当前位置:文档之家› 谈构造厚煤层开采方法

谈构造厚煤层开采方法

谈构造厚煤层开采方法
谈构造厚煤层开采方法

谈构造厚煤层开采方法

谈构造厚煤开采方法

永安煤业公司仙亭煤矿余立贺

摘要:阐述了厚煤层构造特征,说明传统采法不尽合理的地方,从理论和实践上改进

了构造厚煤层的回采工艺、采煤方法。

关健词:改进厚煤开采方法心得体会

一、前言

传统对构造厚煤的开采往往采用壁式采法,施工队经常以习惯性作业方式,也就是以

压采的形式进行,推进到一定的程度,留隔离煤柱隔离采空区,这种不尽合理的开采方式,使得工作面底煤大量流失,造成浪费资源,煤炭回收率低,工效低下。且支柱支护在底煤上,造成对顶板支撑力不够,给安全生产带来隐患。

现以一采区+500 33#工作面为例,阐述了对构造厚煤开采加以改进的方法。

一采区+500 33#工作面位于一采区+500m大巷的南翼,属Ⅲ1向背斜构造。煤层呈单

斜不稳定,构造发育,倾角变化较大,一般在28~35度之间,煤层在褶曲核部呈条带沟

状赋存,最大煤层厚度超过4米。

煤层顶板:泥岩,薄层状,水平层理,含有黄铁矿结核,植物根茎化石。煤层采空后,顶板完整性较好,不表现周期压力。煤层:半光亮型,颗粒块状,颗粒较细。近顶板有黄

铁矿结核层。煤层底板:砂质泥岩,簿层状,局部为砂岩。

本工作面煤层上区段未经开采,其开采标高超出+540水平,使开采斜长大量增加。为了增加开采储量,开切眼采用最大限度往上延伸。

二、改进施工工艺

考虑该工作面煤层特殊的赋存形态,本工作面采用高位贯通结合分期打眼采煤法,其

工艺流程表示如下:

开切眼与高位眼(见图示):A ~B 、C ~D 。工作面开切眼布置在巷道巷道迎头压

薄带,选择顶板较稳定处开口,顺压薄带往上施工,直至构造带或煤层压薄带。高位眼布

置在巷道外压薄带,选择顶板较稳定处开口,顺压薄带往上施工,直至构造带或煤层压薄带。高位眼与工作面开切眼分别沿压薄带掘眼施工,直至沟通成联络眼,构成高位贯通采

煤面。

打切割眼:E ~F G~H 。每间隔8米打一道切割眼,即分斜坡眼。

掘毛峒:在待采煤柱1中间开掘出一条毛峒,即可采出1部分煤柱的煤量。

掘毛峒:在待采煤柱2中间开掘出一条毛峒,即可采出2部分煤柱的煤量。

同理,打切割眼:I ~J K~H 。

掘毛峒:在待采煤柱3中间开掘出一条毛峒,即可采出3部分煤柱的煤量。

以此顺序采出其余部分煤量……

说明:

(1)打切割眼的伪斜垂直角必须控制在20度以内。

(2)图中1、2、3……为构造厚煤层带的开采顺序。

(3)图中A 、B 、C ……为构造厚煤层带的打眼顺序。

(4)顺顶板打眼,宽度按1.8米,高度按1.8米进行施工。

(5)作业人员严格在有支护的眼内作业,严禁进入无支护的采空区。

三、改进采煤方法

通过回采巷道的揭露,该块段属沟状厚煤层,条带赋存,且顶板完整性较好,不表现周期压力,开采标高超+540m,最大煤厚超

过4米。根据该工作面煤层赋存情况及运

巷所揭露的地质条件,本工作面采用高位

贯通结合分期打眼采煤法。

具体的采煤方法是:所先是沿压边形

成高位贯通大眼,然后通过横向纵向密集

布眼,将厚煤层整体分割成若干个6米*6

米或8米*8米的待采煤柱,顶板条件好,

取8米*8米,顶板完整性较差的,取6

米*6米。

由于厚煤层带各个小煤柱的回采是

单独进行的,为了避免作业人员暴露在采

空区,尽可能提高回采率,在回采小煤柱

前,可在小煤柱中间再补掘一条安全毛

峒,毛峒宽度按1.8米,高度按1.8米进

行施工。开采时,将上述分割成8米*8

米或6米*6米的待采煤柱,按1、2、3……

自上而下的回采顺序进行回采,把待采煤

柱遂个采出(见平面布置图)。

这样,施工队在作业过程中,是直接

在大眼和毛峒中进行布置炮眼、出煤。充

分避开了采空区,从而提高了安全系数。

四、心得体会

构造厚煤层,具有各自的赋存特点,只有科学地进行开采,与现场实际相结合,才能提高回采率,降底了材料消耗,取得生产效益的最大化。也只有在开采实践中不断总结经验,才能对回采技术有所创新,才能保障安全生产。

浅谈厚煤层开采的问题

浅谈厚煤层开采的问题 摘要:我国是一个能源大国。本文总结了国内外厚煤层开采的技术方方和发展现状,对我国主要的厚煤层开采工艺进行了系统的分析比较,论述了三种主要厚煤层开采工艺存在的问题以及厚煤层开采的发展方向。 关键词:厚煤层开采技术存在问题 Mainly talks about the mining of thick coal seam Chen Zhou (Guizhou university institute of mining) Abstract:Our country is an energy superpower. Thick coal seam mining technology at home and abroad this paper summarizes the all and the development present situation, the thick coal seam mining process of the main system of analysis and comparison, this paper discusses the three main problems existing in the thick coal seam mining process and the development direction of thick coal seam mining. Key words:Thick coal seam mining technology problems 1、前言 所谓厚煤层,即是指井工开采3.5m以上,露天开采10m以上的煤层。我国厚煤层产量占原煤总产量的 45% 左右,是一个厚煤层储量大国, 也是厚煤层的开采大国。 厚煤层是我国实现高产高效开采的主要煤层,具有资源储量优势,由于其煤层厚度较大,可有多种采煤方法进行选择。目前,我国厚煤层开采工艺大体为三种, 即分层开采、大采高一次采全高、放顶煤开采【1】。分层开采在我国应用时间最长,技术较为成熟。随着煤炭开采技术的不断发展,近年来大采高开采和放顶煤开采技术也得到了快速发展和广泛应用。 2、国内外厚煤层开采现状 2.1 国内厚煤层开采现状 1974年,开滦矿务局唐山矿成功试验了厚煤层倾斜分层下行垮落金属网假顶综合机械化采煤法,。分层开采的综合机械化采煤工艺有了进一步的发展, 目前是我国厚及特厚煤层的主要采煤方法之一, 在大中型矿井得到普遍采用, 并积累了丰富的经验【2】。 大采高的定义是利用机械破煤一次采全高采煤法,一次开采全高达3.5一7.0 m的长壁采煤法。到目前为止, 大采高一次采全高采煤法已在我国多个矿区得到应用,并取得了高产高效的效果.2007年,郑州煤矿机械集团股份有限公司研制成功了最大支撑高度为6.3m的液压支架,用于神东矿区采高为6m厚的煤层开采。2011年,我国成功研制出最大支撑高度为7.2m、支护阻力达18180kN 的大采高支架,用于陕煤红柳林煤矿大采高工作面。该支架的成功应用,标志着我国在大采高开采技术和设备研制方面处于国际领先水平。目前超大采高的

大跨空间结构案例分析

通过这一个学期建筑结构选型将建筑结构分类如下:●平面结构 梁柱结构(框架结构 桁架结构 单层钢架结构 拱式结构 ●空间结构 薄壁空间结构 网架结构 网壳结构网格结构 悬索结构 薄膜结构 ●高层建筑结构 ●平面结构 平面屋盖结构空间跨度相比较小,节点、支座形式较简单。 2008年奥运会摔跤比赛馆总建筑面积约23950平方米,比赛馆平面是一个82.4*94米平面,屋面是反对称的折面,采用巨型门式钢钢架结构,将建筑塑造为富有韵律感的

造型,如图所示。三维整体模型工程屋盖由12榀空间门式钢钢架组成,跨度82.4米,中心距8,0米,钢刚架为四肢组合的格构式结构。构件间的连接节点均为相贯节点,钢架柱(钢管连接于看台部分的钢筋混凝土柱,屋盖结构外形简洁、流畅,节点形式简单,刚度大,几何特性好。 单榀空间门式钢刚架单榀空间门式钢刚架(有连系杆单榀空间门式钢刚架(有连系杆

刚架柱支座 ●空间结构 ●网格结构 ?网架结构 一:2008奥运会国家体育馆 国家体育馆位于北京奥林匹克公园中心区,建筑面积80 476m2 ,固定座席118 万座,活动座2 000座,用于举办2008 年奥运会的体操、手球比赛,赛后用于举办体育比赛和文艺演出。虽然体育馆在功能上划分为比赛馆和热身馆两部分,但屋盖结构在两个区域连成整体,即采用正交正放的空间网架结构连续跨越比赛馆和热身馆两个区域,形成一个连续跨结构。空间网架结构在南北方向的网格尺寸为815m,东西方向的网格有两种尺寸,其中中间(轴a和○K之间的网格尺寸为1210m,其他轴的网格尺寸为815m。按照建筑造型要求,网架结构厚度在11518~31973m之间。不包括悬挑结构在内,比赛馆的平面尺寸为114m ×144m,跨度较大,为减小结构用钢量,增加结构刚度,充分发挥结构的空间受力性能,在空间网架结构的下部还布置了双向正交正放的钢索,钢索通过钢桅杆与其上部的网架结构相连,形成双向张弦空间网格结构。其中最长桅杆的长度为91237m,钢索形状根据桅杆高度通过圆弧拟合确定。在

煤矿开采填空

填空 1.垂直巷道:立井,暗立井,溜井 2.倾斜巷道:斜井,暗斜井,上山,下山 3.水平巷道:平硐,石门,煤门,平巷 4.煤田划分为井田的原则:充分利用自然条件划分井田,保证井田有合理的尺寸,合理规划矿井开采范围,处理好相邻矿井之间的关系,为矿井的发展留有余地,安全经济效果好 5.井田的划分:(按自然境界划分)按地质构造划分,按煤层赋存形态划分,按煤质煤种分布规律划分,按伴生有益矿产富集带或其它开采技术条件划分,按地形地物界线划分。 (按人为境界划分)垂直划分,水平划分 6.阶段内布置方式:采区式,带区式,分段式 7.煤炭资源储量按可行性评价阶段分为:概略研究,预可行性研究,可行性研究储量8.从经济意义上分:经济的,边经济的,次边经济的,内蕴经济的和内蕴经济意义未定的9.从地质可靠程度上分为:探明的,控制的,推断的,预测的储量 10.综合开拓有斜井与立井,平硐与立井,平硐与斜井等多种形式 11.运输大巷的3种形式:分层大巷,集中大巷,分组集中大巷 12.井底车场的运输巷道线路主要有:存车线,调车线,绕道回车线,辅助线路等13.井底车场的主要硐室按其位置和作用分别为:主井系统硐室,副井系统硐室,其它硐室 14.主井系统硐室:翻车机硐室和底卸式矿车卸载站硐室,井底煤仓,箕斗装载硐室,清理井底撤煤硐室及水窝泵房 15.副井系统硐室:马头门,井下中央变电所和主排水泵房,主要水仓,等候室16.其它硐室:井下爆炸材料库,架线电机车修理间及变流室,蓄电池电机车库及充电硐室,防水闸门硐室,井下消防材料库,调度室和急救站 17.调车方式:顶推调车,专用设备调车,顶推拉调车,甩车调车 18.井田开采顺序包括:沿煤层走向与倾斜的开采顺序,煤层群划分成煤组是,煤组间及煤层间的开采顺序等 19.矿井的5种开拓延伸:直接延伸,暗井延伸,直接延伸与暗井延伸相结合,直接延伸与新开井筒相结合,井田深部新开井筒 20.生产水平过度时期的技术措施:提升通风排水措施 21.矿井改扩建的3种方式:矿井生产的合理集中,改扩建矿井的开拓系统改造,矿井生产系统的技术改造 22.我国矿井生产的集中化主要有:生产矿井之间的合并集中改造,生产矿井与深部规划井田合并开拓,矿井单独集中改造 23.矿井单独集中改造:水平集中,采区集中,工作面集中 24.采煤方法包括采区的采煤系统和采煤工艺两个方面的综和及其在实践空间上得相互配合 25.煤矿开采方法在总体上可分为:露天开采和井工开采 26.矿井开采的采煤方法很多一般分为:壁式和柱式体系采煤法两大类 27.按煤层倾角的大小可分为:缓斜,倾斜,急倾斜煤层采煤法 28.按开采煤层的厚度可分为:薄,中厚,厚煤层采煤法 29.柱式体系采煤法又称:短壁体系采煤法 30.影响采煤方法选择的因素:地质因素,技术发展及装备水平,矿井管理水平,矿井经济效益

株柏煤矿急倾斜复杂煤层安全高效开采技术开发及应用 初立新

株柏煤矿急倾斜复杂煤层安全高效开采技术开发及应用初立新 发表时间:2018-04-13T16:54:48.790Z 来源:《电力设备》2017年第31期作者:初立新[导读] 摘要:临沂煤田株柏井田属于全隐藏型井田,具有断裂构造及火成岩发育,煤层稳定性差、地质构造复杂等特点,株柏煤矿根据其煤层急(倾)斜的地质特点,研制并应用了单体柔性掩护支架开采技术,在淘汰落后回采工艺的同时,实现了复杂煤层安全高效开采。 (山东能源临矿集团株柏煤矿山东临沂) 摘要:临沂煤田株柏井田属于全隐藏型井田,具有断裂构造及火成岩发育,煤层稳定性差、地质构造复杂等特点,株柏煤矿根据其煤层急(倾)斜的地质特点,研制并应用了单体柔性掩护支架开采技术,在淘汰落后回采工艺的同时,实现了复杂煤层安全高效开采。 1、背景 株柏煤矿根据其煤层急(倾)斜的地质特点,研制并应用了单体柔性掩护支架开采技术,围绕解决制约急(倾)斜煤层安全高效开采的主要问题。正确利用理论分析、数值模拟和工程实践相结合的方法,系统的研究和分析了急(倾)斜煤层的开采问题,从而形成了一套安全高效的开采技术。 2、工作面支护设计 2920工作面支护形式为单体液压支柱配合柔性掩护支架进行支护。 1、工作面单体液压支柱强度计算 单体液压支柱采用DW18-300/100χ型。由于工作面压力主要通过支架的上下肢传递给煤壁,单体液压支柱起到调整支架作用,计算时以调整支架最大受力时分析。 以工作面直接顶载荷的倍数估算基本顶的载荷: P=N×∑hγ 式中 p——直接顶及老顶来压时的支护强度,KN/m2 N—基本顶来压与平时来压强度的比值,称增载系数。基本顶来压时,通过直接顶传递给支架的作用力,称为基本顶载荷,一般可按直接顶载荷的倍数估算,称为动载系数。基本顶来压时的载荷一般不超过平时载荷的2倍,本次计算取2。 γ——顶板岩层容重,2.5t/m3 如果忽略顶板下沉量, 则 ∑h=M/(K-1) (M为采高,K为碎胀系数) 本次计算:M--- 工作面实际采高1.6m; K--- 一般取刚破碎时的胀碎系数1.25—1.5; 则 P= N×∑h×γ=2×M/(K-1)×γ=2×1.6×4×2.5 =32KN/m2 (注:上述技术参考1991年3月煤炭工业出版社出版的矿山压力及其控制教材) 根据工作面实际斜长及控顶距计算顶板岩层实际作用力: F= P×L×M=32×60.6×1.6=3102.7KN 式中:F--- 工作面控顶范围内岩石对支架的作用力,KN; L--- 工作面长度,60.6m; M--- 工作面支架实际控顶距离,1.6m; 根据工作面实际使用的单体液压支柱实际支撑能力计算: Rt=KgKzKbKnKaR=0.99×0.95×0.9×1.0×0.9×300=228.5KN 式中:Rt— 支柱实际支撑能力,KN; Kg— 支柱工作系数0.99; Kz— 支柱增阻系数0.95; Kb— 支柱不均匀系数0.9; Kn— 采高系数1.0,本次计算工作面采高比为1 Kn=H实际/H可采=1.6/1.6=1; Ka— 倾角系数0.9; R—支柱额定工作阻力,本次计算取300KN 工作面合理的支柱密度计算: n=F/Rt=3102.7/228.5=13.6根 所以工作面应使用14根单体液压支柱来满足工作面顶板支护。 W=L/n=58.5/14=4.18m。 W实际=3

国外厚煤层开采和安全技术现状

第5期东北煤炭技术N o.5 1996年10月 Coal T echno logy of N o rtheast Ch ina O ct.1996 国外厚煤层开采和安全技术现状 辽宁煤炭工业管理局 邱振先 摘 要 介绍了国外厚煤层开采和安全技术的现状,及国内厚煤层开采技术在国际上的水平。 关键词 厚煤层 采煤方法 综采设备 综采放顶煤 所谓“厚煤层”是指厚度大于315m的煤层。厚煤层开采所遇到的矿山压力、冲击地压、瓦斯、发火、热害、水害等技术问题比薄煤层和中厚煤层复杂得多。国外厚煤层开采的主要技术经济指标与薄煤层和中厚煤层相比亦有很大差距。我国东北地区煤炭战线的科技工作者通过对联合国开发计划署援助的《厚煤层开采的先进技术与安全》项目的实践,对国外厚煤层开采的技术现状和我国厚煤层开采技术水平及其在世界上的地位也有了一定程度的认识。 1 采煤工作面单产世界纪录、高产工作面和各国的国内纪录几乎都是在中厚煤层创造的 1990年,美国伊利诺思州固本煤矿公司25号矿创长壁工作面月产37万t(22d)、平均日产16818t的世界纪录。 1993年,美国科罗拉多州二十英里矿创长壁工作面班产16307t(10h),日产28801t,月产54万t的世界纪录,1994年又创月产60万t的世界纪录。该工作面煤层厚219m,采高216m。 1993年,美国固本公司路福克矿创月产55万t的纪录。 1994年11月,美国大山(M oun tain)公司西麋(W est E lk)矿创班产(10h)21387t,日产45375t的纪录。 1995年6月,美国宾夕法尼亚州卡泊尔兰结矿创长壁工作面月产5713万t精煤的世界纪界。 美国现有80个长壁工作面,1994年长壁面产量1812118万t,其中煤层最厚的是7101m,采高最大是3196m(西麋矿)。抽样调查33个矿,最大采高3105m,最小采高1147m,平均采高2113m。我们考察的怀俄明州舒舒尼(Sho shonee)矿,煤层厚6m,只采315m。 澳大利亚现有长壁工作面25个,采高1165~312m。长壁面平均单产180万t,1993年新南威尔士州巴尔波尼(B aal Bone)矿长壁面单产达到300万t,煤厚2~4m。 英国1992 1993年度有83个长壁工作面,工作面平均日产2230t,1994年产量最高的威尔贝克(W elbeck)矿综采面平均日产10405t,采高212m。 波兰是厚煤层赋存较多的国家,最厚的达60m,1995年产硬煤1138亿t,厚煤层产量占13%。有398个采煤工作面,工作面平均日产1680t。采用冒落法和充填法的采煤 ? 3 ?

大跨度建筑结构形式与建筑造型实例分析建筑构造

大跨度建筑结构形式与建筑造型 实例分析

建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。 大跨度建筑通常是指跨度在30米以上的建筑,主要用于民用建筑的影剧院、体育场、展览馆、大会堂、航空港以及其他大型公共建筑。在工业建筑中则主要用于飞机装配车间、飞机库和其他大跨度厂房。 拱是古代大跨度建筑的主要结构形式。由于拱成曲面形状,在外力作用下,拱内的弯矩可以降到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样跨度的梁结构断面小,故拱能跨越较大的空间。 但是拱结构在承受荷载后将产生横向推力,为了保持结构的稳定

性,必须设置宽厚坚固的拱脚支座抵抗横推力。常见方式是在拱的两侧作两道厚墙来支承拱,墙厚随拱跨增大而加厚。很明显,这会使建筑的平面空间组合受到约束。 拱的内力主要是轴向压力,结构材料应选用抗压性能好的材料。古代建筑的拱主要采用砖石材料,近代建筑中,多采用钢筋混凝土拱,有的采用钢衍架拱,跨度可达百米以上。拱结构所形成的巨大空间常常用来建造商场、展览馆、体育馆、散装货仓等建筑。 刚架是横梁和柱以整体连接方式构成的一种门形结构。由于梁和柱是刚性结点,在竖向荷载作用下柱对梁有约束作用,因而能减少梁的跨中弯矩。同样,在水平荷载作用下,梁对柱也有约束作用,能减少柱内的弯矩。刚架结构比屋架和柱组成的排架结构轻巧,可以节省钢材和水泥。由于大多数刚架的横梁是向上倾斜的,不但受力合理,且

结构下部的空间增大,对某些要求高大空间的建筑特别有利。同时,倾斜的横梁使建筑的屋顶形成折线形,建筑外轮廓富于变化。 由于刚架结构受力合理,轻巧美观,能跨越较大的跨度,制作又很方便,因而应用非常广泛。一般用于体育馆、礼堂、食堂、菜场等大空间的民用建筑,也可用于工业建筑,但刚架结构的刚度较差,当吊车起重量超过100KN时不宜采用。 椼架是由杆件组成的一种格构式结构体系。杆件与杆件的结合假定为铰结,所以在外力作用下杆件内力为轴向力(拉力或压力),而且分布均匀,故椼架结构比梁结构受力合理。椼架的杆件内力是轴向力,而梁的内力主要是弯矩,且分布不均匀,梁的断面大小常以最大弯矩处的断面尺寸为整个梁的断面大小,因此梁的材料强度未得到充分利用。椼架内力分布均匀,材料强度能充分利用,减少材料耗量和结构自重,使结构跨度增大。所以椼架结构式大跨度建筑常用的一种结构形式,主要用于体育馆、影剧院、展览馆、食堂、菜场、商场等公共建筑。为了使椼架的规格统一,有利于工业化施工,建筑的平面形式宜采用矩形或方形。 网架是一种由很多杆件以一定规律组成的网状结构。它具有下列优点: 杆件之间互相起支撑作用,形成多向受力的空间结构,故其整体性强、稳定性好、空间刚度大,有利于抗震; 当荷载作用于网架各节点上时,杆件主要承受轴向力,故能充分

煤矿开采的基本概念

第一章 1.煤田、井田、井型的基本概念。 2.井田内的划分方式?阶段与水平的基本概念?采区、盘区、带区的基本概念? 3.矿井开拓、准备及回采的含义及作用是什么? 4.绘图表示说明下列井巷名称: (1)立井,暗立井;(2)科井、暗斜井; (3)平硐、岩石平巷、石门;(4)采区上山、下山。 5.阶段内再划分有哪几种方式,各适用于何种条件? 6.绘图说明矿井的主要生产系统。 第二章采煤方法的概念和分类 1.简述壁式体系和柱式体系采煤法基本特征和适用性。 2.采煤方法的含义是什么?采煤方法分类的依据是什么? 3.我国较广泛采用的采煤方法有哪几种?应用及发展概况如何? 第三章单一走向长壁采煤法采煤工艺 1.长壁采煤法有那几种主要采煤工艺?说明主要特点及相互关系。 2.什么是普采工艺系统?普采工艺的基本要点是什么? 3.什么是综采工艺系统?综采工作面的主要设备有哪些? 4.说明综采双滚筒采煤机割煤、进刀方式有哪几种?有何优缺点?及其实用条件? 5.综采面有哪几种移架方式?及时支护与滞后支护的工艺流程是什么?

6.简述综采工作面设备的几何尺寸配套及生产能力配套的基本原则? 7.试分析影响综采面生产能力的各种因素及其相互关系。 8.简述大采高、大倾角综采的工艺特点及煤壁防片帮、设备防止下滑的措施。 9.简述采煤工作面过断层的技术措施。 10.简述机采工作面开机率的概念和计算方法。 11.试分析工作面的合理长度及影响合理长度的技术因素。12.熟悉并掌握工作面作业规程的内容和编制方法。 13.绘图说明炮采面单体支架布置形式,并解释以下各词: 正悬臂支架,排距,柱距,最大最小控顶距,放顶步距,全部落垮法,采空区处理。 14.简述炮采,机采,综采选择依据。 第四章单一走向长壁采煤法 1.绘图说明单一走向长壁采煤法的采区巷道布置、掘进顺序和生产系统。 2.不同采煤工艺对区段平巷的坡度和方向各有什么要求? 3.说明区段平巷单巷布置和双巷布置的特点及应用。 4.说明单工作面布置和双工作面布置的特点及应用。 5.绘图说明采煤工作面回采顺序的几种方式及应用。 6.绘图说明采场通风的几种方式及其适用条件。 7.受构造影响时区段平巷布置的特点有哪些? 第五章倾斜分层走向长壁下行垮落采煤法

厚煤层开采方法的选择适用性分析

厚煤层开采方法的选择适用性分析 【摘要】我国厚煤层(指厚度超过3.5m)资源储量丰富,具有雄厚的开采价值。为了实现绿色、安全、高产高效开采的目的,厚煤层开采方法选择尤为重要,主要从经济上与技术上选择可行的方法,于是本文分析了放顶煤开采与大采高综采两种方法,对于解决资源问题具有重要研究意义。 【关键词】厚煤层;开采方法;选择适用性 前言 选择合适的采煤方法是开采厚煤层研究的重要课题之一。从目前我国多数煤炭企业开采技术上来看,厚煤层开采方法可分为3种:传统的分层开采方法、大采高综采技术与综采放顶煤开采方法。前一种工艺我国发展较为成熟,采用机械化采煤、运煤等技术与装备后生产效率得到大幅度提升,同时新型假顶材料的研制、假顶和再生顶板的管理技术使得顶板管理趋于稳定,无论是在巷道布置还是在技术管理方面,各煤矿都积累了不少经验,但由于铺设假顶及巷道掘进工作量大,生产组织及管理较复杂,随着煤炭开采技术的不断发展,近年来放顶煤开采和大采高开采技术得到了快速发展和广泛应用,以下就这两种进行具体阐述。 1 放顶煤开采 在诸多的采煤方法中,一般认为放顶煤开采法能够在保持较高产量和效益的同时做到对于人员安全的尽可能保障,并可以减少采煤相关的消耗。基于以上原因,现在放顶煤开采法已经成为中国各地区大中型煤矿对厚煤层(煤层厚度>6m)进行开采的主要方法。特别是对于厚煤层居多的矿区来说,放顶煤开采法已经成为其实现高效集约化煤炭生产的重要途径。按照工作面所用相关设备的差异,放顶煤开采法一般可细分为“炮采放顶煤法”和“综合机械化放顶煤开采法”,目前多采用“综合机械化放顶煤开采法”,它是指在煤层的下部布置较为特殊的综采工作面(在工作面的后部增加刮板输送机,并且放置的支架为具有放煤功能的专用放顶煤支架),并进行开采的方法。此种方法经由在我国投入大量的实际使用并发展成熟,一般认为只要相关条件符合,采用“综合机械化放顶煤开采法”对煤层开采具有较强的技术优势。 1.1 放顶煤开采的技术优势其技术优势 ①降本提效。综合机械化放顶煤开采法相较于其他方法而言,能够有效的降低巷道掘进工作量达一半以上,同时减轻了采煤机的割煤量,节约了开采所需消耗的电力及材料,从而摊薄了吨煤生产成本,促进了生产效率的提升,有助于相关单位实现集约化的高效率生产。②管理简单。采用综合机械化放顶煤开采法时,由于其“直接顶”为完整顶煤,因此避免了分层开采过程中受到人工假顶质量影响的因素,减轻了工作面顶板控制带来的相关问题,故而有利于整个开采过程的管理。③强适应性。采用综合机械化放顶煤开采法时,由于是沿着煤层的底板进行

煤矿中厚煤层的开采技术

煤矿中厚煤层的开采技术 摘要:煤矿在开采时,因为矿内煤层所处地质条件的不同,使得煤层在开采过程中开采工具及开采工艺往往也不尽相同,而在煤层开采过程中,为了更加安全有效,就需要对煤层的空间层面进行设计,并且选取合适开采技术。基于此,本文结合煤矿开采实例主要阐述煤矿中厚煤层开采时所用的技术。 关键词:煤矿;开采技术;机械设备;煤 截至目前来说,根据采煤时是否使用大量的水,将采煤技术分为了干式采煤与水式采煤两种,其中水式采煤技术是煤矿中厚煤层开采中应用很广泛的一种,本文结合某煤矿中厚煤层开采实例,分别从煤层工作面设计、技术管理、安全生产管理等几个方面就怎样提高产能的措施做了叙述,提出了以后怎样对中厚煤层进行更加合理的开采,并总结了在开采中应该注意的事项。 1实例概况 1.1矿井历史 某矿业公司为国外专家设计的大型水能机械采煤矿井,该矿井计划产能为150万t/a,实际在1989年开建,截至1990年正式投产,1993年完成设计产能,1995开始新建井并扩建,1998年新井开始投入产出,新井预计产能可达到200万t/a,2005年新井产能达到了250万t/a。 1.2矿井地质条件 该煤井位于山区,所处地域地质主要是褶皱构造。井田自西向东依次由X1向斜、X1背斜、X2向斜、X2背斜、X3向斜等几个主要褶皱构成,其中X1背斜占矿井大部,与其余褶曲复合构成整个煤层,使得煤层构造极为复杂,一些煤层稳定程度很低。 1.3矿井生产状况 该矿井元先设计为水式采矿井,但是随着矿井不断开采,使得煤层倾角不断下降,因此从2002年初煤矿尝试了使用旱采,直至现在,矿井开采到地下600m至800m水平,直至2005年,所有的水式采矿井均基本采完,煤矿进入了全面旱采阶段。 2水式采矿技术重点 2.1做好开采前的准备工作 在煤矿开采之前需要做好的准备工作有:(1)监督好巷道的掘进质量;(2)掘进时注意对顶板的保护,尽量降低空顶距离,并保证按时接顶,以防止顶板被破坏而导致的裂隙大量产生及出现抽冒情况,为以后矿井的回采制造麻烦。(3)对于回采巷道中的高压管道在安装时必须要做好质量保证工作,严禁管道存在跑水现象,否则将会出现停枪,而造成采垛落板丢煤;

大跨度建筑结构形式与建筑造型实例分析

建筑构造作业 大跨度建筑结构形式与建筑造型实例分析 建筑的三个最基本要素包括强度、适用和美观。适用是指该建筑的实用功能,即建筑可提供的空间要满足建筑的使用要求,这是建筑最基本的特性;美观是建筑物能使那些接触它的人产生一种美学享受,这种效果可能是由一种或多种原因产生,其中也包括了建筑形成的象征意义,形状、花纹和色彩的美学特征;强度是建筑的最基本特征,它关系到建筑物保存的完整性和作为一个物体在自然界的生存能力,满足“强度”所需要的建筑物部分是结构,结构是建筑物的基础,没

有结构就没有建筑物,也不存在适用,更不可能有美观。 大跨空间结构是目前发展最快的结构类型。为了满足社会生活和居住的需要,人们需要更大的覆盖空间,如大型的集会场、体育馆、飞机库等、跨度要求很大,达几百米或者更大,这是就需要大跨度结构。大跨度建筑通常指跨度在30米以上的建筑。大跨度建筑及作为其核心的空间结构技术的发展状况是代表一个国家建筑科技水平的重要标志之一。对于建筑师及工程师们而言,大跨度建筑提供了一种既方便又经济的覆盖大面积空间的方法,尤其在大跨度建筑中,结构选型是制约建筑空间形式的造型的重要因素。大跨空间结构的类型和形式十分丰富多彩,习惯上分为如下这些类型:钢架、桁架结构、拱结构、壳体结构、折板结构、网架结构、网壳结构、悬索结构、张弦梁结构和索-膜结构。大跨度建筑通常是指跨度在30m以上的建筑,我国现行钢结构规范则规定跨度60m以上结构为大跨度结构。主要用于民用建筑的影剧院、体育场馆、展览馆、大会堂、航空港以及其他大型公共建筑。在工业建筑中则主要用于飞机装配车间、飞机库和其他大跨度厂房。大跨度建筑在古代罗马已经出现,如公元120到124年建成的罗马万神庙,成圆形平面,穹顶直径达43.5m,用天然混凝土浇筑而成,是罗马穹顶技术的光辉典范。 罗马万神庙 虽然大跨度建筑在古代罗马已经出现,但是大跨度建筑真正得到迅速发展还是在19世纪后半叶以后,特别是第二次世界大战后的最近几十年中。大跨建筑迅速发展的原因一方面是由于社会发展使建筑功能越来越复杂,需要建造高大的建筑空间来满足群众集会、举办大型的文艺体育表演、举办盛大的各种博览会等;另一方面则是新材料、新结构、新技术的出现,促进了大跨度建筑的进步。一是需要,二是可能,两者相辅相成,相互促进,缺一不可。19世纪后半叶以来,钢结构和钢筋混凝土结构在建筑上的广泛应用,使大跨建筑有了很快的发展,特别是近几十年来新品种的钢材和水泥在强度方面有了很大的提高,各种轻质高强

厚煤层分层开采煤层自然发火的综合防治

厚煤层分层开采煤层自然发火的综合防治 山东省济宁市蔡园生建煤矿朱启宽 在厚煤层分层开采过程中,煤层的自然发火是影响矿井安全生产的重要隐患之一,也是制约矿井高产高效建设的重要因素。有效地预防煤层自然发火是厚煤层分层技术中研究的关键课题之一。 济宁市菜园生建煤矿自建矿以来,共发生煤层自然发火及隐患20余起,其中,1989年一采区发生的煤层自然发火导致整个矿井停产,最终把整个采区封闭,呆滞煤炭储量100余万吨,1996年至1997年间,2364、2372采面先后发生煤层自然发火,均导致采面停产5至7天,造成了极大地经济损失。为此,我矿组织有关工程技术人员,针对矿井的现状,对厚煤层分层开采煤层自然发火的防治进行了系统研究,取得了有效地成果,从1997年至今,矿井没有发生影响矿井安全生产的火灾,为矿井的可持续安全生产奠定了基础。 1 矿井概况 菜园井田位于滕县煤田的南部,地处山东省微山境内,该矿采用立井多水平分区式开拓,年生产能力达80万吨,目前开采山西组3上、3下两层煤,煤层厚度分别为5.1~5.6m和3.8~4.4m,煤的硬度为f=1.5,煤层易自然发火,自然发火期为4~6个月。煤层分4个分层开采,采高为1.9~2.3m,回采巷道为沿空送巷,垂直布臵,区段之间、采区之间实现无煤柱开采。采煤方法为倾斜分层、下行垮落、人工假顶、走向长壁采煤法,采煤工艺是爆破落煤、人工装煤、刮板输送机运煤,支护方式是单体液压支柱(DZ-25-25 /100型)配合铰接顶梁(HDJA-100型)正悬臂支护,顶板管理采用全部垮落法。 2 预防煤层自然发火采取的措施 2.1 搞好矿井开拓设计,优化巷道布置 在矿井建设初期,由于生产能力较小,建设资金相对匮乏,为尽早出煤,把采区的轨道上山、区段集运巷均沿3下煤底板布臵,这样造成了护巷煤柱由于受采动压力的影响,煤体相对破碎,不仅给巷道维护带来困难,而且使整个采空区长期处于漏风状态,

厚煤层分层开采顶分层综采工作面防火设计

厚煤层分层开采顶分层工作面防止煤层自然发火设 计及安全技术措施 为防止II883-1工作面煤层自然发火事故,确保II883-1工作面初采、回采、收作期间的安全生产,根据《煤矿安全规程》和集团公司有关防灭火技术管理规定,编制II883-1工作面防止煤层自然发火设计及安全技术措施。 一、II883-1工作面概况 (一)位置概况 该面位于井田西部,西部井西北部,矿区专用铁路东北部,地面受Ⅱ881、Ⅱ981工作面采动影响已塌陷下沉,地表多为农田,无其它建筑物。 该面上邻Ⅱ881工作面采空区,下邻Ⅱ885工作面(正在准备),东至Ⅱ八采区边界,西以F14断层为界。该工作面平均走向长314m,倾斜宽95m,平面积29830m2(斜面积31072m2)。 (二)所采煤层概况 从溜煤眼、钻孔及三巷揭露煤厚资料分析,该面8煤层煤厚1.1-16.7m,平均厚度8.4m,煤厚变化大,煤体结构复杂;煤层结构简单,全区发育1层8煤;煤层倾角5-29°,平均16°。 (三)所采煤层自然倾向性 II883-1工作面所采煤层为8煤层,由 2011年重庆煤科院进行的煤层自燃倾向性等级鉴定得出如下结论:8煤自燃倾向性等级为I类,属容易自然煤层。根据研究和现场实际确定煤层自然发火参考标志气体是一氧化碳。 二、防止煤层自然发火技术设计 (一)灌浆防火 II883-1工作面采用随采随灌与采后集中灌浆相结合的方案,工作面依靠新副井地面灌浆站。工作面回采期间进行随采随灌,收作后进行采后集中灌浆。

图1 灌浆系统布置示意图 1、浆液的制备 目前灌浆使用的浆液的制备是机械制浆,每配制一立方的浆液添加0.5kg 的阻化剂、0.4kg 的粘稠剂、1kg 的发泡剂。使用2个搅拌池和1个注浆池,池深和直径均为2m ,池体用砖砌筑水泥抹面或用钢板焊接,其上固定搅拌器。搅拌池底部留有出料口,在浆液流入注浆池前设双层过滤筛子(孔径为10mm),各安设离心式液下泥砂泵2台。 2、灌浆管路设计 主要灌浆干管直径是根据管内泥浆的流速来选择。在设计中,泥浆给定后,先确定泥浆在管道中流动的临界流速,再求出泥浆的实际工作流速,使之大于临界流速即可。井下灌浆管道采用无缝钢管,其井筒内钢管直径取6吋;大巷、上山等灌浆管路直径取4吋;工作面管道直径取2吋。 灌浆管路路线:西部井灌浆站→西风井→II 八进风上山→Ⅱ八回风上山→II881回风道→II881轨道巷→II881-3#联巷→材料眼→风巷。具体见灌浆系统图。 3、灌浆参数的设计 (1)浆液的水固比 水固比的大小影响着注浆的效果和泥浆的输送,一般情况下为4:1,冬季为5:1。 (2)灌浆量(煤矿注浆防灭火技术规范MT/T 702—1997) 至钻孔 至钻孔

建筑结构选型案例分析

1 混合结构体系 1.1混合结构体系概述 混合结构是指承重的主要构件是用钢筋混凝土和砖木建造的。如一幢房屋的梁是用钢筋混凝土制成,以砖墙为承重墙,或者梁是用木材建造,柱是用钢筋混凝土建造。由两种或两种以上不同材料的承重结构所共同组成的结构体系均为混合结构。混合结构,又可以说是砖混结构.虽然也用钢筋浇柱\梁,但墙体具是承重功能,不能乱拆. 特点:质量较框架略差,质量较好,寿命较长.造价略低,适合6层以下,横向刚度大,整体性好,但平面灵活性差。 分类:型钢柱+混凝土梁+混凝土筒归入混凝土结构 型钢柱/钢管混凝土+钢梁+混凝土筒归入型钢框架混凝土核心筒结构 1.2 实例工程项目概况 金茂大厦(JinMaoTower),又称金茂大楼,位于上海浦东新区黄浦江畔的陆家嘴金融贸易区,楼高420.5米,是上海目前第2高的摩天大楼(截至2008年)、中国大陆第3高楼、世界第8高楼。大厦于1994年开工,1999年建成,有地上88层,若再加上尖塔的楼层共有93层,地下3层,楼面面积27万8,707平方米,有多达130部电梯与555间客房,现已成为上海的一座地标,是集现代化办公楼、五星级酒店、会展中心、娱乐、商场等设施于一体,融汇中国塔型风格与西方建筑技术的多功能型摩天大楼,由著名的美国芝加哥SOM设计事务所的设计师Adrian Smith设计。因为中国人喜欢塔所以中国才把金茂大厦设计成这样。 1.3 实例工程项目结构选型与结构布置分析 其结构体系为巨型型钢混凝土翼柱+ 内筒混合结构体系。这种混合结构体系的巨型型钢混凝土柱和钢筋混凝土内筒通过刚性大梁构成一个整体的抗侧力体系, 而且其抗侧力体系的力矩很大, 效率很高。这种体系还可提供较大的使用空间, 其外围洞口可以做得很大。 2框架结构体系 2.1框架结构体系概述 框架结构是利用梁柱组成的纵、横向框架,同时承受竖向荷载及水平荷载的

复杂构造小块段煤层开采应采取的措施.kdh

ISSN1672-9064CN35-1272/TK 能源与环境 摘要通过对南方地质构造复杂煤层的开采影响因素分析,提出开采构造复杂块段煤层应采取的有关技术手段,提高煤炭资源回收率。 关键词 复杂构造 技术分析 小块段煤层煤层开采 中图分类号:TD823 文献标识码:A 文章编号:1672-9064(2007)01-0056-02 吴和初 (永安煤业公司半罗山煤矿 福建永安366022) 作者简介:吴和初(1957 ̄),男,毕业于福建煤炭工业学校采矿专业,采矿工程师,现任永安煤业公司半罗山煤矿矿长。 对于地质构造复杂、水平采区接替比较紧张的矿井,为延长现有生产水平和采区的服务年限,缓和接替紧张局面,提高资源回收率,采取措施进行复采回收地质构造所切割块段煤层,是一种见效快的好方法。进行构造复杂块段开采中,为保证生产安全可靠、技术合理、实现经济效益高的目的,在复采过程中必须进行认真分析、研究,采取切实可行的技术措施。 1复杂构造小块段煤层的开采特点 南方地质构造复杂的矿井在对采区内回采工作面进行 回采时,往往会遇到各种各样的地质构造(如小断层、压薄带、褶曲等),以及采区较大地质构造边界所伴生的各种小构造,造成构造带局部煤层无法正常回采而丢失;进行复采回收的煤炭,都是那些正常回采面由于构造切割的小块段煤,如何确保复采中有一个安全、经济、合理的生产糸统,创造良好的安全生产条件是个重要问题。 2复杂构造小块段煤层开采的技术手段 (1)认真做好地质构造的调查分析、 预测判断工作。为了合理选择复杂地段煤炭的采煤方法和巷道布置,首先必须查明地质小构造和煤层的变化规律,在进行巷道布置之前,应认真分析上风巷及下运巷所揭露的构造情况、产状要素,查清各种构造对煤层影响,煤层底板等高线情况以及工作面的上下巷道的平距是否有异常变化,预测工作面是否存在断层、褶曲等构造,必要时需作进一步的巷探工作,选择一个合理位置沿煤掘一条探巷,以实现探清工作面倾向方向的地质变化,为合理开采提供准确详细的地质资料。 (2)做好开采技术、 安全、经济的综合分析工作。当所拟开采的构造块段进行施工前,应对已收集到的地质资料,做 好详细的综合分析工作,研究评估开采该块段煤层的储量及其赋存条件,在技术上是否满足有关规范要求,安全上能不能达到国家及规程规定,对开采所应投入的工程量和资源与产出进行对比计算,只有在技术上可行、经济上合理、安全上可靠的前提下,才能进行开采的各项工作。 3 复杂构造小块段煤层开采的采煤方法与巷道布 置 3.1 选择合理的巷道布置形式 由于所开采的煤炭均属于地质构造复杂,或因在原正常 的回采过程中,遇到小断层压薄、 褶曲等因素影响也会丢失复杂构造小块段煤层开采 应采取的措施 能源技 术

大倾角厚煤层开采技术分析

总第182期2019年第4期 山西化工 SHANXI CHEMICAL INDUSTRY Total182 No.4,2019 奏题讨谑DOI:10.16525/https://www.doczj.com/doc/ec5054060.html,l4-1109/tq.2019.04.35大倾角厚煤层开采技术分析 吴少勤 (阳城县阳泰集团实业有限公司,山西晋城048100) 摘要:大倾角厚煤层综放回采面长期以来因为存在回采率偏低、煤壁片帮与冒顶现象严重、回采设备稳 定性差等诸多问题,而成为各大矿区生产作业的难点之一,极大的制约了井下生产的安全、持续、高效开 展。以本单位3110大倾角综放回采面为对象,通过多种技术手段对如何提升大倾角厚煤层回采效率与 安全性展开探究,在实现3110回采面高效安全回采的同时希望能够为其他矿区类似情况的解决提供借 鉴与参考。 关键词:大倾角;厚煤层;开采关键技术;创新点;实测分析 中图分类号:TD82文献标识码:A文章编号:1004-7050(2019)04-0095-03 引言 大倾角厚煤层开采工艺起步时间较晚,在实际开采作业极易出现各类突发安全事故,集中体现在回采设备不完善、煤矿安全支护控制理论不完备等方面,极大的制约了煤矿开采行业的发展。基于此,剖析大倾角厚煤层开采工艺具有实际意义,可从根源上消除安全隐患,保证煤炭生产作业的安全性。 1简述工程概况 本单位井田总开采面积达到5.68km?,年产能超过65万t,预计设计生产年限达到25年。在整个矿井范围内,王要包括2#、10井与17井煤层,煤层平均厚度约为5.8m,结构复杂,个别部位含有至少两层夹石干。当前主要针对2#井实施开采作业,埋深超过350m,经测量得知,最大煤层倾向角为32°,且作业面起伏范围较大,属于典型的大倾角厚煤层综合开采作业。在实际开采过程中,极易受到各类主客观因素的影响,诱发生产安全事故。另外,大倾角厚煤层的回采作业难度系数较高,并伴有一定的风险性。 2开采作业核心技术 施工人员使用回弹仪测试主采煤层及煤层夹石干,合理测定顶煤与夹石干强度;依托专业技术理论,测算工作面压力强度等级与安全支撑架构的承载限度等。 收稿日期:2019-07-04 作者简介:吴少勤,男,1989年出生,毕业于山西大同大学,助理工程师。 根据工程所处区域的地质结构条件特征,构建三维模拟试验台,综合分析倾斜回采作业基本规律,并模拟顶煤放出速度与煤石干分界面变化规律的动态变化关系。然后利用专业数值模拟软件,定向标志颗粒的变化轨迹口勾。 依托钻孔成像技术与超声波技术,可探测地质构造断裂带与煤壁安全稳固性,揭示回采面与顶板周期受压裂缝延展深度。同时采取棕绳+注浆锚固作业的方式,处理地质构造断裂带与煤壁片帮段,进一步提升煤壁的安全稳定性。 针对锚索加固技术来说,注浆工艺发挥着不可替代的作用,其工序如下: 1)选择煤壁超前注浆加固工艺,处理煤壁破损较为严重的区域,避免煤壁断裂片大面积脱落造成工作面顶部的塌落。在布设注浆孔的过程中,要确保其与煤壁垂直,间隔距离控制在3m左右,设置在距离底板约2/3的位置⑷。 2)在煤壁上设置直径约42mm的注浆孔,在设置过程中,需确保注浆孔与煤壁的位置保持垂直,然 后再将直径适宜的注浆管插入浆孔,并一同放置直径约15mm的棕绳,最后,在注浆管内注入波雷音混合液。注浆效果,如96页图1所示。 应用上述注浆工艺和工作面顶管管理技术,可 有效控制煤壁的破损。且回采面作业更加安全也更加稳定,回采面井注浆处理后形成的稳定煤壁,如第96页图2所示。 3技术创新的主要内容 根据大倾角厚煤层工作面回采作业中存在的主

大跨度建筑结构形式与建筑造型实例分析

建筑构造作业——大跨度建筑结构形式与建筑造型实例分析

大跨度建筑通常是指跨度在30m以上的建筑,我国现行钢结构规范则规定跨度60m以上结构为大跨度结构。主要用于民用建筑的影剧院、体育场馆、展览馆、大会堂、航空港以及其他大型公共建筑。在工业建筑中则主要用于飞机装配车间、飞机库和其他大跨度厂房。 大跨度建筑在古代罗马已经出现,如公元120到124年建成的罗马万神庙,成圆形平面,穹顶直径达43.5m,用天然混凝土浇筑而成,是罗马穹顶技术的光辉典范。

罗马万神庙 虽然大跨度建筑在古代罗马已经出现,但是大跨度建筑真正得到迅速发展还是在19世纪后半叶以后,特别是第二次世界大战后的最近几十年中。 大跨建筑迅速发展的原因一方面是由于社会发展使建筑功能越来越复杂,需要建造高大的建筑空间来满足群众集会、举办大型的文艺体育表演、举办盛大的各种博览会等;另一方面则是新材料、新结构、新技术的出现,促进了大跨度建筑的进步。一是需要,二是可能,两者相辅相成,相互促进,缺一不可。19世纪后半叶以来,钢结构和钢筋混凝土结构在建筑上的广泛应用,使大跨建筑有了很快的发展,特别是近几十年来新品种的钢材和水泥在强度方面有了很大的提高,各种轻质高强材料、新型化学材料、高效能防水材料、高效能绝热材料的出现为建造各种新型的大跨度结构和各种造型新颖的大跨度建筑创造了更有利的物质技术条件。 大跨度建筑常用结构形式;大跨度常用建筑结构根据结构形式,受力构件排列组合不同可分平面平面机构体系和空间结构体系两大类,共有八种。它们是: 平面结构体系有拱、刚架以及桁(héng)架。空间结构体系有网架、折板(薄壳)、悬索、膜结构以及混合结构。 拱是古代大跨度建筑的主要结构形式。由于拱成曲面形状,在外力作用下,拱内的弯矩可以降到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样跨度的梁结构断面小,故拱能跨越较大的空间。 但是拱结构在承受荷载后将产生横向推力,为了保持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。常见方式是在拱的两侧作两道厚墙来支承拱,墙厚随拱跨增大而加厚。很明显,这会使建筑的平面空间组合受到约束。 拱的内力主要是轴向压力,结构材料应选用抗压性能好的材料。古代建筑的拱主要采用砖石材料,近代建筑中,多采用钢筋混凝土拱,有的采用钢衍架拱,跨度可达百米以上。拱结构所形成的巨大空间常常用来建造商场、展览馆、体育馆、散装货仓等建筑。

急斜煤层地质构造复杂工作面开采技术研究.kdh

3、采煤方法的确定 Fa断层位于工作面运输机巷道以上10~25m。工作面若采用伪斜短壁采煤方开采,则Fa断层上盘煤大部分无法开采,这样保护范围缩小,保护效果差;同时下部受断层掘进联络眼时间长的影响,使上下段开采不同步,导致上部开采要等待下部联络眼贯通后才能进行;加之伪斜短壁采煤方法每个短壁的顶板管理为全部矸石充填法,在断层处矸石垫层获取极其困难,不能完全保证假顶上有煤厚1.5倍的垫层厚度,不利于安全工作。 经过认真分析现行我矿几种采煤方法的优点和缺点,结合Fa断层位于工作面下部运输机以上10~25m的实际情况,确定工作面断层上盘采用倒台阶采煤法,下盘采用伪斜短壁采煤法开采。 4、技术关键 4.1 采煤方法 4.1.1 回采工艺:工作面采用风镐落煤,三采三准的作业方式。 4.1.2 工作面下部采用倒台阶全陷采煤法采煤。 木支柱支护,根据工作面高度,为2~3个台阶,台阶长度为6~8m,台阶错距为3.6~5.4m,抬棚撑与幺撑的柱距为0.8m,排距为0.9m,其它支柱的排柱距均为0.9m。在顶板坚硬地带或煤层倾角大于70°时且底板完整其踏足撑、穿口木支柱采用顶或底板柱窝,柱窝深度为0.05-0.1m,底板穿鞋支护,一梁二柱。支柱必须打紧、打牢、打合山,并保持有3~ 5°的迎山角,抬棚撑必须背牢接顶且支拢煤壁,不留空顶距。4.1.3 工作面上部采用伪斜短壁采煤法开采。 根据伪斜短壁采煤法特点,工作面 急斜煤层地质构造 复杂工作面开采技术研究 蒋明庆 重庆中梁山煤电气公司 400052 1、概述 中梁山北矿井田属二叠纪龙潭煤组, 煤系含煤10层,即K1、K2......K10煤层。煤层倾角60~75°,煤层间距最大26m,最小为零,系典型急倾斜近距离煤层群。其中,K2煤层平均厚度0.7m,是保护层工作面;K2上部煤层为K1煤层,层间距为8~10m;K2下部煤层为K3煤层,层间距为5~6m。 建矿以来,K2工作面采用倒台阶采煤法、伪斜短壁采煤方法开采,在地质构造复杂地带的采区不开采,这样导致保护面积减少,保护范围小,防突工程量大。随着安全的需要,结合北矿0321采煤工作面的实际,在地质构造地带进行了倒台阶采煤法与伪斜短壁采煤方法两种采煤方法同时在一个工作面开采研究,经试验效果良好。 2、地质条件 该面位于60m~140m南西三石门至一石门之间,采区走向长350m,倾斜长77m,煤层倾角70°。区域位于中梁山背斜西翼,区域构造极为复杂,从揭露的资料看,工作面有7条断层,其中:影响开采最大的断层是Fa,最大垂直断距15~18m,水平断距7~7.5m,沿工作面走向影响长度296m。K2顶板为深灰色砂质泥岩,底板为粘土岩。 沿伪斜30o方向可分为4~5个短壁面,每个短壁面采长2.7~3.5m,伪斜坡度30°,相邻两个短壁间伪斜短壁距离为15~20m。采用QZ-150/63系列外注式单体液压支柱配合木质草鞋板支护。 4.2 上下段同步开采的控制 根据倒台阶采煤法的特点,工作面下部超前于工作面上部,而伪斜短壁采煤法的特点,则是工作面上部超前其下部。有效的上下段同步开采是关键。 4.2.1 上下盘采用掘进反眼作为联络眼,从上盘向下盘掘进反眼贯通下盘,反眼断面为1.5m2,反眼沿走向每隔8~10m设置,确定为上下段同步开采的距离。 4.2.2 反眼贯通后,立即在下口倒台阶处沿上盘断层线采隅角向前推进,达到反眼间距后,停止台阶开采进行掘进反眼工作,揭至煤层后向北以伪斜30度的坡度掘进斜坡与上部伪斜短壁采煤法下部贯通。 4.2.3 与伪斜短壁采煤法下部贯通后,短壁面由此处挂口向前推进。同时下部倒台阶采煤法继续不间断地沿走向推进开采,形成了上下段同步开采。 4.3 顶板管理方法4.3.1 工作面上部采用伪斜短壁采煤法,顶板管理方法对整个工作面而言为全部垮落法,对每个短壁而言则为全部充填法。 4.3.2 工作面下部采用倒台阶采煤法顶板管理方法为缓慢下沉。采用设置倾斜密集支柱、木垛、走向薄栈管理顶板。 (1)密集、木垛切顶的措施:由于该工作面是K2保护层开采,一般不设置木垛支护,但在地质构造变化地段、顶板压力大的情况下适度设置。每个台阶密集支柱设置在穿口以上,每个台阶分为1~2段密集支柱,密集高度不超过 3m,中间错开

相关主题
文本预览
相关文档 最新文档