当前位置:文档之家› 变分原理与变分法

变分原理与变分法

变分原理与变分法
变分原理与变分法

第一章 变分原理与变分法

1.1 关于变分原理与变分法(物质世界存在的基本守恒法则)

一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理:

昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理;

对运动事物:能量守恒,动量(矩)守恒,熵增原理等。

变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples :

① 光线最短路径传播;

② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③

CB AC EB AE +>+

Summary : 实际上光的传播遵循最小能量原理;

在静力学中的稳定平衡本质上是势能最小的原理。

二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方

法),是计算泛函驻值的数学理论

数学上的泛函定义

定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间

的(映射)关系

特征描述法:{ J :R x R D X ∈=→?r J )(|}

Examples :

① 矩阵范数:线性算子(矩阵)空间数域

‖A ‖1 = ∑=n

i ij j

a 1

max ;∑=∞=n

j ij i

a A 1max

;21

)(11

2

2∑∑===n j n

i ij a A

② 函数的积分: 函数空间数域

D ?=?n b

a

n f dx

x f J )(

Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。

Discussion :

① 判定下列那些是泛函:

)(max x f f b x a <<=;

x y x f ??)

,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。

物理问题中的泛函举例

① 弹性地基梁的系统势能

i. 梁的弯曲应变能: ?=∏l b dx dx

w d EJ 02

22)(21

ii. 弹性地基贮存的能量: dx kw l

f

?=∏0

221 iii. 外力位能: ?-=∏l l qwdx 0

iv. 系统总的势能:

00

0;})({2

2122202

1===-+=∏?dx

dw

w x dx qw kw dx

w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系

统势能。

泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使

系统势能泛函取最小值。

② 最速降线问题

问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使

得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法:

i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函:

x

设P (x , y )是曲线上的点,P 点的速度由能量守恒定律求得:

gy v mgy mv 22

2

1=?= 命ds 为曲线弧长的微分,有:

dx gy y gy ds

dt gy v dt ds 2'1222+==

?== 重物从A 点滑到B 点的总时间:

T =dx gy

y a

?

+0

22'1

泛函驻值提法:在0≤x ≤a 的区间内找一个函数y (x )使其满足端点几何条

件并使T 取最小值。

③ 圆周问题

问题:在长度一定的闭曲线中,什么曲线所围成的面积最大。 作法:

i. 假设所考虑的曲线用参数形式表示: x = x (s ), y = y (s )

s 为参数。取s 1为曲线上的某一定点,则坐标表示x 1=x (s 1),y 1=y (s 1),因曲

线是封闭的,必存在一个s 2点使x 2 = x (s 2),y 2 = y (s 2)与点s 1(x 1,y 1)重合。 ii. 该封闭曲线的周长: L =

ds ds

dy ds dx s s ?

+2

1

2

2)()(

该曲线所围成的面积:R = ??Ω

dxdy

iii. 转换R 的表达式 由Green 公式:

?

??

+=??-??2

1)(s s Qdy Pdx dxdy y

P x Q Ω

取P =-2y ,Q =2x

, 则:

1=??-??y

P x Q ∴?

?

-=

-=

21

21

))(')('(2121s

s

s s

ds s yx s xy ydx xdy R

泛函驻值的提法:等周问题即是在满足端点条件x (s 1) = x (s 2), y (s 1) = y (s 2)

及周长一定

L s s ds

dy ds dx =+?

2

1

22

)()( 条件下,寻找一个曲线函数???)

()

(s y s x 使泛函

R 取驻值。 ④ Discussion

悬索线问题:已知空间中A ,B 两点及一条长度L >AB 的悬索,单位长的

质量为m 。假设绳索的长度是不变的,并忽略绳索的弯曲刚度,把此绳索的两端挂在A ,B 两点,求在平衡状态下绳索的形状。 要求:列出悬索线应满足的泛函式及泛函驻值提法。 提示:绳索在平衡状态下,其势能应为最小值。

1.2 变分法(泛函驻值的计算方法)

● 关于计算固体力学中的泛函、泛函极值的提法

① 这里所研究的泛函一般用积分显式表达,并不等于所有泛函都能用显式积分表达。

② 所要研究的泛函都可表示成在一定区间或一定区域内的函数及其导数(或偏导数)的积分形式,即: a. ?=b

a dx x x f x f x f F ));("),('),((1∏

b. ??=

Ω

∏dxdy y x y x f y x f y x f F y x ),);,(),,(),,((2

c. 泛函中的可变化函数称为自变函数,或称宗量(argument ),x 或y 仅

是积分变量,是被积函数的定义域。(被积函数是复合函数概念的推广)

③ 要说清楚一个泛函的极值问题,应注意: a. 应把泛函本身讲清楚(即写出它的形式); b. 还必须讲明白自变函数的性质,如:

- 独立的自变函数的个数(导函数并不独立); - 每个自变函数定义的区间/区域;

- 这些自变函数应满足的条件(如:边界条件及其受约束的条件等)。 c. 除了个别特殊情况外,一般情况下增加一个条件会使泛函极值及相应

的自变函数变化性质发生变化。如:极小值可能变大;极大值可能变小;非极值的驻值可能成为极值。

若干背景知识

① 泛函的驻值问题可以转化为等价的微分方程问题,变分法的理论计算就

是完成这类工作。本章内容沿袭此方法,是要把问题的理论基础讲明确。

② 从近似解的角度出发,直接求解泛函的驻值,比解微分方程更加方便,

也更为实用。特别计算机技术的发展,带来了大规模数值计算的可能性(有限元的思想基础)。

③ 经Euler ,Lagrange ,Dirichlet ,Hilbert ,Bernoulli 等数学先驱的卓越工作,

完成了①的系统方法。

④ 但把微分方程问题转换为泛函问题还很不成熟。在物理、力学中,即先猜想一个泛函的驻值问题,再校对是否与原微分方程问题等价。 ⑤ 泛函驻值的计算(数值)先驱工作中以Ritz ,Galerkin ,Treft 著名。

关于变分法的一个预备定理 若f (x )在[a ,b ]上连续,若对任意满足 ?(a )= ?(b )=0 的连续函数?(x ),都

有:

?=b

a dx x x f 0)()(?

则 f (x )在[a ,b ]上处处为零。

反证法:设x 0为[a ,b ]中的点,在x 0点f (x 0)≠0,可取f (x 0)>0,

∵ f (x )在区间上连续,必存在x 0的一个充分小邻域上f (x )>0, x 0-ε

而在该邻域外恒等于零。所以有

?

>b

a

dx x x f 0)()(?

矛盾!即)(x f 必须为零;同理可证小于零情况。 该定理可推广多元变量的函数问题。

1.2.1 定积分?'b

a dx y y x F ),,(的驻值(变分)问题

目的:通过简单泛函的极值分析,获得建立变分法的基本概念、 计算步骤(把

变分解转化成微分方程)

问题:在自变量x 的区间[ a ,b ]内决定一个函数y (x ),使它满足边界条件:

a x y ==|α ,

b x y ==|β 并使泛函:

?'=b

a

dx y y x F V ),,( 取极值。

计算V δ方法1:

先用变分观点解释G .H 曲线的增量

x

● 设想已取得了一条曲线GACH 方程为:y= y (x )

在GACH 附近另取一条曲线GBDH ,令该曲线无限接近GACH ,其方程为:

)()()(1x y x y x y δ+=

)(x y δ是一个无穷小量,称为自变函数的变分(若x 不变,即为曲线纵坐标的增量)(注意与函数微分的区别,这里函数的变分仍然是一个函数) ●

相应两条曲线,获得两个泛函值:

dx y y x F V b

a ?'=),,(

?'+'+=?+b

a

dx y y y y x F V V ),,(δδ

基本引理: y y '='δδ)(

证: y x y x y y x y x y x y '≡'-'='?-=δδδ)()()()()()(1

1 推广: y y ''=''δδ)(

另一条认识y y '='δδ)(的思路:

C A →: dx y x y x y A C '+=)()(

B A →: A A B y x y x y δ+=)()(1 D

C →: C C

D y x y x y δ+=)()(1

D B →: dx y x y x y B D 1

11)()('+= y y y δ+=1 dx y y dx y y 1

1;'='=?δδ )('?y δ=

y y y dx

y

y '='-'=-δδδ1

1 ?'-'+'+=?b

a

dx y y x F y y y y x F V )},,(),,({δδ

因为),,(y y x F '是y y x ',,的连续可导函数(工程上一般如此),故y y 'δδ及很小时,V ?也很小,即 0,→'y y δδ 0→?V 取等式两端的一阶无穷小量,即:

dx y y

F

y y F V b

a

][

''??+??=?δδδ (可以从Tailor 展开式去理解)

V δ称为泛函V 的一阶变分,简称变分,即泛函的一阶变分是泛函增量中的

一阶小量部分(把自变函数的变分y δ作为一阶小量)所以,变分的运算服从无穷小量的运算规则。

计算V δ方法2:(把求泛函的极值转化成求普通函数的极值)

记:)()()(01x y x y x y εδ+= 10≤≤ε (y y δ及0固定)

dx y y y y x F V b

a

),,()(0

0'+'+=?εδεδε 当V 在y 0上取极值,则相应于0=ε的泛函值 )(εV ∴现在成为普通的函数 极值条件:

0|)(0='=εεV (先不管该条件,现仅研究其导数计算)

??''

??+??='+''??++??==

b a b a dx y y F y y F dxd d y y d y F d y y d y F d d V d V ][])()([)(00

δδεεεδεεδεεεδ

上两式中出现,y δ和y 'δ并不能独立变化,可设法把y 'δ项转换成只与y δ有关的项。

取分步积分:

b a

b

a

b a uv dx v u dx y y F |?

?+'-=''??δ 取: y F

u '??= y v δ= b a b

a

b a y y F

ydx y F dx d dx y y F |)(?

?'

??+'??-=''???δδδ 代入一阶变分式:

b a b

a

y y F

ydx y F dx d y F V |)]([

?'

??+'??-??=δδδ 要选定的函数满足边界条件,所以:

a x y ==|0δ ,

b x y ==|0δ

?'

??-??=?b

a ydx y F

dx d y F V δδ)]([

计算0=V δ

若方括号内的函数在区间内不为0,则可任选y δ使V δ大于零或小于零,即使V 不能获得极值,故需方括号的项为零。 即:

0)(='

??-??y F

dx d y F (Euler 方程) 此即与泛函驻值等价的微分方程。 或:令0=V δ

由变分基本定理:y δ 任意连续函数,方括号中函数连续。

0)(='

??-???

y F

dx d y F Example 最速降线问题:gy y F 212

'+= (注不显含x )

代入Euler 方程,并乘以函数Q 可得:

0)()(='

??-'??'+??='??-??y F Q dx d y F Q y F Q y F dx d Q y F Q

由于

0=??x

F

(F 中不显含x ),上式中只要令y Q '=,把上式配成全微分形式:

0)(=''

??-y y F F dx d 这是因为:

dx y d y F dx dy y F x F F dx d ''??+??+??= (0=??x

F ) (代回原Euler 方程,即得全微分)

由全微分方程 C y y F

F =''

??-? 代入F 的具体表达式:

2

221)1()

1(1y v y v y y C y y '+=

?='+?='+?

令:t c y tan =' )2cos 1(2sin tan 12

2

t v t v t

c v y -==+=

dt t v tdt v dt t

c t

t v y dy dx )2cos 1(sin 2tan cos sin 22-==='=

? 上式积分得: 1)2sin 2(2C t t v

x +-=

注意: )2cos 1(2

t v

y -=

引用初始条件:x=0, y=0, 只能有: C 1=0

令:θμ==t v

2,2

)

cos 1()

sin ({

θμθθμ-=-=y x 即为最速降线(圆滚线(渐开))方程。

Homework : 在连接XY 平面上两点的M 0及M 1的所有曲线中,要这样一条曲线使它绕OX 轴旋转成的曲面有最小表面积。

Q y F

Q y F Q '

'

??+??=的假设后两项由

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

6.第二章利用费马原理对光的反射与折射这两个实验定律进行推证

第二章利用费马原理对光的反射与折射这两个实验 定律进行推证 2.1 反射定律和折射定律 在教材中我们早就学习了折射定律和反射定律]1[,反射定律的传统表达为:入射光线与反射光线在同种介质中,且对称分居于法线两侧,即入射角i 等于反射角i ',或i =i '。折射定律的传统表达为:光折射时,折射光线、入射光线、法线在同一平面内,折射光线和入射光线分别位于法线的两侧。折射角随入射角的改变而改变:入射角增大时,折射角也增大;入射角减小时,折射角也减小。这两个定律通俗易懂,但它们在教材中都是通过实验推出,并没有从理论的角度进行推证。本章利用费马原理从理论角度对反射定律和折射定律进行推导。 我们已经学过nds 称为光程,并且当两列波在同一点相遇并叠加时,其光强取决于相位差,而相位差又取决于光程差。可以证明,几何光学中,有关光线的实验事实也可以归结为光程问题,即不考虑光的波动性,而只从光线的观点出发通过光程的概念。 2.2费马原理 费马原理是费马在1650年概括光线传播的实验定律提出的[2],其内容为:连结给定两点P 和Q 可以有许多路径,而光线只遵循两点间光程为极值的路径,数学表达形式为: Q P nds =?极值(极小值、极大值或恒值) (2-1) 费马原理要求光程为极值,可以是最小值,这是最常见的,也可以是最大值,还可以是稳定值。 几何光学的核心就是费马原理,虽然几何光学被看作是波动光学的近似,但现在光学设计中的光线追迹及光学成像等还是利用由费马原理推出的几何光学的知识,费马原理是物理学和数学的精妙结合。 2.3 折射定律的推导 设光线由P 点传播到Q 点, P 和Q 两点分别在折射率为1n 和2n 的均匀媒质中,首先建立笛卡儿空间直角坐标系,选两种介质的分界面为x y 平面,选过P 和Q 两点并与媒质分界面垂直的平面为yz 平面,如果P 和Q 两点的连线与分界

变分法的发展与应用

变分法的发展与应用 应用数学11XX班XXX 104972110XXXX 摘要:变分法是研究泛函卡及值的数学分支,其基本问题是求泛函(函数的雨数)的极值及相应的极值函数。变分法是重要的数学分支,与诸如微分方程、数学物理、极小曲面用论、微分几何、黎曼几何、积分力‘程、拓扑学等许多数学分支或部门均有密切联系。变分法有着广泛的应用:变分法构成了物理学中的种种变分原理,成为物理学理论不可缺少的组成部分,是研究力学、弹性理论、电磁学、相对论、量子力学等许多物理学分支的重要工具;变分法通过“直接方法”而成为近似计算的有效于段,为微分方程边值问题的数值解法开辟了一条途径,形成了有限元方法的基础之一。近年来,变分法又在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 关键词:起源;发展;应用 1.引言 变分法是17世纪末发展起来的一门数学分支,是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。它最终寻求的是极值函数:它们使得泛函取得极大或极小值。变分法起源于一些具体的物理问题学问题,最终由数学家研究解决。变分法在科学与技术的各个领域尤其是在物理学中有着十分重要的作用,它提供了有限元方法的数学基础,它是求解边界值问题的强有力工具。它们在材料学中研

究材料平衡中大量使用。微分几何中的测地线的研究也是显然的变分性质的领域。 近年来,变分法在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 2.变分法的起源 物理学中泛函极值问题的提出促进了变分学的建立和发展,而变分学的理论成果则不断渗透到物理学中。 费马从欧几里得确立的光的反射定律出发提出了光的最小时间原理:光线永远沿用时最短的路径传播。他原先怀疑光的折射定律,但在1661年费马发现从他的光的最小时间原理能够推导出折射定律,不仅消除了早先的怀疑,而且更加坚信他的原理。 受费尔马的影响,约翰伯努利研究了“最速降线”问题:给 定空间中的两个点,a b,其中a比b高,求一条连接两点的曲线使得一个质点从a沿曲线下降到b用时最少。 变分法对于几何的应用在早期主要是对曲面上的测地线和欧氏空间中给定边界的极小曲面(Plateau问题)的研究。但在很长时间内仅限于一些特殊情形,没有重要进展。 3.变分法的发展 18世纪是变分法的草创时期,建立了极值应满足的欧拉方程并据此解决了大量具体问题。19世纪人们把变分法广泛应用到数学物理中去,建立了极值函数的充分条件。20世纪伊始,希尔伯

费马原理

费马原理的运用 王瑞林(03010425) (东南大学能源与环境学院,南京 210010) 摘要:本文介绍了几何光学的基本定理——费马原理的定义、传统表述及运用波动光学对其本质的介绍。并且运用费马原理证明了几何光学的三大定律,并求出了最速降线。 关键词:费马原理;折射定律;圆锥曲线光学性质;最速降线;最小作用量原理 The use of Fermat’s principle Wangruilin (The college of environment and energy , Southeast University, Nanjing 210096 ) Abstract: We introduced the Fundamental theorem of geometrical optics- Fermat’s principle. We introduced the definition and presentation of Fermat's principle, analysis its essemce . we also got the three basic laws of geometrical optics, and find the brachistochrone with proof of Fermat's principle. key words: Fermat’s principle;Law of ref raction;Optical properties of coni c;Brachistochrone;Principle of least action 我们之前在初高中就已经学习过几何光学,并了解了其中的一些重要定律,但是都只是一些经验的描述和一些实验的简单验证,本文我们运用几何光学的基础原理——费马原理对已学过的几何定律做一个简单的梳理并简单介绍一下运用费马原理对最速降线问题的求解。 费马原理简介 一、费马定理的表述 关于费马原理的定义,教科书上的表述如下:“过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。”其实表述并不足够准确,因为对于某些路程,不能简单的以光程极值来加以限定,最为准确而精炼的表述要利用到数学上的泛函知识,具体描述为:“过两个定点的光走且仅走光程的一阶变分为零的路径。”其中光程的定义为光通过的介质对光的折射率与光通过的路程的乘积。费马原理的数学表述形式为 其中,δ是变分符号,p1、p2表示空间中两个固定点,n为介质的折射率,s表示路程。我们将路径视为一个函数,而变分则是对泛函求导,其结果类似于我们函数求导,我们可以用函数求导来类似理解变分的求解。 费马定理还有另外一种表述:“过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。”其实就是把光程换成了时间t

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

费马原理与光的反射和折射

费马原理与光的反射和折射 福建省石狮市石光中学 陈龙法 1650年法国数学家费马对光的传播传播原理作了一个概括性的叙述:光从空间一点A 到另一点B,光沿着所需的时间为极值的路径传播。 1.光的反射 光线由A 点入射,经介面MN 反射到B 点(如图)。试求光线以最短时间所通过的路径。 分析 建立如图坐标系。A 点B 点是已知的, C 为界面上的任一点。设光的传播速度是V ,光线 由A 点经C 到B 经历时间 )(1 )(CB AC V x t += ()? ? ? ? ?+-++=2222121h x a h x V 式中V 、h 1、h 2及a 都是已知的,现在的问题是:光线AC 有怎样的一个已知方向(或x 取何值),才能使它由A 点出发到B 点的时间为最短。 为了求得最短时间,我们求t 对x 的导数: ()()???? ??+--- +='22221 21h x a x a h x x V x t 令()0='x t ,则 () 22 2 2 1 2 h x a x a h x x +--= + 若C 点的法线为CC ’,则由图知, Sin α=Sin β 所以,α=β,即入射角等于反射角。 又因为 ()() ()()()?????? ????? ?? ?+-+--+ +-- - ++- += ''2 2 2 2 2 22 22 2 2 122 12221 2 1h x a h x a x a h x a h x h x x h x V x t () ()[ ] ??? ??? ? ? +-+ +=2 /32222 2 2 /32 12211h x a h h x h V 式中所有值都是正的,所以()0>''x t ,故当α=β时,光线由A 点到B 点所需要的时间为最短。 2.光的折射 光线由A 点入射,经介面MN 折射到B 点(如图)。试求光线以最短时间从A 射到B 发生折射所通过的路径。 分析 建立如图坐标系。A 点B 点是已知的,C 为界面上的任一点。设光在第一介质中的传播速度 2)

变分原理与变分法

第一章 变分原理与变分法 1、1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总就是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理就是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也就是光传播最短路径(Heron); ③ 光线折射遵循时间最短的途径 CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上就是势能最小的原理。 二、变分法就是自然界变分原理的数学规划方法(求解约束方程系统极值的数学 方法),就是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映 射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

② 函数的积分: 函数空间 D ?=?n b a n f dx x f J )( Note : 泛函的自变量就是集合中的元素(定义域);值域就是实数域。 Discussion : ① 判定下列那些就是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i 、 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii 、 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii 、 外力位能: ?-=∏l l qwdx 0 iv 、 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统 势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 与B ,A 高于B ,要求在两点间连接一条曲线,使得有 重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i 、 通过A 与B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii 、 建立泛函: x

费马原理的最新表达形式及其应用

费马原理的最新表达形式及其应用 马国梁 (山东省章丘市第一职业中专明水250200 ) 《中国当代思想宝库》2006/6/发表 网上发表时间: 2006/10/31 08:10 点击:178次 摘要本文从另一角度提出了费马原理的表达形式,并据此推出了球面平行介质和平面平行介质的折射方程. 关键词费马原理折射方程 在一般教科书和报刊中,常将费马原理写成如下的微分形式 d(∫n d l )= 0 (积分区间A→B) (1) 式中n为介质的折射率,A、B是空间中固定的两点,d l为连接A、B两点空间曲线上的微元段。然而在实用上,这个公式却极不方便。它使推导过程及结果往往都变得非常复杂。 笔者经研究发现,费马原理还有另外一种表达形式,其微分式是 d (n r sinα) = 0 (2) 式中α是光线与介质中微元面法线的夹角,在该微元面上折射率处处相等;r是在由光线与法线决定的平面内微元面的曲率半径。虽然n、r和sinα都在随地点变化,但其乘积却始终保持不变。该公式适用于光在所有不均匀介质中的折射情况。在有些情况下用起来特别方便。 1. 在球面平行介质中,因每个微元面的法线都在其半径方向上,此时折射率只是其半径的函数。 n = n(r) (3) 设光线的出发点仍然是A,则根据(2)式得 n r sinα= n A r A sinαA(4) 在球心极坐标系中,设极角为φ 因为dφ= dr tanα/r = dr sinα/ r sqrt (1- sinαsinα) 所以将(4)式代入此式可求得得 dφ= dr / r sqrt [ (nr/ n A r A sinαA )^2 – 1 ] (5) 这就是光线在球面平行介质中的折射方程。它适用于宇宙中所有星球表面的大气折射。例如在地球表面上,沿地平线穿过大气层发射到太空中的光线偏折角可这样计算. 设n = 1+(n。-1)e ^ [- (r-r。) / H ] (6) 其中n o = 1.0002926 r o = 6371 km H = 8 km 那么利用(5)式积分,r的积分区间是从r o→∞ 可得光线所对的地心角是φ= 90°39.7′ 光线的偏转角为39.7′,这与实际情况是相符的。 2. 在平面平行介质中,因为各微元面的曲率半径都相等且为无穷大,所以(2)式变为 d(n sinα) = 0 (7) 由此可以推出现在最为常见的形式 n1 sinα1 = n2 sinα2(8) 此公式不仅适用于折射率渐变的介质,也适用于折射率突变(有分界面)的两种介质间的光折射。

变分原理与变分法

变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切, 似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Exa mp les ① ② Summary:实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的 (映射)关系 第一章 光线最短路径传播; 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); 光线折射遵循时间最短的途径(Fermat ); AE+ EB A AC +CB ③

特征描述法:{ J: X u D T R | J ( x ) = r € R } Exa mp les ① 矩阵范数:线性算子(矩阵)空间— 数域 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 i.梁的弯曲应变能: □b =-f' EJ (雪 2 P dx 2 ii.弹性地基贮存的能量: n f 1 J 2 =一 J kw dx 2 0 iii.外力位能: 口 l l =-0 qwdx iv.系统总的势能: )2dx 11 AII 1 = max 2 a j i4 ;|A L = max 2 a ij ; I A 2 仁 )12 ②函数的积分:函数空间i 数域 b J = a f n (X )dX fn U D Note:泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussi on : ①判定下列那些是泛函: c f (x y) --- '—-3x+5y=2; J 6(x-x 0) f (x)dx = f (x 0) f i=ma 少(x )i ; ex ②试举另一泛函例子。 物理问题中的泛函举例 q(x) /■'■'I rmTrfT ① 弹性地基梁的系统势能 ■ d 丨 L l d 2 w 2 □卡E J( dxr) 2 Tkw - qW}dx; x = 0 d w = 0 dx x x = 0,固支;x =

费马原理

2011年8月17日,是费马(Pierre de Fermat)诞辰410周年。今天,谷歌推出新涂鸦——费马大定理以纪念这位最专业的业余数学家。 除了费马大定理,相信大家也一定都听说过费马原理。它通常被表述为过空间中两定点的光,实际路径总是光程(或者时间)最短。费马原理是一条十分令人着迷的原理,从它可以推导出光的直线传播定律、反射定律和折射定律,几乎包含了几何光学的全部内容。然而,对于这个原理,很多人都存在着或多或少的误解,这是由于费马原理表述有误造成的。在今天这个有纪念意义的日子里,本文就来一一澄清。 首先说明一点,在费马原理的表述中,光程和光传播所用的时间是等效的,因为这两个量之比就是真空中的光速c。所以本文中后面只说光程而不说时间。 百度百科的不靠谱说法 不妨先看看百度百科给出的费马原理的定义:光波在两点之间传递时,自动选取费时最少的路径。这是一种很常见的错误表述,只要看下面这个平面镜反射的例子就知道了。 从A发出的光线,经过平面镜的反射到达B点,这条光线必然是可以真实存在的。可是这是光程最短的路径吗?显然不是,从A发出直接到达B的光线光程更短。所以使用“最小”一词是绝对错误的,费马原理其实是个局域性的原理,所有诸如最小的词均应当替换为极小。只要光程取极小值,无论是否是最小,它都是真实存在的光线。 用“极值”表述正确吗 那如果费马原理表述成:过两个定点的光总走光程极小的路径,是不是就正确了呢?其实这仍是一种错误的表述。光程取极小值只是一种常见情形,也存在其他情形。

首先举一个光程是定值的例子,如下图的椭圆形反射镜。 从椭圆的一个焦点A出发的光线,经过椭圆形镜子上任意一点的反射,一定会汇聚到另一个焦点B。这是因为椭圆的数学性质保证了这样光线的反射角一定等于入射角。在这个例子当中,任何一条真实光线都不是极小值了,因为不管反射点是椭圆上的哪个点,光程都是定值(是椭圆的定义:到两定点的距离之和为常值的点的轨迹)。 再举一个光程取极大值的例子,如下图: 图中A、B是蓝色椭圆的两个焦点,在椭圆内任取一条黑色曲线为镜面。假设椭圆对称轴上的O点为黑色曲线和蓝色椭圆的切点。根据椭圆的性质,我们可以知道过O点的黑色光线确为真实光线。而在镜面上随意选取O’作为反射点形成的红色光线,则比黑色光线光程更短(只要记得椭圆的定义并注意到黑色曲线在椭圆内部即可知道这一点)。然而红色光线却并不满足反射角等于入射角,也就说它并非真实的光线。因此在这个例子中,光选取的路径实际上取了极大值。 什么是最正确的表述 那如果费马原理表述成:过两个定点的光总走光程为极大值、极小值或者定值的路径,是不是就正确了呢?这是物理专业课本中的表述,但仍然不够准确。仍以上图为例,说黑色光线取了极大值,其实是不准确的。因为只要本该是直线的光线稍微一弯曲,光程就会变得更长,从这个角度来讲,这又是一种极小值了。所以单说它是极大值还是极小值都不够准确。理解这种既极大又极小的函数也很简单,看看双曲抛物面的形状就可以了

变分原理与变分法

第一章变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称 /相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Examples: ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ 光线折射遵循时间最短的途径(Fermat ); , Summary 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 、变分法是自然界变分原理的数学规划方法 (求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映 射)关系 特征描述法:{ J: X D R|J (x ) r R } Examples: ① 矩阵范数:线性算子(矩阵)空间 = 数域 ② 函数的积分:函数空间数域 n II A II 1 = max a ij j i 1 max a ij i j 1 n n A 2 ( a ij 产 j 1 i 1 AE EB AC CB

b J f n (X )dX f n D a Discussi on : ① 判定下列那些是泛函: ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 系统势能 泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B, A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从 A 到B 所需时间最短(忽略摩擦 力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。 B 点坐标(a, b ), 设曲线为 y = y (x ),并已知:x = 0, y = 0 ; x = a, y = b ii. 建立泛函: i.梁的弯曲应变能: 1 ' d 2 w 2 b o 0 EJ( 2 ) dx 2 0 dx ii.弹性地基贮存的能量: f — kw 2 dx 2 0 iii.外力位能: l I o qwdx iv.系统总的势能: 左Ej (d 丫)2 1 2 2 kw qw}dx; x 0 w 0削0 dx x = 0,固支;x = l, 自由 Note:泛函的自变量是集合中的元素(定义域) ;值域是实数域。 max f (x); a x b f(X,y) ; 3x+5y=2; x (x x °)f(x)dx f(X o ) q(x) con sts E 、J x

变分原理与变分法

第一章 变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ①光线最短路径传播; ②光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③光线折射遵循时间最短的途径( CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ①判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(;3x+5y=2;?+∞∞-=-)()()(00x f dx x f x x δ ②试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i.梁的弯曲应变能:?=∏l b dx dx w d EJ 02 22)(21 ii.弹性地基贮存的能量:dx kw l f ?=∏0 221 iii.外力位能:?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ②最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得有重 物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii.建立泛函: 设P (x , y )是曲线上的点,P 点的速度由能量守恒定律求得: x

变分原理

变分原理 泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值。 对于弹性力学问题,根据能量关系可以使偏微分方程的边值问题转化为代数方程。弹性体的应变能是基本未知量应力或者应变分量的函数,当然应力或者应变分量是坐标的函数。因此,应变能就是泛函。 在数学分析中,讨论函数和函数的极值。变分法讨论泛函的极值,是极值问题的推广。 下面简单介绍复变函数的定义和基本性质。如果需要深入探讨复变函数问题,请查阅参考资料。 §1 泛函和泛函的极值 首先引入泛函的概念。泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值 作为变分法的简单例题。考察x,y平面上连接两个定点的所有曲线中,求满足边界条件的任意曲线y(x)中的最短曲线。 (补充图) 设P1(x1,y1)和P2(x2,y2)为平面上给定的两点,y(x)为连接两点的任意曲线。于是,这一曲线的长度为

连接P1,P2两点的曲线有无数条,每一条曲线都有一个L值与其对应。满足边界条件的y(x)称为容许函数,问题是要从这些曲线,容许函数中找出使得曲线长度L最小的一条。 根据上式,L [y]依赖于y(x),而y(x)是x的函数,因此称y(x)为自变函数;L [y]是倚赖于自变函数的函数,称为泛函。 求解最短程线问题,即在满足边界条件 在x=x1时,y(x1)=y1,y'(x1)= y'1 在x=x2时,y(x2)=y2,y'(x1)= y'2 的函数y(x)中,求使得泛函L [y]为极值的特定函数。因此y(x)称为容许函数。 上述问题应用变分法可以概括为求解泛函 在边界条件y(x1)=y1,y(x2)=y2的极小值问题。 §2 泛函极值的必要条件-欧拉方程 假设函数y(x)是使得泛函L [y]为最小的特定函数(真实的)。变分法有兴趣研究的是邻近于y(x)的任意容许函数引起泛函L [ ]的改变。设 其中ε 为小参数,而η (x)为边界值为零的任意函数。当x固定时,容许函数 与y(x)的差 δ y称为泛函自变函数的变分,即 类似地,容许函数的斜率与y(x)斜率的差δ y',称为泛函自变函数斜率的变分,即 应该注意δ y与函数y(x)的微分d y之间的差别,d y是自变量x的改变量d x 引起的y(x)的无穷小增量。而变分δ y是y(x)的任意一个微小的改变量。设泛函增量 按泰勒级数展开,则

能量原理的应用 变分法 变分法数学基础

第七章能量原理及其应用 偏微分方程求解的困难 ——应力函数解法的限制 能量原理的应用 变分法 变分法数学基础

目录 §7.1基本概念 §7.2虚功原理 §7.3最小势能原理§7.4虚应力方程§7.5最小余能原理§7.6有限元概念

格林公式 §7.1基本概念 (密度) 外力功——变形体的能量关系变形能xz xz yz yz xy xy z z y y x x U U U U U U γτγτγτεσεσεσ??= ??=??=??= ??= ??= 000 ij ij U εσd d 0=xz xz yz yz xy xy z z y y x x γτγτγτεσεσεσ+++++d d d d d =

注意 线弹性问题的变形能 ) (2 1 0xz xz yz yz xy xy z z y y x x U γτγτγτεσεσεσ+++++=ij ij U εσ2 1 0=V U U V d 0???=

功-能关系 位移边界面力边界 V S u F V u F k ij s ij k i i k i i d d d s b ??? ?????=+εσ弹性体体积V ,表面积为S 。 位移给定表面S u 面力给定表面S σ 静力可能的应力与几何可能的位移 S =S u +S σ b ,=+i j ij F σj ij i n F σ=s )(21,,i j j i ij u u +=εi i u u =S u S σ s ij σ k i u k ij ε

§7.2虚功原理 弹性体处于平衡状态,对于满足变形连续条件的虚位移及其虚应变,外力在虚位移上所做的虚功,等于真实应力分量在对应的虚应变上所做的虚功,即虚应变能。 虚功原理 V S u F V u F V ij ij V S i i i i d d d s b ????????=+δεσ δδσ

变分法

变分法综述 1.变分法 1.1.变分法起源 变分法是17世纪末发展起来的一门数学分支,主要是古典变分法,它理论完整,在力学、光学、物理学、摩擦学、经济学、宇航理论、信息论和自动控制论等诸多方面有广泛应用。20世纪中叶发展起来的有限元法,其数学基础之一就是变分法。[1] 变分法是处理泛函的数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A 到达不直接在它底下的一点B 。在所有从A 到B 的曲线中必须极小化代表下降时间的表达式。 变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。 变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄力克雷原理。最优控制的理论是变分法的一个推广。[2] 同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,摩尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工作,称为Plateau 问题。 1.2变分问题类型 固定边界的变分问题,可动边界的变分问题,条件极值变分问题和参数形式的变分问题。[3] (1)古典变分问题举例 例1:最速降线或捷线问题(Brachistorone or curve of Steepest descent )问题。这是历史上出的第一个变分法问题,1696年约翰·伯努利提出的。设A 、B 是沿平面上不在同一直线上的两点,在所有连接A 、B 两点的平面直线中,求出一条曲线,使仅受重力作用且初速为零的质点从A 到B 沿该曲线运动时所需时间最短。 解:以A 为原点建立平面指标坐标系,设B 点的坐标11(,)x y ,曲线方程设为()y y x =,10x x ≤≤,且满足端点条件(0)0y =,11()y x y =。 设(,)M x y 为曲线()y y x =上任意一点,由能量守恒定律得

用费马原理导出光的反射定律和折射定律兰林

用费马原理导出光的反射定律和折射定律 (内江师范学院工程技术学院2012级1班 兰林 20120341045) [摘 要]以费马原理为基础,用极值条件和方程有解条件导出光在两种均匀介质分界面处的反射定律,并证明了光在反射和折射过程中,其实际光程取的是极小值. 关键词:费马原理;反射定律;折射定律;光程;极小值 几何光学是以光的直线传播定律、反射定律和折射定律为基础建立起来的,引入光程概念后,上述三定律就可用费马原理来概括,并由它导出.光的直线传播定律、反射定律和折射定律、独立传播原理是几何光学的基本原理,能够很好地解释光在传播过程中发生的物理现象.费马原理与光的直线传播定律、反射定律和折射定律具有同等重要的意义,可以说后者是前者的必然结果,即由费马原理可推出光的直线传播定律、反射定律和折射定律. 反射定律: (1)反射光线位于入射光线和法线构成的平面内; (2)反射光线和入射光线分居发现两侧; (3)反射角等于入射角,即i i '= 折射定律: (1)折射光线、入射光线和法线在同一平面内; (2)折射光线和入射光线分别位于法线的两侧; (3)光从光疏介质到光密介质时折射角小于入射角。 费马原理: 光在指定的两点间传播,实际光程是一个极值.光在均匀介质中的直线传播、在 两 种不同介质分界面处发生反射和折射,实际光程取极小值.即 B A nds =? 极值(极小值、极大值或恒定值) (1) 证明 如图1所示,设xoy 平面是两均匀介质1n 和2n 的分界面,光线由介质1中指定的A 点经界面反射后到达介质1中指定的B 点.为确定实际光线的路径,过A 、B 两点作xoy

相关主题
文本预览
相关文档 最新文档