当前位置:文档之家› 浅析中性点经消弧线圈接地方式

浅析中性点经消弧线圈接地方式

浅析中性点经消弧线圈接地方式
浅析中性点经消弧线圈接地方式

浅析中性点经消弧线圈接地方式

发表时间:2018-10-22T16:02:21.103Z 来源:《电力设备》2018年第18期作者:廖苑晰

[导读] 摘要:电力系统的中性点指的是发电机或者是变压器的中性点,从电力系统运行的安全性、经济性、可靠性以及人身安全等层面来考虑,通常采取的是经消弧线圈接地的具体运行方式。

(国网四川省电力公司天府新区供电公司四川成都 610000)

摘要:电力系统的中性点指的是发电机或者是变压器的中性点,从电力系统运行的安全性、经济性、可靠性以及人身安全等层面来考虑,通常采取的是经消弧线圈接地的具体运行方式。所以,对于该种运行开展理论层面上的研究与分析就显得非常关键。

关键词:中性点;经消弧线圈;接地方式

1.引言

我国的配电网中性点重点采取三种接地方法:中性点不接地(对地绝缘)、中性点经电阻接地以及中性点经消弧线圈接地。配电网在以往大多数采用的是中性点不接地的运行方式,以往的供电网络结构比较简单,系统的容量也不大,输电线通过架空线为主,因为受到大风、树叶以及雷击等因素的影响,单相接地故障是配电网当中产生概率最高的一种故障,并且通常是可以恢复的故障。因为中性点不接地,即便是发生了单相金属性永久接地或者是稳定电弧接地,依然可以不间断进行供电,这是该种配电网的优势所在,这样能够很好的确保供电的可靠性。但是伴随着我国供电系统的改造,电缆线路在不断的增多,配电网的接地电容在到达一定的数值之后,配电网的供电可靠性将会受到一定的威胁。首先,在配电网产生单相接地的时候,接地电容的电流比较大,电弧难以熄灭,或许会发展成为相间短路;其次,在产生间歇性弧光接地的时候,容易产生弧光接地过电压,进而对整体配电网产生威胁。为了改善这些问题,配电网中性点经消弧线圈接地是一项非常科学的对策,通过消弧线圈带来的感性电流来补偿故障点的电容、电流,使得配电网在产生单相接地故障的时候电弧可以在瞬间熄灭。

2.中性点经消弧线圈接地特征

配电网中性点经消弧线圈接地是通过消弧线圈所带来的感性电流来对故障点的电容与电流进行补偿的,一定要采取过补偿的运行方式,即消弧线圈的感抗应该低于电网对地的容抗,这样可以利用调整消弧线圈分接头的方式实现。因为人为的加设一个比电网接地电容电流稍微大一些、相位差是180°的电感电流,电容电流就可以被电感电流所补偿,通过接地故障点的电流,仅仅是补偿之后数值很小的残存电流,具备下述的特征:

(1)配电网的运行可靠性较高。在产生单相接地故障的时候,单相接地故障的电流比较小,相间电压仍旧是对称的,不会影响到电网的继续运行。通常来说允许带故障运行2h,这样就能够强化供电的可靠性。

(2)对于瞬时性单相接地闪络可以自动熄弧。因为故障电流比较小,使得接地电弧无法维持而立刻自动熄灭,能够有效的防止瞬时性接地朝着永久性接地故障的转变。

(3)可以把单相接地的过电压控制在2.5倍相电压之下。补偿电网因为采取的是过补偿运行的对策,经过长时间的运行经验可以知道,脱谐度小于等于10%。

3.中性点经消弧线圈接地系统的设备选择

3.1消弧线圈容量以及分接头的选取

消弧线圈的容量需要结合系统单相接地故障时候电容电流的大小来明确,并且应该留有一定的裕度,进而适应系统将来的发展以及迎合设备裕度的规定等,消弧线圈应该防止在谐振点运行。通常应该把分接头调谐至接近谐振点的位置,进而来提升补偿的成功率。为了方便运行谐振,选取的容量应该接近于计算数值。消弧线圈的分接头数目应该符合调节脱谐度的规定,接在变压器中性点的消弧线圈分接头数目通常不能小于5个,接在发电机中性点的最好不小于9个。

3.2中性点位移电压校验

中性点的位移电压跟电网的不对称电压、电网的阻尼率、消弧线圈的脱谐度相关联。在电网形成之后,其不对称的电压基本上就是固定值,为了确保在单相接地的时候能够有效的抑制弧光过电压的产生,规定消弧线圈的脱谐度应该在 ±5%的范围当中,这样以来就只有改变阻尼率进而改变位移电压,所以应该在消弧线圈当中串入电阻,进而确保阻尼率,控制好中性点的位移电压。在低压电网当中因为中性点不对称电压比较小,为了提升测量的精准度,可以使用特制的中性点专用互感器进而提升检测的灵敏度。

3.3接地变压器的选择

消弧线圈接入到系统当中一定要有电源中性点,然后在其中性点上接入消弧线圈,在产生单相接地故障的时候,经过变压器的三相同方向的零序磁通,流过空气以及油箱壁绝缘油等介质进而形成闭合的回路,在邮箱铁芯等部位产生额外的损耗,该种损耗是不均匀的,一定会形成局部过热的情况,进而影响到变压器的正常运行以及使用期限。因此,接入到该种类型接地变压器的消弧线圈容量不应该超出变压器容量的20%;为了能够符合消弧线圈接地补偿的需求,同时也符合照明与动力混合负载的需求,可以采取Z型接线的变压器。因为变压器高压一侧采取Z型接线,每一相绕组是由2段所构成的,并且分别处在不同相的铁芯柱上,2段线圈通过反极性的方式连接,零序阻抗是十分小的,它的空载损耗会变低,变压器的容量有95%可以被采用,并且还可以调整电网的不对称电压。由此可以知道,使用Z型接线的电压器作为接地变压器是一种非常好的选择。接地变压器的容量需要跟消弧线圈的容量相互配合。在接地变压器只带有消弧线圈而没有二次负载的时候,接地变压器的容量跟消弧线圈的容量相同即可;如果接地变压器除了带消弧线圈之外,还作为所用变压器利用的时候,接地变压器的容量就应该大于消弧线圈的容量。

4.中性点经消弧线圈接地方式的作用探讨

中性点经消弧线圈接地的10kV配网系统,有时候也被称之为谐振接地系统,由于消弧线圈是一种补偿装置,所以又可以称其为补偿系统。补偿电网中性点设立消弧线圈,重点的目的就是使得电网在产生单相接地故障的时候接地电弧可以自动瞬间熄灭。而消弧线圈能够发挥这个作用,重点是从下面两点进行考虑:

4.1降低接地故障电流

消弧线圈的电感电流补偿电网当中的接地电容电流,导致故障点的接地电流变成了数值明显降低的残余电流,这样就制约了接地故障电流的破坏效果。在残流过零的时候电弧就可以熄灭,使得残余电流的接地电弧容易熄灭,防止故障的扩大。

消弧线圈接地选线原理

1 选线原理 ⑴绝缘监察装置。绝缘监察装置利用接于公用母线的三相五柱式电压互感器,其一次线圈均接成星形,附加二次线圈接成开口三角形。接成星形的二次线圈供给绝缘监察用的电压表、保护及测量仪表。接成开口三角形的二次线圈供给绝缘监察继电器。系统正常时,三相电压正常,三相电压之和为零,开口三角形的二次线圈电压为零,绝缘监察继电器不动作。当发生单相接地故障时,开口三角形的二次端出现零序电压,电压继电器动作,发出系统接地故障的预告信号。其优点是投资小,接线简单、操作及维护方便。其缺点是只发出系统接地的无选择预告信号,不能准确判断发生接地的故障线路,运行人员需要通过推拉分割电网的试验方法才能进一步判定故障线路,影响了非故障线路的连续供电。 ⑵零序电流原理。在中性点不接地的电网中发生单相接地故障时,非故障线路零序电流的大小等于本线路的接地电容电流。故障线路零序电流的大小等于所有非故障线路的零序电流之和,也就是所有非故障线路的接地电容电流之和。通常故障线路的零序电流比非故障线路零序电流大得多,利用这一原则,可以采用电流元件区分出接地故障线路。 ⑶零序功率原理。在中性点不接地的电网中发生单相接地故障时,非故障线路的零序电流超前零序电压90°,故障线路的零序电流滞后零序电压90°,故障线路的零序电流与非故障线路的零序电流相位相差180°。根据这一原则,可以利用零序方向元件区分出接地故障线路。 2 消弧线圈接地系统的特点 随着国民经济的不断发展,配网规模日渐扩大,电缆出线日渐增多,系统对地电容电流急剧增加,接地弧光不易自动熄灭,容易产生间隙弧光过电压,进而造成相间短路,使事故扩大。为了防止这种事故,电力行业标准DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》规定;3~10 kV架空线路构成的系统和所有35 kV、66 kV电网,当单相接地故障电流大于10 A时,中性点应装设消弧线圈,3~10 kV电缆线路构成的系统,当单相接地故障电流大于30 A时,中性点应装设消弧线圈。根据这一规定,潮州供电分公司对系统进行改造,采取中性点经消弧线圈接地的运行方式,但是造成了采用零序电流原理、零序功率方向原理的接地选线装置的选线正确率急剧下降。其原因是中性点经消弧线圈接地系统单相接地时,电容电流分布的情况与中性点不接地系统不一样了,如图1所示。

中性点经电阻接地方式的适用范围及优缺点正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 中性点经电阻接地方式的适用范围及优缺点正式版

中性点经电阻接地方式的适用范围及 优缺点正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的

电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地 高电阻接地多用于电容电流为10A或稍大的系统内。接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容

10kV中压电网采用中性点经消弧线圈接地方式

10kV中压电网采用中性点经消弧线圈接地 方式 2000年第2期 总第78期 冶金动力 M盯^LLUR0ICALPOWER?1? 10kV中压电网采用中性点经消弧线圈接地方式 狰器…例 联锻压勰谆讽 ppl尚PointhingThrough 1概述 3~35kV中压电网的中性点采用何种接地方 式.是一个牵涉到诸多因素的综合性技术问题,如供 电的呵靠性,过电压,电气绝缘水平,继电保护装置 的灵敏度及生产工艺,电气传动等方面. 从国外历史及习惯上来看.以蒋国,西欧一些国 家比较习惯于采用不接地或经消弧线圈接地的方 式因为这种接地方式.当发生单相接地故障时,仍 然可以继续保持供电若干小时.而以美国,日本等国 家大多数习惯于采用中性点经电阻接地方式,这种 接地方式,无论发生单相接地故障或相间故障,继电 保护很灵敏,能快速跳闸切除故障. 从国内历史及习惯上来看,我国因采用前苏联 的方式,而且国标设计规范也是这样要求的:对于架 空输电线,系统电容电流达2OA时,对电力电缆输 电网的系统电容电流达3OA时,需要采用中性点弪 消弧线圈接地的方式.这种接地方式的好处是t一旦

系统发生单相接地故障,由于流弪消弧线圈的电感 电流和系统的电容电流相补偿,减小接地故障电流(一般控制在5~1OA以下),以确保故障点的电弧 在电流过零时自动熄灭.不再复燃,因而可以允许继续保持供电2h(电缆电网).也就是说,保护装置只 发信号,不跳开关.但是.由于非故障相的相电压升 高√3倍.且断续电弧的过电压,系统有可能发生 各种谐振电压,这些对系统中的各种电气设备的绝 缘是非常不利.同时,这种系统需要特殊灵敏的继电器或带微机的继电保护装置. 2宝钢冷轧供电电源中性点接地方式探讨 冷轧之所以采用消弧线圈接地方式,主要是由 于冷轧的工艺,电气传动所要求.众所周知,冷轧板 的带钢很薄,热轧板的带钢较厚.因此,一旦发生供 电线路故障(包括单相接地故障及相问短路),开关 突然跳闸,由于机械惯性和带钢张力等谭c因,将引起严重的"堆钢,.断带及部分带钢在酸洗槽内停留 时间过长被腐蚀,造成废品.另外,突然的断电,使各 种轧辊及机械齿轮部件受到不同程度的损伤,因此 可见,对于冷轧传动工艺,提高供电的可靠性是一个至关重要的要求.也就是说,除了系统发生耜问短路 冶金动力 METALLURGICALPOWER 年第2期 总第78期 必衙马上跳外.在发生单相接地故障时,能继续保 证供电1~2h,以确保生产操作人员有足够的时间 逆于亍有序的停电停机,以满足冷轧传动工艺的特殊

配电网中性点接地方式分析及选择参考文本

配电网中性点接地方式分析及选择参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

配电网中性点接地方式分析及选择参考 文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1问题的提出 电力系统中性点接地方式是一个涉及电力系统许多方 面的综合性技术课题,它不仅涉及到电网本身的安全可靠 性、过电压绝缘水平的选择,而且对通讯干扰、人身安全 有重要影响。 2中性点不同接地方式的比较 (1)中性点不接地的配电网。中性点不接地方式,即中 性点对地绝缘,结构简单,运行方便,不需任何附加设

备,投资省,适用于农村10kV架空线路长的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,流过故障点的电流仅为电网对地的电容电流,其值很小,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,避免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动消弧,非故障相电压升高不大,不会破坏系统的对称性,可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 (2)中性点经传统消弧线圈接地。采用中性点经消弧线圈接地方式,即在中性点和大地之间接入一个电感消弧线圈,在系统发生单相接地故障时,利用消弧线圈的电感电流对接地电容电流进行补偿,使流过接地点的电流减小到

中性点接地方式

中性点接地方式 1.前言:1、集中电网系统规划、电气主接线、厂用电和设备选择等单元中有关中性点接地方式内容,统一讲解,建立系统概念; 2.内容包括中压、高压、超高压特高压系统,重点是中压。 一、概述 1、中性点接地的意义 三相交流电流系统的三相交汇处与参考地之间多种多样的关系。称之谓中性点接地方式。它是工作接地、安全接地和保护接地。选择不同的接地方式,对电力系统建设和运行的安全性、可靠性、先进性和经济性意义重大。 2、中性点接地方式的种类 序号接地方式 中压电网高压电网超高压电网特高压电网 3—66KV 110—220KV 330—500KV 750—1000KV 1 中性点不接地★ 2 中性点直接接地★★ 3 中性点选择性直接接地★★ 4 中性点经电抗接地★★★ 5 中性点经电阻接地★★ 6 中性点经阻抗接地★ 3、中性点接地方式的性质 有效接地和非有效接地的零序阻抗范围: X O/X1<3 R O/X1<1 基于对电网绝缘配合的考量,对工频过电压和短路电流的限制是其出发点。

4、选择接地方式要考虑的因素 电压等级 网络结构 安全性 供电可靠性和连续性 环境保护 过电压水平 绝缘配合和避雷器选择 设备耐压水平 短路电流的控制 导体和设备选择 继电保护及其配合 高海拔地区 经济性 二、3—66KV中压电网的接地方式 1、沿革 2、中性点不接地方式 1)特点及适用范围 ——单相接地不跳闸、连续运行; ——接地点电流为容性,易发生间歇性弧光接地过电压;——工频过电压高,内部过电压高; ——架空网络多为瞬时性可恢复;

——避雷器选择100%。 适用于单相接地电容电流小于7~10A的场合。 2)单相接地故障 流过的是电容电流 3)间歇性弧光接地过电压 ——接地点多次重燃引起; U,稳态电压为线电压。——非故障相的最大过电压3.5 xg ——波及整个电网; ——时间持续很长; ——没有有效的保护设备,避雷器要避免动作,消弧柜的动作时间跟不上; ——接地点位置不易确定; ——易使P.T饱和引发谐振。 4)电容电流的限值 6~66KV电网:10A 6~10KV厂网:7A 5)电容电流计算 近似计算:6KV架空C I=0.015~0.017A∕Km 10KV 0.025~0.029A∕Km 35KV 0.1A∕Km 另一种估算通式:

中性点经电阻接地方式的适用范围及优缺点

编订:__________________ 审核:__________________ 单位:__________________ 中性点经电阻接地方式的适用范围及优缺点Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5969-82 中性点经电阻接地方式的适用范围 及优缺点 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随

之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地 高电阻接地多用于电容电流为10A或稍大的系统内。接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容电流的原则来选择。由于接地故障时总的接地电流比较小,对电气设备和线路所产生的机械应力和热效应也比较小,同样也减少人身遭受电击的危险和靠近接地故障点的人员遭受到电弧和闪络的危险,还可以带故障继续运行2h,以便利用这段时间消除接地故障,保持系统运行的可靠性。 (2)中电阻接地

10kV发电机组中性点经电阻接地方式

中性点经电阻接地方式 ——适宜于以电缆线路为主配电网的中性点接地方式 一、前言 三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。 中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。在选择电网中性点接地方式时必须进行具体分析、全面考虑。 我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。 配电网中性点的接地方式主要可分为以下三种: ●不接地 ●经消弧线圈接地 ●经电阻接地 自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发

中性点接地方式及其影响(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 中性点接地方式及其影响(通用 版)

中性点接地方式及其影响(通用版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 关键词:中性点接地方式 1中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

变压器中性点接地方式的选择

变压器中性点接地方式的选择 变压器中性点接地方式的选择原则: 系统中变压器的中性点是否接地运行原则是:应尽量保持变电所零序阻抗基本不变,以保持系统中零序电流的分布不变,并使零序电流电压保护有足够的灵敏度和变压器不致于产生过电压危险,一般变压器中性点接地有如下原则: (1)电源端的变电所只有一台变压器时,其变压器的中性点应直接接地运行。 (2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,再将另一台中性点不接地变压器改为中性点直接接地运行。若由于某些原因,变电所正常情况下必须有两台变压器中性点直接接地运行,则当其中一台中性点直接接地变压器停运时,应将第三台变压器改为中性点直接接地的运行。 (3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地的方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时,应将另一台中性点不接地变压器改为中性点直接接地运行。 (4)低电压侧无电源的变压器的中性点应不接地运行,以提高保护的灵敏度和简化保护接线。 (5)对于其他由于特殊原因的不满足上述规定者,应按特殊情况临时处理,例如,可采用改变保护定值,停用保护或增加变压器接地运行台数等方法进行处理,以保证保护和系统的正常运行。

系统中各变压器中性点接地情况: 已知条件已给出: (1)网络运行方式 最大运行方式:机组全投 最小运行方式:B厂停1号机组,D厂停2号机组。 (2)各变压器中性点接地情况 发电厂B: 最大运行方式运行时,变压器2号(或3号)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换。 最小运行方式运行时, 3号变压器中性点直接接地。 发电厂D: 最大运行方式运行时,110KV母线下,变压器1(或2)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换;35KV母线下,5号变压器中性点不直接接地。 最小运行方式运行时,110KV母线下,变压器1中性点接地,35KV母线下,5号变压器中性点不直接接地。 发电厂C: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂E: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂F: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。

中性点接地方式的选择

中性点接地方式的选择 三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。中性点接地方式涉及电网的安全可靠性、经济性;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。一般来说,电网中性点接地方式也就是变电所中变压器的各级电压中性点接地方式。因此,在变电所的规划设计时选择变压器中性点接地方式中应进行具体分析、全面考虑。 我国110kV及以上电网一般采用大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采用不接地方式),这样中性点电位固定为地电位,发生单相接地故障时,非故障相电压升高不会超过1.4倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。 6~35kV配电网一般采用小电流接地方式,即中性点非有效接地方式。近几年来两网改造,使中、小城市6~35kV配电网电容电流有很大的增加,如不采取有效措施,将危及配电网的安全运行。 中性点非有效接地方式主要可分为以下三种:不接地、经消弧线圈接地及经电阻接地。 1中性点不接地方式 适用于单相接地故障电容电流IC10A时,接地点电弧难以自熄,可能产生过电压等级相当高的间歇性弧光接地过电压,且持续时间较长,危及网内绝缘薄弱设备,继而引发两相接地故障,引起停电事故;

·系统内谐振过电压引起电压互感器熔断器熔断,烧毁TV,甚至烧坏主设备的事故时有发生。 2中性点经消弧线圈接地 适用于单相接地故障电容电流IC>10A,瞬间性单相接地故障较多的架空线路为主的配电网。 其特点为: ·利用消弧线圈的感性电流补偿接地点流过的电网容性电流,使故障电流

中性点经小电阻接地

中性点经小电阻接地零序过流 0 引言 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系,早期惠州惠阳的配网主要以架空线为主,线路电容电流较小,因此配网主要采用中性点不接地或者经消弧线圈接地并取得较好的效果,随着城网改造的深入,越来越多的采用电缆代替架空线,使得这些地区接地电容电流迅速上升,在这种情况下,中性点不接地或者经过消弧线圈接地已经不能满足系统限制过电压的要求,而且电缆馈线发生故障一般为永久性故障,宜采用迅速切除故障防止故障扩大,所以惠州惠阳10kv配网基本上都采用中性点经低电阻接地(接地变/曲折变),即NRS,由于系统的零序阻抗较小,线路发生单相接地故障时,线路的零序过流保护能够迅速切除故障,10kv母线发生故障时,接入曲折变保护的零序过流保护会动作隔离故障。 1 中性点经小电阻接地的特点 1.1 降低工频过电压和抑制弧光过电压中性点经小电阻接地方式可降低单相接地工频过电压,因为能迅速切除故障线路,使得工频电压升高持续时间很短,中性点电位衰减很快,弧光重燃产生过电压幅值可明显降低,有效地抑制弧光接地过电压。 1.2 消除铁磁谐振过电压和防止断线谐振过电压在中性点不接地系统中,由于电磁式电压互感器的激磁电感和线路的对地电容形成非线型谐振回路,在特定情况下引起铁磁谐振过电压,在中性点经小电阻接地后谐振无法产生。配网中性点不接地系统发生断线时,配电变压器的铁芯线圈与线路对地电容组成的串联回路在特定条件下会发生谐振,产生过电压。中性点经小电阻接地可以防止大部分的断线谐振过电压,减少绝缘老化,延长电气设备使用寿命,提高网络和设备可靠性。 1.3 避免发生高压触电事故配网系统的架空线路分布较广,高度也不太高,时有发生外物误碰高压线路以及高压线断线情况,极易导致触电伤亡事故。中性点经小电阻接地系统装有保护装置,一旦发生接地故障,可以立即跳闸,断

中性点经消弧线圈接地系统接地方式分析

XX大学 二○**届毕业设计 中性点经消弧线圈接地系统接地方式分析 学院: 专业: 姓名: 学号: 指导教师: 完成时间: 二〇*年六月

摘要 电力系统中性点接地方式是一个非常综合的技术问题,它与电网电压等级、电网结构、绝缘水平、供电可靠性、继电保护、电磁干扰、人身安全都有很大的关系。 建国初期,我国10kV配电网主要采用中性点不接地和经消弧线圈接地方式80年代中后期为适应城区电网的迅速发展,特别是电缆的大量使用后,出现了l0kV 配电网中性点经低电阻接地方式,该运行方式先后在许多大中城市如广州、上海、北京、珠海等地采用。经多年的运行实践,各地普通认为低电阻接地方式比消弧线圈接地方式的过电压水平要低,但同时反映出的运行状况也存在较多的问题,主要是供电可靠性有所下降,还曾发生过多起人身伤亡事故。因此国内目前在10kV 电网中性点接地运行方式的选择上出现较大的争议,争议点主要是两种接地方式的应用范围、供电可靠性的高低、人身安全、通信干扰和运行维护工作等诸多方面。 本论文主要针对10kV配电网中性点接地运行方式的选择问题进行研究。论文首先对10kV配电网的中性点各种运行方式进行分析,比较不同运行方式的特点。然后以茅坪变电站10kV电网的实际参数来建立数值计算模型,在考虑了电网接地电容电流变化、接地点接地电阻值变化等多种影响因素的情况下,对中性点经消弧线圈接地系统进行了仿真分析。 关键词:配电网;中性点接地方式;消弧线圈;过电压;

ABSTRACT It is an important technical problem to neutral grounding mode of the electricpower system which associates with voltage level, network structure, insulation level,reliability of power supply, protective relaying, electromagnetic interference, andpersonal safety. In China, the neutral grounding mode of the 10kV network used of nonegrounding, grounding by arc suppressing coils in the past. With the development ofurban power network, especially the widespread use of cables, low resistancegrounding mode was used to restrain the over voltage in Guangzhou, Shanghai,Beijing, and Zhuhai etc. It was reported that the over voltage level of low resistancegrounding mode is lower than that of arc suppressing coil mode, but the operationcarried out the other problems, including reliability of power supply rapidly dropping,and person safety being threatened. So interiorly the grounding mode selection of the10kV network was disputed, which mainly focused on the fault form of 10kV networkgrounding, the apply area of arc suppressing coil grounding mode and low resistancegrounding mode, reliability of power supply, person safety, communicationinterference and the work load of maintenance. This paper studied on how to select the neutral grounding mode of 10kV network.Firstly it analyzed the characteristic of grounding modes about 10kV network. Thenwith the demonstration of Maoping substation in Hubei province, this paper built anumerical value equivalent model. Taking account of the transformation of thecapacitive current or the variety of the grounding point resistance, it simulated theover voltage level and the grounding point short current value of the network with arcsuppressing coil grounding mode or low resistance grounding mode, in addition, this paper discussed the problem of restrained arc over voltage. In this paper , the technical parameters for the arc suppressing coil and associatedequipment were calculated , and reasonable selection has been made to finally realizeautomatic tracing compensation for arc suppressing coil grounding mode. Key words:Power distribution network;Neutral grounding mode;Arc suppressing coil;Over voltage;Automatic tracing compensation

发电机中性点接地方式及作用 综合2

发电机中性点接地方式及作用 发电机中性点接地一般有以下几类: 1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。发电机中性点不接地方式,一般适用于小容量的发电机。 (中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。这种接地方式能实现无死区的定子接地保护) 2.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。 3.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。这种方式也可以实现高灵敏度既无死区的定子接地保护。

4.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。 发电机中性点经单相变压器高阻接地接地装置设计及选型 1.发电机中性点接地电阻的计算原则 1)接地点阻性电流>(1.0~1.5)容性电流(以保证过电压不超过2.6倍相电压即1.5倍的线 电压1.5U N=2.6U X) 2)3A<接地点总电流<(10~15A),以满足保护灵敏度和不烧坏铁芯的要求; 3)10kv 10MW发电机最大容性电流<4A C<2.1 uF 2.电容及电容电流计算: =0.7242uF(发电机厂家提供); 1)发电机定子绕组三相对地电容C of 2)10kV母线每100m三相母线电容电流约为0.05A(假设为260米高压连接母排) =0.06829uF 0.05×2.6=0.13A即三相对地电容 C ol =0.2uF(经验值); 3)发电机出口至升压主变低压绕组间单相对地等值电容为C 02 4)主变低压侧三相对地电容20470PF即0.02047 uF 5)阻容参数:单相电容0.1 uF,三相为0.3 uF 发电机的三相对地总电容:C=0.7242+0.06829+0.6+0.02047+0.3=1.71296uF 发电机系统电容电流为: I C=ω CU X×103=2πf CU X×103=314×1.71296×106 ×10.5/3×103=3.26A

配电网中性点接地方式比较分析

1配电网中性点接地方式比较分析 1.1概述 配电网中性点的接地方式主要有三种:中性点不接地运行方式,中性点经消弧线圈接地方式和中性点经电阻接地方式,三种中性点接地方式具有各自的优缺点及不同的适用范围。 1.2配电网各种中性点接地方式的特点 (1)中性点不接地运行方式 总体上来说,中性点不接地方式具有结构简单、单相接地故障还能继续供电的优点;但由于其容易产生幅值较高的电弧接地过电压(3.5 p.u.),并由此可能引发危害整个配电网的铁磁谐振过电压,对设备的绝缘水平要求高,这势必增加设备绝缘方面的投资。 该中性点接地方式仅适用于电容电流小于10A的农村架空配电网。因为当架空线路不长时, 对地电容电流不大, 单相接地故障电流数值较小,不易形成稳定的接地电弧, 一般均能迅速自动灭弧而无需跳闸,能保证连续供电。但当线路较长、对地电容电流相对较大, 对地故障电弧不可能自动熄灭,此时可能会出现由于持续电弧引发严重过电压而烧毁设备的情况,严重影响正常供电。 (2)中性点经消弧线圈接地运行方式 在发生单相接地故障时,中性点经消弧线圈接地的方式可以有效的减少单相接地时的接地故障电流。,形成一个与对地电容电流的大小接近但方向相反的电感电流,它们之间相互补偿,可以使接地处的电流变的很小,这样可以使电弧在电流过零后自动熄灭,从而消除电弧接地过电压及其由此引发危害配电网的铁磁谐振过电压的危害,保证正常供电。 优点:可以消除间歇性电弧过电压,保证故障迅速消失,恢复正常供电。 缺点: 1、消弧线圈要增加额外投资,而且电容电流越大,投资也越大; 2、消弧线圈在谐波分量严重的情况下并不能根除接地电弧的产生,因为

中性点经消弧线圈系统接地故障时选线问题

中性点经消弧线圈接地系统 发生单相故障时选线不准问题分析 小电流接地系统,包括中性点不接地系统,中性点经高阻接地、中性点经消弧线圈接地系统。对于中性点不接地系统,由于不够成短路回路,我国规程规定可以继续运行1~2个小时。但随着线路长度增加,电容电流增大,弧光接地过电压倍数增高,长时间运行还容易造成相间短路,尤其是在中性点接地系统中,发生永久接地时,故而更有必要分开故障线路,进行检修。但是由于中性点经消弧线圈系统具有接地故障电流小、不易燃起电弧等特点,其作用原理是补偿发生接地故障时流过中性点的容性电流,这就造成了故障电流变小的特点,给选线装置提出了技术难题,为深入剖析经消弧线圈接地系统选线不准的原因,有必要对小电流接地系统发生接地时的故障特点进行陈述。 对于中性点不直接接地系统,当发生单相接地故障时电路图如下图所示: 从图中可以看出: 1.电力系统发生单相接地时,故障线路故障相电压近于零,非故障相电压升高为线电压。 2.非故障相线路电容电流值为原来的3倍,相位超前该相对地电压近90度。 3.故障相零序电流最大,为非故障相零序电流之和。 对于中性点经消弧线圈接地系统,当发生单相接地故障时电路图如下图所示:

(a) 图2 中性点经消弧线圈接地示意图 从图中可以看出,当中性点经消弧线圈接地系统,通过接地的电容电流与消弧线圈电感电流相互补偿,在发生单相接地故障时,使流过接地点的电流较小,小电流接地系统一般采用过补偿运行方式,在此种运行情况下,将与中性点不直接接地系统规律不同,故障线路与非故障线路的电流方向大致相同,幅值上也比较接近。 在以上接地故障特征的基础上,对于小电流接地系统故障选线装置,现在通用的单相接地选线方法原则上可以说就是通过故障发生时的故障特征来判断哪条线路发生了故障,这些故障特征一方面是稳态信号,一方面是暂态信号,总的来说稳态故障特征指的就是零序电流、零序电压,相位等,暂态特征指的是高次谐波,因为在发生故障时,高次谐波在故障线路与非故障线路时是不相同的,但总的来说故障电流较小,故障特征不明显是选线理论所要解决的核心问题。 目前,消弧线圈接地系统的单相接地选线方法归纳起来主要有两类,一类是通过改变消弧线圈回路参数来获取接地故障特征的方法;另一类方法不通过改变消弧线圈回路参数,只依据单相接地时的自身接地故障特征。第一类方法应用得最多的是单相接地时在消弧线圈旁并接电阻,以改变接地故障线路的零序电流,通过检测各线路零序电流的改变实现接地故障线路的选择。虽然这种单相接地选线方法具有相对较高的选线正确率,但也存在如下的不足 1)需要增加电阻及相应的开关控制设备,加大了设备成本,且电阻的开关控制设备是系统运行的薄弱环节 2)消弧线圈并接电阻后,其故障线路接地点电流将大幅增加,影响系统的运行安全; 3)消弧线圈并接电阻是在判断系统稳定单相接地后进行的,其接地选线时间一般大于5 s,对小于 5 s 的瞬时单相接地,通常不能反应。 第二类方法不存在以上第一类方法的不足,但由于选线原理和实现手段的缺陷,其大多数单相接地选线方法的选线正确率是较低的,具体的常用的选线原理和算法有如下几种: 1.零序保护原理──该原理是利用故障线路的零序电流大于非故障相线路的零序电

城市电网中性点接地方式的选择参考文本

城市电网中性点接地方式的选择参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

城市电网中性点接地方式的选择参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 【摘要】分析城市配电网在中性点直接接地,中性 点不接地和中性点经消弧线圈接地三种系统中性点工作方 式的特点。综合考虑了供电可靠性,系统绝缘水平和过电 压,对电讯设施的影响及继电保护等因素,提出了对不同 电压等级和不同供电线路方式的配电网如何合理选择系统 的中性点接地方式。 【关键词】城网中性点接地选择 我国城市电网的电压等级和电网中性点的接地方式, 基本上沿用了前苏联划分的电压等级和采用的中性点接地

方式。即将城市配电网大致划分为高压配电网(110kV及以上电压等级),中压配电网(110kV以下电压等级),低压配电网(380V及以下电压等级)三种形式。所采用的电网中性点接地方式主要有中性点直接接地、中性点不接地和中性点经消弧线圈接地等三种形式。对于高压配电网,其中性点一般采用直接接地方式;对于中压配电网,其中性点一般采用不接地或经消弧线圈接地;对于低压配电网,其中性点也一般采用直接接地方式。在我国乃至世界其他国家的城市,城网中性点的接地方式,是随着电压等级的不同而采用不同的接地方式。对于同一电压等级的城市配电网,随着城市供电线路是以架空线路为主的配电网,还是以电缆线路为主的配电网,其中性点接地方式也不尽相同。然而,在城市配电网中,不管选择何种中性点接地方式,都必须综合研究以下几个方面的问题:

相关主题
文本预览
相关文档 最新文档