当前位置:文档之家› Renishaw显微共焦激光拉曼光谱仪操作说明讲解

Renishaw显微共焦激光拉曼光谱仪操作说明讲解

Renishaw显微共焦激光拉曼光谱仪操作说明讲解
Renishaw显微共焦激光拉曼光谱仪操作说明讲解

Renishaw显微共焦激光拉曼光谱仪操作说明

一、开机顺序

1、打开主机电源;

2、计算机电源

3、将使用的激光器电源

1)、514nm:打开激光器后面的总电源开关->打开激光器上的钥匙;

2)、785nm:直接打开激光器电源开关。

二、自检

1、用鼠标双击WiRE2.0 图标,进入仪器工作软件环境;

2、系统自检画面出现,选择Reference All Motors 并确定(OK)。系统将检验所有的电机。

3、从主菜单Measurement -> New -> New Acquisition 设置实验条件。静态取谱(Static),中心520 Raman Shift

cm-1, Advanced -> Pinhole 设为in。

4、使用硅片,用50 倍物镜,1 秒曝光时间,100%激光功率取谱。使用曲线拟合(Curve fit)命令检查峰位。

三、实验

1、实验条件设置

1)、点击设置按钮(或者菜单中Measurement-->Setup Measurement),(设置)下列参数

2)、OK:采用当前设置条件,并关闭设置窗口;Apply:应用当前设置条件,不关闭窗口;

2、采谱:执行Measurement -> Run 命令。

四、关机

1、关闭计算机

1)、关闭WiRE2.0 软件;

2)、Start-->Shut Down-->Turn off computer。计算机将自动关闭电源。

2、关闭主机电源;

3、关闭激光器

1)、关闭钥匙;

2)、514 激光器散热风扇会继续运转,此时不要关闭主电源开关。等风扇自动停转后再关闭主电源开关;

五、注意事项

1、开机顺序:主机在前,计算机在后。

2、关机顺序:计算机在前,主机在后。514nm 激光器要充分冷却后才能关闭主电源。

3、自检:一定要等自检完成再做其他动作。不能取消(Cancel)。

4、硅片:514nm,自然解理线与横向成45 度时信号最强。780nm,(633nm,325nm)自然解理线与横向基本平行时信号最强。

拉曼光谱

附件二 东北师范大学研究生课程论文 论文题目拉曼光谱实验报告 课程名称固体光学性质 姓名刘楠楠学号 10200201021774 专业凝聚态物理年级 2010 院、所物理学院年月日 2011. 06.25 研究生课程论文评价标准 东北师范大学研究生院制

拉曼光谱 一、实验目的 1、掌握拉曼光谱仪的原理和使用方法;了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 3、测四氯化碳的拉曼光谱,计算拉曼频移。 二、实验仪器 RBD型激光拉曼光谱仪 三、实验原理 1.拉曼散射光谱 拉曼散射光谱(拉曼散射)指的是光子发生的一种非弹性散射现象。一束光照射在物质上,光子会被构成该物质的原子或分子散射,其中绝大部分的散射光子会以原有的频率(能量)散射出去,这部分散射属于弹性散射(瑞利散射)因为光子散射前后没有发生能量改变;但是会有小部分散射光子的能量或变大或变小发生了改变(约占总散射光子数的l/108),这种散射属于非弹性散射。拉曼散射就属于非弹性散射。拉曼散射反映的是分子的振动、转动或电子态能量的变化,在大多数实际应用中主要考虑的是振动态的拉曼散射。 拉曼散射光谱根据光子散射前后能量变化不同分属为斯托克斯散射(Stokes)和反斯托克斯散射 (a11ti-Stokes)部分。光子能量在散射后变小的为斯托克斯散射;光子能量在散射后变大的为反斯托克斯散射。区分参见图1. 图1 瑞利散射、斯托克斯散射和反斯托克斯散射

拉曼散射中的斯托克斯部分:分子与光子互作用时分子吸收了一部分光子能量,体系能量到达一个虚态后发射出的光子能量小于入射光子能量。拉曼散射光谱中斯托克斯部分的谱线在入射光谱位置的红光端外。 拉曼散射中的反斯托克斯部分:分子在与光子互作用时分子损失了一部分能量,体系能量到达一个虚态后发射出的光子能量大于入射光子能量。拉曼散射光谱中反斯托克斯部分的谱线在入射光谱位置的蓝光端外。 由于拉曼散射关注的是入射光子与散射光子之间的能量差,这个能量的差值对应着相应的振动能级,所以拉曼散射中分属于斯托克斯和反斯托克斯散射对称分布在入射光谱的两端,区别仅在于强度不同。拉曼散射的强弱完全取决于占据不同振动态的分子数目的多少,如果一个系统处于热平衡,那么处于不同态的分子的相对数量可由玻尔兹曼分布得到: 其中N0:低振动态原子数 N l:高振动态原子数 g o:低振动态简并度 g1:高振动态简并度 △E v:不同振动态之间的能量差 k:玻尔兹曼常数 T:温度(开尔文) 由上可见低能态分子数目远高于高能态的数目,所以斯托克斯散中占主导地位。 在实验中荧光信号和拉曼散射信号经常是相互伴随着的。荧光和拉同的过程,对荧光来说入射光被吸收,整个系统跃迁到某个激发态,经迁到不同的低能态。由于荧光是个共振吸收发射过程,因此荧光的强度且荧光光谱多是连续背景的形状与拉曼散射光谱是分立谱线多为不同。

光谱仪使用步骤

一 机器启动 光谱仪启动时注意事项: (1)光谱仪两次开机之间至少应相隔20min ,以防频繁启动烧毁内部元器件 (2)光谱仪背面有5个开关,开机时按照编号1~5依次按下,两开关按下之间应相隔20s 左右。关机时,按照编号5~1依次按下。 图 光谱仪开关 (3)打开氩气阀,使气压保持在0.2~0.4MPa 之间 (4)维持瓶内气压在2~3MPa 以上,若气压低于该值,则应更换新的氩气 二 登陆 1、开机 开机用户名:arlservice 密码:369852147 2、进入OXSAS 系统 账号:(1)!SERVICE! 密码:ENGINEER (2)!MANAGER ! 密码:无 (3)!USER ! 密码:无 通常使用“MANAGER ”权限即可 3、检查仪器状态 快捷键F7进入仪器状态检查界面: Electronic HUPS Mains Vacuum Water 权限:由高到低

VACUUM:真空度 SPTEMP:真空室温度 MAINS:电源电压 NEG-LKV:-1000V电源 POS.5V:+5V电源 POS.12V:+12V电源 NEG.12V:-12V电源 POS.24V:+24V电源 NEG.100V:-100V电压 三数据备份及数据恢复 数据备份及恢复分为软件内部操作、软件外部操作。 1、数据备份 (1)软件内部备份:操作页面中选择“脱机模式”,待页面变灰后点击“备份数据”按钮,输入相应的文件名(例如:20101019OXSAS_DB.BAK)以防止将先前数据覆盖,然后点击备份即可。 (2)软件外部备份:退出OXSAS操作系统,进入其相应的数据备份及恢复程序“OXSAS Full Backup Restore”,然后选择“备份数据库”按钮下的“备份”选项即可(系统自动选择路径并生成相应文件名)。 2、数据恢复 (1)软件内部恢复:操作页面中选择“脱机模式”,待页面变灰后点击“恢复数据库”按钮,选择之前备份的数据库,恢复即可。 (2)软件外部恢复:退出OXSAS操作系统,进入其相应的数据备份及恢复程序 “OXSAS Full Backup Restore”,然后点击“恢复数据库”按钮,选择相应数据库,点击“RESTORE”即可。

Smart DXR 拉曼光谱仪技术参数

激光拉曼光谱仪(进口) 1.工作环境条件 1.1工作电压:220V交流稳压 1.2工作温度:15-28 oC 1.3相对湿度:<78% RH 2. 技术要求及配置 2.1 主要功能: 2.1.1食品、药物分析研究与检测; 2.1.2 实验室级研究用激光拉曼光谱仪(非便携式拉曼)。 2.2 激光拉曼光谱仪 *2.2.1 光谱分辨率:2cm-1 2.2.2 光谱重复性:优于±0.2cm-1 2.2.3 拉曼光谱测量范围: 532nm激光激发:50cm-1-3500cm-1拉曼位移 780nm激光激发: 50cm-1-3300cm-1拉曼位移 2.2.4近红外增强CCD探测器: *2.2.4.1半导体制冷-70oC控制。 2.2.4.2量子效率:650 nm处> 50%,暗噪声: <0.01电子/秒/像元,读出噪声: < 7电子/像元 2.3智能常规样品拉曼采样模块 2.3.1可调动态点检测功能,可一次获取范围5mm x 5mm非均相样品区域综合拉曼光谱信息,且不损失拉曼信号强度。软件控制选择的测样区域; *2.3.2灵敏度:标准polystyrene材料拉曼峰信噪比好于225 2.3.3通用采样台附件:软件自动识别,并报告序列号。不同样品附件之间轻松切换, 精确定位,无需关机即可实现与其他附件更换。 2.3.4具有玻璃瓶样品架、箍夹式样品架、平板式通用样品架等。 2.4激光激发光路组件 2.4.1. 532nm高亮度长寿命固体激光器,激光输出功率24mW, TEM00空间模式。模块化高稳定预准直设计; 2.4.2 780nm 高亮度长寿命半导体激光器,激光输出功率50mW,TEM00空间模式。模块化高稳定预准直设计。 *2.4.3 瑞利滤光装置:各激发波长均采用长寿命双瑞利滤光片与激光线滤光片,模块化高稳定预准直设计。各激发波长所对应拉曼测量低波数到50cm-1(445nm除外)。(低波数测量检测条件白光响应曲线低频截止区50%透射点位于50cm-1,并测量位于50cm-1的硫磺拉曼峰位)。 2.4.4样品点激光功率控制:具有激光功率监控控制功能,配置伺服反馈控制连续衰减中性密度滤光片,实现80级以上到样品激光功率调节,调节精度0.1mW。采用软件自动显示激光照射到样品绝对功率。软件自动显示激光照射到样品绝对功率。 2.4.5针对每个激发波长,分别采用优化闪耀角高通光效率高分辨光栅:400线/mm与830线/mm(780nm 激发),900线/mm与1800线/mm(532nm激发),以保证系统高通光效率。 2.4.6激光器、光栅与滤光片装置模块化高稳定设计,多维高精确动态定位,不同激发波长置换无需任何工具,切换迅速,切换后无需准直。 2.4.7软件自动识别激光器、光栅与瑞利滤光片类别及序列号。 2.4.8软件自动显示激光照射到样品绝对功率 2.5 智能控制功能:

AQ6370D光谱仪使用说明

AQ6370D光谱仪使用说明 1、目的 验证光接口性能是否满足相关标准要求 2、适用范围 AQ6370D光谱仪 3、职责 资产管理部和操作人员共同负责 4、组网图或测试环境配置 5、测试内容: 5.1 开机校准 1、打开电源,FC-FC接口的光纤将AQ6370D的光输入连接器与光输出连接器连接起来。 2、用内部参考光源执行对准调节 ①按SYSTEM OPTICAL ALIGNMENT ②按EXECUTE软键,自动执行对准调节。几分钟后,对准调节结束,仪器返回之前的画面。

3、用内置参考光源进行波长校准 ①按SYSTEM WL CALIBRATION 软键。 ②按BUILT-IN SOURCE 软键。 ③按EXECUTE 软键,执行波长校准。校准结束后,返回之前的画面。 5.2 测试条件设置 1、校准完成后,自动扫描,自动调整分辨率,得到波长和功率的大致范围。 ①按SWEEP AUTO 软键执行自动测量。 1 2 3

自动扫描结束后的显示 ②设置扫描范围,按SPAN键。 ③设置参考功率和刻度,按LEVEL键,参考功率设为-3dBm,其他为默认值。

④按SETUP键,设置分辨率为最高精度0.02nm。 ⑤设置灵敏度,模式为MID,其他条件均为默认值。

⑥设置完成开始测试,执行REPEA T重复扫描或者SINGLE单次扫5~10次后,按STOP键,分析并记录数据。 5.3 分析 光猫上电后,用脚本长发光后直接接到测试拓扑中。 1、DFB-LD、FP-LD光源分析 ①按ANAL YSIS,显示与测量波形分析相关的软键菜单 ②按ANAL YSIS 1软键,显示分析功能的选择菜单。 以GPON样机为例,光源类型选择DFB-LD,执行分析,结果显示在数据区域内。 分析: SMSR边模抑制比 PEAK WL峰值波长 20dB WIDTH带宽 CTR WL中心波长 注:功率以实际功率计测试为准

激光拉曼光谱仪实验报告

实验六 激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL 4的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL 4、计算机、打印机 【原 理】 1. 拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射 而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 ⑴ 弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ ,在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵ 非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一部分能量给分子, 或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=?。在光子与分子发生非弹性碰撞过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能

规划设计手册

规划设计手册(试行草案) 实验室的建设,无论是新建、扩建、或是改建项目,它不单纯是选购合理的仪器设备,还要综合考虑实验室的总体规划、合理布局和平面设计,以及供电、供水、供气、通风、空气净化、安全措施、环境保护等基础设施和基本条件。因此实验室的建设是一项复杂的系统工程,在现代实验室里,先进的科学仪器和优越完善的实验室是提升现代化科技水平,促进科研成果增长的必备条件。“以人为本,人与环境”己成为人们高度关注的课题。本着“安全、环保、实用、耐久、美观、经济、卓越、领先”,的规划设计理念。规划设计主要分为六个方面:平面设计系统、单台结构功能设计系统、供排水设计系统、电控系统、特殊气体配送系统、有害气体输出系统等六个方面。下面就按上述六方面依次讲解。 一、平面设计系统 平面设计我们主要考虑以下几个方面的因素: 1、疏散、撤离、逃生、顺畅、无阻,安全通道;一般实验室门主要向里开,但如设置有爆炸危险的房间,房门应朝外开,房门材质最好选择压力玻璃。个人收集整理勿做商业用途 2、人体学(前后左右工作空间),完美的设备与科技工作者操作空间范围的协调搭配体现了科学化、人性化的规划设计。个人收集整理勿做商业用途 在做平面设计的时候,首先要考虑的因素是就是“安全”,实验室是最易发生爆炸、火灾、毒气泄露等的场所。我们在做平面设计的时候,应尽量地要保持实验室的通风流畅、逃生通道畅通。根据国际人体工程学的标准。我们做如下的划分以供参照:(祥见下图)个人收集整理勿做商业用途 实验台与实验台通道划分标准(通道间隔用L表示) L>500mm时,一边可站人操作; L>800mm时,一边可坐人操作; L>1200mm时,一边可坐人,一边可站人,中间不可过人; L>1500mm时,两边可坐人,中间可过人; L>1800mm时,两边可坐人,中间可过人可过仪器 天平台、仪器台不宜离墙太近,离墙400mm为宜。为了在工作发生危险时易于疏散,实验台间的过道应全部通向走廊。另:实验室建筑层高宜为3.7米-4.0米为宜,净高宜为2.7米-2.8米,有洁净度、压力梯度、恒温恒湿等特殊要求的实验室净高宜为2.5米-2.7米(不包括吊顶);实验室走廊净宽宜为2.5米-3.0米.普通实验室双门宽以1.1米-1.5米(不对称对开门)为宜,单门宽以0.8米-0.9米为宜。个人收集整理勿做商业用途

激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究 推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。 这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学 拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物 拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。 生物 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质

HR-800共焦拉曼仪操作指南

HR-800共焦拉曼仪操作指南 仪器构造 Laser:HeNe20mW,波长632.817nm;External laser:Ar+,波长514.532nm Notch filter:作用滤去激发线,stocks边为120cm-1 Confocal hole:0-1000μm Microscope:10×,50×,100×,50×(long work distance),液体镜头Laser entrance Spectroghraph:800mm焦距光谱仪,两个可转动的光栅(600l/m和1800l/mm),正弦臂 CCD detector:空气冷却(26毫米1024×256像素) Computer:Labspec5软件 Separated electronic box:激光电源,共焦孔、狭缝、光栅、挡板和扫描的驱动电源 Motorized XY microscope stage:分辨率0.1μm,重复性1μm,范围(100X100) mm

HR-800共焦拉曼仪图示

操作规程 1、 开机 稳压电源→接线板电源(3个)→机箱电源→XY 控制平台电源→电脑→开启Labspec5程序→设置CCD 温度为-70°C(点击菜单 栏“Acquisition ”选中“Detector ”,见图1)等待 实际温度达到-70°C →开白光、激光 注: ①激光和白光在正式测样时打开。 ②514.5nm 开启需先打开散热风扇,再开514.5nm 激光的开关、钥匙和拨钮。 ③白光在不开camera 时调成最暗。 2、 上样 固体样品: ① 首先确保样品表面不能有液体。如实在要测湿的样品,可以将镜头用保鲜膜包好,或者用石英片将样品盖好。 ② 样品放置要平稳,用camera 检查一下样品是否抖动。 ③ 检查放置样品的衬底大小是否合适,移动操作杆看平台移动是否受阻。 ④ 如果是透明样品,要确保衬底没有强拉曼信号。 液体样品: 选择与其它显微镜不相邻的位置安装液体镜头,样品池为1cm 石英比色皿,样品量需≥1mL 。 3、 校正 校正零点: ①“Spectrometer ”点左箭头使光栅位置回到零点。(见 图2) ②将平台上方的stem 上提顺时针转动固定。 ③点击工具栏中实时测量 得到零点峰,按“Stop ”停止采谱。 ④若零值较小,则将菜单栏中“Setup ”,“Instrument Calibration ”中图1 设置CCD 温度 图2 设置光栅位置

石墨烯材料拉曼光谱测试详解

2004年英国曼彻斯特大学的A.K.Geim领导的小组首次通过机械玻璃的方法成功制备了新型的二维碳材料-石墨烯(graphene)。自发现以来,石墨烯在科学界激起了巨大的波澜,它在各学科方面的优异性能,使其成为近年来化学、材料科学、凝聚态物理以及电子等领域的一颗新星。 就石墨烯的研究来说,确定其层数以及量化无序性是至关重要的。激光显微拉曼光谱恰好就是表征上述两种性能的标准理想分析工具。通过测量石墨烯的拉曼光谱我们可以判断石墨烯的层数、堆垛方式、缺陷多少、边缘结构、张力和掺杂状态等结构和性质特征。此外,在理解石墨烯的电子声子行为中,拉曼光谱也发挥了巨大作用。 石墨烯的典型拉曼光谱图 石墨烯的拉曼光谱由若干峰组成,主要为G峰,D峰以及G’峰。G峰是石墨烯的主要特征峰,是由sp2碳原子的面内振动引起的,www.glt910.com它出现在1580cm-1附近,该峰能有效反映石墨烯的层数,但极易受应力影响。D峰通常被认为是石墨烯的无序振动峰,该峰出现的具体位置与激光波长有关,它是由于晶格振动离开布里渊区中心引起的,用于表征石墨烯样品中的结构缺陷或边缘。G’峰,也被称为2D峰,是双声子共振二阶拉曼峰,用于表征石墨烯样品中碳原子的层间堆垛方式,它的出峰频率也受激光波长影响。举例来说,图1[1]为514.5nm激光激发下单层石墨烯的典型拉曼光谱图。其对应的特征峰分别位于1582cm-1附近的G峰和位于2700cm-1左右的G’峰,如果石墨烯的边缘较多或者含有缺陷,还会出现位于1350cm-1左右的D峰,以及位于1620cm-1附近的D’峰。

图1 514nm激光激发下单层石墨烯的典型拉曼光谱图[1] 当然对于sp2碳材料,除了典型的拉曼G峰,D峰以及G’峰,还有一些其它的二阶拉曼散射峰,大量的研究表明石墨烯含有一些二阶的和频与倍频拉曼峰,这些拉曼信号由于其强度较弱而常常被忽略。如果对这些弱信号的拉曼光谱进行分析,也可以很好地对石墨烯中的电子-电子、电子-声子相互作用及其拉曼散射过程进行系统的研究。 石墨烯拉曼光谱与层数的关系 多层和单层石墨烯的电子色散不同,导致了拉曼光谱的明显差异。图2 [1,2]为532nm激光激发下,SiO2(300nm)/Si基底上1~4层石墨烯的典型拉曼光谱图,由图可以看出,单层石墨烯的G’峰尖锐而对称,并具有完美的单洛伦兹(Lorentzien)峰型。此外,单层石墨烯的G’峰强度大于G峰,且随着层数的增加,G’峰的半峰宽(FWHM:full width at half maximum)逐渐增大且向高波数位移(蓝移)。双层石墨烯的G’峰可以劈裂成四个洛伦兹峰,其中半峰宽约为24cm-1。这是由于双层石墨烯的电子能带结构发生分裂,导带和价带均由两支抛物线组成,因此存在着四种可能的双共振散射过程(即G’峰可以拟合成四个洛伦兹峰)。同样地,三层石墨烯的G’峰可以用六个洛伦兹峰来拟合。此外,不同层数的石墨烯的拉曼光谱除了G’峰的不同,G峰的强度也会随着层数的增加而近似线性增加(10层以内,如图3[3]所示),这是由于在多层石墨烯中会有更多的碳原子被检测到。综上所述,1~4层石墨烯的G峰强度有所不同,

激光拉曼光谱仪实验报告

实验六激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL、计算机、打印机 【原理】 1.拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 (1)弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3X 105HZ在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换,光子转移一部分能量给分子或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值=E - E2。在光子与分子发生非弹性碰撞 过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能 量,从而处于激发态Ei,这时的光子的频率为、-- ■'■:■■-(入射光的频率为\ 0);

Renishaw显微共焦激光拉曼光谱仪操作说明

Renishaw显微共焦激光拉曼光谱仪操作说明 一、开机顺序 1、打开主机电源; 2、计算机电源 3、将使用的激光器电源 1)、514nm:打开激光器后面的总电源开关->打开激光器上的钥匙; 2)、785nm:直接打开激光器电源开关。 二、自检 1、用鼠标双击WiRE2.0 图标,进入仪器工作软件环境; 2、系统自检画面出现,选择Reference All Motors 并确定(OK)。系统将检验所有的电机。 3、从主菜单Measurement -> New -> New Acquisition 设置实验条件。静态取谱(Static),中心520 Raman Shift cm-1, Advanced -> Pinhole 设为in。 4、使用硅片,用50 倍物镜,1 秒曝光时间,100%激光功率取谱。使用曲线拟合(Curve fit)命令检查峰位。 三、实验 1、实验条件设置 1)、点击设置按钮(或者菜单中Measurement-->Setup Measurement),(设置)下列参数 2)、OK:采用当前设置条件,并关闭设置窗口;Apply:应用当前设置条件,不关闭窗口; 2、采谱:执行Measurement -> Run 命令。 四、关机 1、关闭计算机 1)、关闭WiRE2.0 软件; 2)、Start-->Shut Down-->Turn off computer。计算机将自动关闭电源。 2、关闭主机电源; 3、关闭激光器 1)、关闭钥匙; 2)、514 激光器散热风扇会继续运转,此时不要关闭主电源开关。等风扇自动停转后再关闭主电源开关; 五、注意事项 1、开机顺序:主机在前,计算机在后。 2、关机顺序:计算机在前,主机在后。514nm 激光器要充分冷却后才能关闭主电源。 3、自检:一定要等自检完成再做其他动作。不能取消(Cancel)。 4、硅片:514nm,自然解理线与横向成45 度时信号最强。780nm,(633nm,325nm)自然解理线与横向基本平行时信号最强。

激光拉曼光谱技术

激光拉曼光谱技术 摘要:论文综述了激光拉曼光谱的发展历史,拉曼光谱原理,其中有自发拉曼散射,相干反射托克斯拉曼散射光谱和受 激拉曼散射。 关键词:激光拉曼光谱原理自发反斯托克斯受激 正文 1.拉曼光谱的发展历史 印度物理学家拉曼于1928年用水银灯照射苯液体,发 现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分 布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种 新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。拉曼因发现这一新的分子辐射和所取得的许多光散射研究 成果而获得了1930年诺贝尔物理奖。与此同时,前苏联兰 茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象, 即由光学声子引起的拉曼散射,称之谓并合散射。 法国罗卡特、卡本斯以及美国伍德证实了拉曼的观察 研究的结果。然而到1940年,拉曼光谱的地位一落千丈。 主要是因为拉曼效应太弱(约为入射光强的10-6),人们难以 观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上 的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技 术的进步和商品化更使拉曼光谱的应用一度衰落。1960年 以后,红宝石激光器的出现,使得拉曼散射的研究进入了一 个全新的时期。由于激光器的单色性好,方向性强,功率密 度高,用它作为激发光源,大大提高了激发效率。成为拉曼 光谱的理想光源。随探测技术的改进和对被测样品要求的 降低,目前在物理、化学、医药、工业等各个领域拉曼光谱

得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rr i ns how公司 相继推出,位曼探针共焦激光拉曼光谱仪,由于采用了凹陷 滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,因而不在需要采用双联单色器甚至三联单色器,而只需要采用单一单色器,使光源的效率大大提高,这样入射光的功率 可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼 光谱的应用范围更加广阔。 2拉曼光谱的原理 2.1自发拉曼散射 泵浦光注入光纤后,其部分能量转为拉曼散射光,当 泵浦光的强度小于阈值时,这时光纤分子的热平衡没有被 破坏,这种拉曼散射叫自发拉曼散射。拉曼散射的产生原 因是光子与分子之间发生了能量交换改变了光子的能量。2.2拉曼散射的产生 光子和样品分子之间的作用可以从能级之间的跃迁来 分析。样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞 利散射。如果样品分子回到电子能级基态中的较高振动能 级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为St okes线。如果样品分子在与入射光子作用前的瞬间不是处于电子能级 基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该 分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为

岛津分子荧光光谱仪RF-5301PC氙灯安装及性能测试(整理的说明书)

岛津分子荧光光谱仪 RF-5301PC 氙灯安装和性能测试

岛津分子荧光光谱仪RF-5301PC 氙灯安装和性能测试 摘要:介绍了岛津分子荧光谱仪RF-5301PC的氙灯安装和仪器的灵敏度,S/N,波长准确度测试,及荧光谱仪的结构和一些主要构件。 面向的对象:主要是化验人员的仪器维护和初次接触荧光光谱仪的工程人员。另一个目的也是自己以后维护便于查看。这个仪器接触不多,也希望其他朋友帮助指正。 目录: 一些安全问题------------------------------------------------------1楼 仪器的一个不能和计算机通信的问题解决------------------------1楼 RF-5301的通信设置---------------------------------------------------2楼 灯的安装及位置的校准------------------------------------------------3楼 仪器灵敏度的调整(增益调整)------------------------------------4楼 仪器性能测试(S/N的测试)----------------------------------------5楼 校准波长准确度---------------------------------------------------------6楼 分子荧光光谱仪介绍---------------------------------------------------7楼 参考文献: 图片后面的【x】表示引用的文献。 仪器专场展示:分子荧光光谱圆二色光谱拉曼光谱

拉曼光谱仪操作手册

拉曼光谱仪操作手册 一.激光器的开关机步骤 1. 开机: ⑴. 用万用表检查配电柜中的三相电,是否在正常值(380V)±5%的范围之内, 合上空开。 ⑵.启动水冷器,并将水温设置到22℃。打开冷却水球阀。 ⑶.检查遥控头上是否还有故障灯亮启。检查遥控头上的各个按键是否在正常位 置,旋钮是否在最小处。在确定无误后,将遥控头上的钥匙顺时针扭动九十度。经过延时后,激光器电流将跳升至启始电流(10Amps左右)。 ⑷.激光器启动10分钟后,将电流缓慢加至工作电流(工作电流根据实际情况 而定)。半小时后,激光器功率输出可以稳定。 ⑸.改变输出波长时,首先应分别调整激光头后端上的竖直、水平旋钮,使现用 波长激光的输出功率最大。然后拧动竖直旋钮(从短波长向长波长变化时顺时针拧动,反之逆时针)。找到所需谱线后,再分别微调竖直、水平旋钮,使输出功率最佳。 ⑹.若要将棱镜更换成全反镜时,首先应适当加大激光器的电流并拧动竖直旋钮 将谱线调到488nm,然后分别微调竖直、水平旋钮,使激光输出达到最佳。 逆时针拧动棱镜镜架,并退下棱镜。将全反镜镶入腔孔(在将全反镜镶入腔孔时,注意避免镜面碰到腔孔的边缘,以免造成全反镜的损坏),随之顺时针拧动全反镜架使之卡入到位。此时应有激光出现。微调竖直、水平旋钮使激光输出达到最佳。 2.关机: ⑴.将激光器的电流由工作电流降至启始电流。将钥匙逆时针扭动九十度。 ⑵.拉下激光器电源空开。 ⑶.激光器关机10分钟或确认激光器已被充分冷却后,关断水冷器电源并关闭 冷却水球阀。 3.注意事项及突发情况的应急处理: ⑴.激光器在开启,电流跳升至启始电流10分钟后,方可缓慢加大电流至工作 电流。 ⑵.激光器关机尤其在关断冷却水后,一般不要重新开机。若遇特殊情况必须开 机时,在确认前次断水时激光器是在得到充分冷后才断水的,可以开机。开机步骤与正常开机相同。 ⑶.激光器若长时间不用,也应定期将激光器开启,并适当加大电流运行一段时 间,以免激光器长时间放置,激光管欺压增高造成损坏。 ⑷.激光器在正常运行中遇到突然断电或冷却水管道发生爆裂等情况,造成冷却 水突然断水时,应立即关断激光器冷却水进水球阀,短时间内不要重新启动(避免短时间内供水恢复后,冷水再次进入激光器,造成激光管损坏)。然后按正常关机步骤关闭激光器。24小时后方可重新开机。 二.校准拉曼光谱仪 1. 把夹缝1,夹缝2,夹缝3和夹缝4分别设置成100,100,全开和全开的状 态。

激光拉曼光谱分析.doc

第 11 章激光拉曼光谱分析 第十一章激光拉曼光谱分析 (L aser Raman Spectroscopy, LRS) 教学要求 1.理解拉曼散射的基本原理 2.理解拉曼光谱和红外光谱与分子结构关系的主要差别 3.了解拉曼光谱仪器结构 4.了解激光拉曼光谱的应用 重点:拉曼光谱原理;拉曼光谱与红外光谱的关系 难点:拉曼光谱与红外光谱的关系 课时安排: 1.5 学时 §11-1 拉曼光谱原理 一、拉曼光谱 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。 在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。 由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分 子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 拉曼光谱和红外光谱一样同属于分子振动光谱 ,可以反映分子的特征结构。但是拉曼散射效应是个非常弱的过程 ,一般其光强仅约为入射光强的 10-10。 1、瑞利散射 虚拟态 当光子与物质的分子发生弹性碰撞时, hυ0hυ0 没有能量交换,光子仅改变运动方向,这种散射称瑞利散射。入射光与散射光的频率相同,如图中 2、3 两种情况。 2、斯托克斯 (Stokes)散射 hυ0h(υ0-υ1) hυ0hυ0hυ0h(υ0+υ1) υ=1 υ=0 图 11-1 瑞利散射、斯托克斯和反斯托克斯散射示意图 当光子与物质的分子发生非弹性碰撞时,可以得到或失去能量,当受激分子

fluoromax-4使用手册

FluoroMax-4使用手册 目录 1 FluoroMax-4介绍 (1) 2 开关机-校准 (2) 2.1 开关机 (2) 2.2 校准(推荐校准周期一月/次) (2) 3 功能 (5) 3.1.1 发射谱(Emission) (6) 3.1.2 激发谱(Excitation) (8) 3.1.3 同步谱(synchronous) (9) 3.2 Kinetics (10) 3.3 3D (11) 3.4 Single Point (12) 3.5 Anisotropy (13) 3.5.1 vs Emission (13) 3.5.3 vs Time (15) 3.6 Phos (16) 3.6.1 Decay by Delay (17) 3.6.2 Decay by window (18) 3.6.2 Emission and Excitation (19) 1 FluoroMax-4介绍 FluoroMax-4(以下简称FM-4)是一款全自动,一体化荧光光谱仪。所有实验数据输出都可以通过连接的电脑输出。配套的操作软件为FluorEsscence。

一台完整的FM-4主要由:1)光源[150W无臭氧氙灯光源];2)激发单色仪;3)参比检测器[R];4)样品池;5)发射单色仪;6)信号检测器[R]。 2 开关机-校准 2.1 开关机 开机- 打开FluoroMax-4电源开关(在仪器右侧面),电源键拨到“0”表示关机,“1”表示开机 - 电脑开机 - 点击桌面FluorEssence软件 - 点击仪器会自动建立端口通讯,初始化 关机- 关闭FluorEssence,电脑 - 关闭FluoroMax-4电源开关 建议开机后仪器预热30分钟为宜。一天内勿频繁开关机操作。例如早上开机,下午需要继续实验,中午可不关机。一天实验结束后,再关机。 2.2 校准(推荐校准周期一月/次) 使用仪器前须对设备进行校准,保证得到测量数据准确。校准步骤如下: a 激发端波长校准

《激光拉曼光谱》.(DOC)

激光拉曼光谱实验讲义 引言 一 实验目的 1、了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二 实验原理 当波束为0ν的单色光入射到介质上时,除了被介质吸收、反射和透射外,总会有一部分被散射。按散射光相对于入射光 波数的改变情况,可将散射光分为三类:第一类,其波数基本不变或变化小于5110cm --,这类散射称为瑞利散射;第二类, 其波数变化大约为10.1cm -,称为布利源散射;第三类是波数变化大于11cm -的散射,称为拉曼散射;从散射光的强度看, 瑞利散射最强,拉曼散射最弱。 在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。当入射的光量子与分子相碰撞时,可以是弹性碰撞的散射也可以是非弹性碰撞的散射。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,光量子转移一部分能量给散射分子,或者从散射分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ?=-,当光量子把一部分能量交给分子时,光量子则以较小的频率散射出去,称为频率较低的光(斯托克斯线),散射分 子接受的能量转变成为分子的振动或转动能量,从而处于激发态 1E ,如图(1b ),这时的光量子的频率为0ννν'=-?;当分子已经处于振动或转动的激发态1E 时,光量子则从散射分子中取得 了能量E ?(振动或转动能量),以较大的频率散射,称为频率较 高的光(反斯托克斯线),这时的光量子的频率为 0ννν'=+?。如果考虑到更多的能级上分子的散射,则可产生更多的 斯托克斯线和反斯托克斯线。

拉曼光谱仪器测试原理与仪器使用指南

拉曼光谱仪器测试原理与仪器使用指南 基于印度科学家 C.V.拉曼(Raman)发现拉曼散射效应:不同的入射光频率的散射光谱进行分析所得到的分子振动、转动的信息,并应用于分子结构分析研究的一种分析方法,称为拉曼光谱(Raman spectra)。其中,拉曼光谱是一种散射光谱。 1激光拉曼光谱基本原理 激光入射到样品,产生散射光:散射光为弹性散射,频率不发生改变为瑞丽(Rayleigh)散射;散射光为非弹性散射,频率发生改变为拉曼(Raman)散射。如图:Rayleigh散射(左):弹性碰撞;无能量交换,仅改变方向;Raman散射(右):非弹性碰撞;方向改变且有能量交换。其中,E0基态,E1振动激发态;E0+ hν0 ,E1+ hν0 激发虚态;获得能量后,跃迁到激发虚态。 (图片来自百度) Raman散射:两种跃迁能量差:△E=h(V0 -△V),产生stokes线;强;基态分子多;△E=h(V0 +△V),产生反stokes线;弱。Raman位移:Raman散射光与入射光频率差△n。 (图片来自百度)

斯托克斯线(Stokes):基态分子跃迁到虚能级后不会到原处基态,而落到另一较高能级发射光子,发射的新光子能量hv'显然小于入射光子能量hv,△V 就是拉曼散射光谱的频率位移。反斯托克斯线(anti-Stokes):发射光子频率高于原入射光子频率。 拉曼位移(Raman shift):△V 即散射光频率与激发光频之差。拉曼位移△V 只取决于散射分子的结构,而与V0无关,所以拉曼光谱可以作为分子振动能级的指纹光谱。与入射光波长无光,适用于分子结构分析。 2 拉曼光谱仪 散射光相对于入射光频率位移与散射光强度形成的光谱称为拉曼光谱。拉曼光谱仪一般由光源、外光路、色散系统、及信息处理与显示系统五部分组成。拉曼光谱仪分为激光Raman光谱仪(laser Raman spectroscopy)和傅立叶变换-拉曼光谱仪(FT-Ramanspectroscopy)。 1)、激发光源:常用的有Ar离子激光器,Kr离子激光器,He-Ne激光器,Nd-YAG激光器,二极管激光器等。拉曼激发光源波长:325nm(UV),488nm(蓝绿),514nm(绿),633nm(红),785nm(红),1064nm(IR)。 2)、样品装置:样品放置方式,包括直接的光学界面,显微镜,光纤维探针和样品。 3)、滤光器:激光波长的散射光(瑞利光)要比拉曼信号强几个数量级,必须在进入检测器前滤除,另外,为防止样品不被外辐射源照射,需要设置适宜的滤波器或者物理屏障。 4)、单色器和迈克尔逊干涉仪:有单光栅、双光栅或三光栅,一般使用平面全息光栅干涉器一般与FTIR上使用的相同,为多层镀硅的CaF2或镀Fe2O3的CaF2分束器。也有用石英分束器及扩展范围的KBr分束器。 5)、检测器:传统的采用光电倍增管,目前多采用CCD探测器,FTRaman 常用的检测器为Ge或InGaAs检测器。 激光Raman光谱仪(laser Raman spectroscopy):激光光源:He-Ne激光器,波长632.8nm;Ar激光器,波长514.5 nm,488.0nm;散射强度∝1/λ;单色器:光栅,多单色器;检测器:光电倍增管,光子计数器。

相关主题
文本预览
相关文档 最新文档