。 1.1.4与其它高分子混合而形成的高分子化合物 本类丙烯酸树脂是在共聚(合成反应)完成以后加入其它高分子药用辅料而形成的产品。如: 尤特奇RD 100(聚甲丙烯酸铵酯Ⅰ和羟甲基纤维素钠(9:1)混合物)、 1.2 按丙烯酸树脂的溶解性能分类 1.2.1 pH 依赖型丙烯酸树脂 本类丙烯酸树脂只在特定的pH 条件下溶解而释放药物如:聚丙烯酸树脂lV 溶于pH<5的胃液;是胃溶性药物的良好辅料。而聚丙烯酸树脂l 、尤特奇L 100—55、聚丙烯酸树脂Ⅱ、聚丙烯酸树脂Ⅲ、尤特奇FS 30D 等等溶于pH>7以上肠液。是肠溶性药物的良好辅料。 1.2.2 非pH 依赖型丙烯酸树脂 本类丙烯酸树脂不溶于水,在任何pH 条件下都不溶解如:尤特奇NE 30D 。是缓(控)释制剂的良好辅料。 1.2.3 渗透型丙烯酸树脂 本类丙烯酸树脂不溶于水,但是遇水能溶胀,形成微小的水分子通道,如: 聚甲丙烯酸铵酯Ⅰ、聚甲丙烯酸铵酯Ⅱ,广泛用于缓(控)释制剂的膜包衣技术。 2结构与性能 2.1 含酸性基团的丙烯酸树脂(阴离子型、肠溶型丙烯酸树脂) 酸性基团为:-COOH - 如:

乳液聚合中乳胶粒粒径大小的影响因素

乳液聚合中乳胶粒粒径大小的影响因素概述 乳液聚合中,乳胶粒子的直径大小及其分布是表征聚合物乳液的重要指标之一。目前分子设计中的核心体现在乳液聚合中乳胶粒大小及分布的控制上。粒径大小不同的乳液有不同的应用价值,如微乳液,粒径在10~100nm 之间,是理想的小粒径、单分散聚合物颗粒的合成介质,在食品、医药、透明材料的填料等领域都有广泛的应用;大粒径(即微米级)、单分散、具有不同颗粒形态和表面特征的聚合物微球已经应用到高档涂料、粘合剂、浸渍剂、化妆品等科学技术领域,尤其是应用到高分子、生物医学和临床医学等高新技术领域中,成为不可缺少的材料和工作物质。 影响乳胶粒粒径大小有以下各种因素。 1乳化剂的影响 在乳液聚合中,乳液稳定是因为分界面上亲水基团的存在,这种基团为残留的引发剂、共聚单体,大部分是被吸附的乳化剂。乳化剂作为乳液聚合体系中关键组分之一,它的组成、结构与性能直接影响最终乳液体系的稳定性、粒径大小及分布。乳化剂用量越大,形成的胶束就越多,乳胶粒也越多,乳胶粒粒径就越小。随着乳化剂用量增加,乳液聚合转化率提高,乳胶粒粒径减小。 在乳液聚合中,阴离子乳化剂因其能使乳胶粒子外层具有静电荷,防止离子聚集,使乳液的机械稳定性好,在工业中应用最广泛。而阳离子型乳化剂中胺类化合物具有阻聚作用,且易被过氧化物引发剂氧化而发生副反应,因此阳离子乳化剂的应用较少。非离子型乳化剂不怕硬水,化学稳定性好。一般而言,单纯用非离子型乳化剂进行乳液聚合反应,反应速率低于阴离子乳化剂参加的反应,且生产出的乳胶粒子粒径较大,涂膜光泽差。与非离子型乳化剂相比,由于乳化剂离子带电荷,同时还会产生一定程度的水化作用,在乳胶粒子间静电斥力和水化层的空间位阻的双重作用下可使聚合物乳液更稳定,另一方面离子型乳化剂比非离子型乳化剂相对分子质量小得多,加入质量相同的乳化剂时,离子型乳化剂所产生的胶束数目多,成核几率大,会生成更多的乳胶粒,聚合反应速率大,合成的乳胶粒径小。因此在有离子型和非离子型乳化剂可供选择时,优先选择离子型乳化剂。两性乳化剂由于价格昂贵,尚未能在乳液聚合工业上体现其独特的性

丙烯酸酯类凝胶聚合物电解质研究进展

第36卷第2期2008年2月化 工 新 型 材 料N EW CH EM ICAL M A T ERIA L S V ol 36N o 2 1 作者简介:校峰(1980-),硕士研究生,研究方向:新材料和环境科学。 综述与专论 丙烯酸酯类凝胶聚合物电解质研究进展 校 峰 赵旭东 (陕西省环境科学研究设计院,西安710061) 摘 要 聚合物锂离子电池的发展对聚合物电解质提出了更高的要求,促使人们开发性能优良的凝胶聚合物电解质。综述了近年来凝胶聚合物电解质的发展状况,主要论述了凝胶聚合物电解质的结构与性能以及几种典型的凝胶聚合物电解质的制备。 关键词 凝胶聚合电解质,丙烯酸酯类聚合物 The progress in study of acrylate gel polymer electrolytes Xiao Feng Zhao Xudo ng (Shaanxi Institute o f Env ir onm ental Science Research and Desig n,Xi an 710061) Abstract Po ly mer electro ly tes w ith better perfo rmance ar e demanded in the development of polymer lithium io n batter ies;t her efore many att entions have been paid to g el polymer elect rolytes.T her e a re many kinds o f gel polymer elec -t rolytes:conceptio n of g el polymer electro ly tes,hist or ical development,pr operties,structure and kinds of typical g el po ly -mer electro ly tes were r eview ed. Key words gel po ly mer electr olyte,acr ylate copolymer 聚合物电解质可分为两类,一类是干态聚合物电解质(DP E),此类电解质的室温离子电导率较低(10-4~10-5S/cm),目前仍难于在电池中使用;另一类就是凝胶聚合物电解质,它是由聚合物、增塑剂和锂盐通过一定的方法形成的具有合适微结构的聚合物网络,利用固定在微结构中的液态电解质分子实现离子传导,它的室温电导率一般在10-3S/cm 数量级,是最有希望应用于锂离子电池中的聚合物电解质。 1 聚合物电解质应具有的性能 聚合物锂离子电池的关键是制备聚合物电解质,其性能好坏直接影响锂离子电池的性能优化和提高。作为锂离子电池的聚合物电解质必须满足以下几个基本要求:(1)较高离子电导率。为了达到液态电解质锂离子电池mA/cm 2 数量级发电能力,聚合物电解质需要具有至少10-3S/cm 数量级的电导率。(2)较高的锂离子迁移数。大多数现有电解质体系(包括液态电解质和聚合物电解质)的迁移数都<0 5,即锂离子对电导率的贡献不足一半。(3)化学和电化学稳定性好。由于电解质膜插在正负极之间,因此,当电解质与电极直接接触时不希望发生化学副反应,这就需要聚合物电解质有一定的化学稳定性;另外,为了得到一个合适的实用温度范围,聚合物电解质必须要有良好的热稳定性;最后电解质还必须有一个相对于L i/L i +的0~4 5V 的电化学稳定窗口,以满足高电位电极材料充放电电压范围内电解质的电化学稳定性和电极反应的单一性。(4)有一定的机械强度。聚合物电解质在电池 中还起到了隔离正负极的作用,这就要求它具有足够的机械强度来支撑正负极片,防止电池内部短路。 2 几种典型的凝胶聚合物电解质 从1975年凝胶聚合物电解质(GP E)首次报道以来,有多种体系的凝胶聚合物电解质得到了开发和研究,其中研究的最为详尽的、也是性能最好的GP E 体系是聚环氧乙烷(P EO)、聚甲基丙烯酸甲酯(PM M A)、聚丙烯腈(PA N )和聚偏四氟乙烯(PV DF)四种聚合物及其衍生物体系凝胶型聚合物电解质。 2.1 PEO 体系GPE 为了提高P EO /锂盐性纯固态聚合物电解质的电导率,研 究人员尝试了多种改性方法。通过共混、共聚、接枝和交联等方法降低了聚合物的结晶度和玻璃化转变(T g )温度,从而使其电导率有所提高,但与实用化的要求还有一定的差距。增塑剂可以降低结晶度、提高链段的运动能力和锂盐的解离度。有研究通过添加有机溶剂对P EO/锂盐电解质进行增塑处理,发现其导电性能明显提高。Ito 等制备了用聚乙二醇(PEG )增塑的P EO -L iCF 3SO 3电解质,并测量了其离子电导率。发现随着P EG 浓度的增加,离子电导率也随之增加。电导率增加的主要原因是结晶度的降低和体系自由体积的增大。但同时,离子电导率的增大相反地伴随着差的界面性能的形成,这是由于末端羟基的存在[1]。为了解决这一问题,研究人员又用甲氧基取代了P EG 的末端羟基[2]。冠醚也可被作为增塑

相关主题
文本预览
相关文档 最新文档