当前位置:文档之家› 变分原理与变分法

变分原理与变分法

变分原理与变分法
变分原理与变分法

第一章 变分原理与变分法

1.1关于变分原理与变分法(物质世界存在的基本守恒法则)

一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理:

昼/夜,日/月,阴/阳,静止/运动等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理;

对运动事物:能量守恒,动量(矩)守恒,熵增原理等。

变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。

Examples :

①光线最短路径传播;

②光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③光线折射遵循时间最短的途径(

CB AC EB AE +>+

Summary : 实际上光的传播遵循最小能量原理;

在静力学中的稳定平衡本质上是势能最小的原理。

二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方

法),是计算泛函驻值的数学理论

数学上的泛函定义

定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间

的(映射)关系

特征描述法:{ J :R x R D X ∈=→?r J )(|}

Examples :

‖A ‖1 = ∑=n

i ij j

a 1

max ;∑=∞=n j ij i

a A 1max

;21

)(11

2

2∑∑===n j n

i ij a A

D ?=?n b

a

n f dx

x f J )(

Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。

Discussion :

①判定下列那些是泛函:

)(max x f f b x a <<=;

x y x f ??)

,(;3x+5y=2;?+∞∞-=-)()()(00x f dx x f x x δ ②试举另一泛函例子。

物理问题中的泛函举例

① 弹性地基梁的系统势能

i.梁的弯曲应变能:?=∏l b dx dx

w d EJ 02

22)(21

ii.弹性地基贮存的能量:dx kw l

f

?=∏0

221 iii.外力位能:?-=∏l l qwdx 0

iv. 系统总的势能:

00

0;})({2

2122202

1

===-+=∏?dx

dw w x dx qw kw dx

w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系

统势能。

泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系

统势能泛函取最小值。

②最速降线问题

问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得有重

物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法:

i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii.建立泛函:

设P (x , y )是曲线上的点,P 点的速度由能量守恒定律求得:

x

gy v mgy mv 222

1=?=

命ds 为曲线弧长的微分,有:

dx gy

y gy ds

dt gy v dt ds 2'1222+==?== 重物从A 点滑到B 点的总时间:

T =dx gy

y a

?

+0

22'1

泛函驻值提法:在0≤x ≤a 的区间内找一个函数y (x )使其满足端点几何条件

并使T 取最小值。

③圆周问题

问题:在长度一定的闭曲线中,什么曲线所围成的面积最大。 作法:

i. 假设所考虑的曲线用参数形式表示:

x = x (s ), y = y (s )

s 为参数。取s 1为曲线上的某一定点,则坐标表示x 1=x (s 1),y 1=y (s 1),因曲线是封闭

的,必存在一个s 2点使x 2 = x (s 2),y 2 = y (s 2)与点s 1(x 1,y 1)重合。 ii. 该封闭曲线的周长:L =

ds ds

dy ds dx s s ?

+2

1

2

2)()(

该曲线所围成的面积:R =??Ω

dxdy

iii. 转换R 的表达式 由Green 公式:

?

??

+=??-??2

1)(s s Qdy Pdx dxdy y

P x Q Ω

取P =-2y ,Q =2x

, 则:

1=??-??y

P x Q ∴?

?

-=

-=

21

21

))(')('(2121s

s

s s

ds s yx s xy ydx xdy R

泛函驻值的提法:等周问题即是在满足端点条件x (s 1) = x (s 2), y (s 1) = y (s 2)

及周长一定

L s s ds

dy ds dx =+?

2

1

22

)()(条件下,寻找一个曲线函数???)

()

(s y s x 使泛函R 取

驻值。 ④Discussion

悬索线问题:已知空间中A ,B 两点及一条长度L>AB 的悬索,单位长的质量

为m 。假设绳索的长度是不变的,并忽略绳索的弯曲刚度,把此绳索的两端挂在A ,B 两点,求在平衡状态下绳索的形状。 要求:列出悬索线应满足的泛函式及泛函驻值提法。 提示:绳索在平衡状态下,其势能应为最小值。

1.2变分法(泛函驻值的计算方法)

● 关于计算固体力学中的泛函、泛函极值的提法

①这里所研究的泛函一般用积分显式表达,并不等于所有泛函都能用显式积分表达。

②所要研究的泛函都可表示成在一定区间或一定区域内的函数及其导数(或偏导数)的积分形式,即: a. ?=b

a dx x x f x f x f F ));("),('),((1∏

b.??=

Ω

∏dxdy y x y x f y x f y x f F y x ),);,(),,(),,((2

c.泛函中的可变化函数称为自变函数,或称宗量(argument ),x 或y 仅是积

分变量,是被积函数的定义域。(被积函数是复合函数概念的推广) ③要说清楚一个泛函的极值问题,应注意: a.应把泛函本身讲清楚(即写出它的形式); b.还必须讲明白自变函数的性质,如:

- 独立的自变函数的个数(导函数并不独立); - 每个自变函数定义的区间/区域;

- 这些自变函数应满足的条件(如:边界条件及其受约束的条件等)。 c. 除了个别特殊情况外,一般情况下增加一个条件会使泛函极值及相应的

自变函数变化性质发生变化。如:极小值可能变大;极大值可能变小;非极值的驻值可能成为极值。

若干背景知识

①泛函的驻值问题可以转化为等价的微分方程问题,变分法的理论计算就是完成

这类工作。本章内容沿袭此方法,是要把问题的理论基础讲明确。

②从近似解的角度出发,直接求解泛函的驻值,比解微分方程更加方便,也更为

实用。特别计算机技术的发展,带来了大规模数值计算的可能性(有限元的思想基础)。

③经Euler ,Lagrange ,Dirichlet ,Hilbert ,Bernoulli 等数学先驱的卓越工作,完成了①的

系统方法。

④但把微分方程问题转换为泛函问题还很不成熟。在物理、力学中,即先猜想一个泛函的驻值问题,再校对是否与原微分方程问题等价。 ⑤泛函驻值的计算(数值)先驱工作中以Ritz ,Galerkin ,Treft 著名。

关于变分法的一个预备定理

若f (x )在[a ,b ]上连续,若对任意满足(a )=

(b )=0 的连续函数

x 都有:

?=b

a dx x x f 0)()(?

则f (x )在[a ,b ]上处处为零。

反证法:设x 0为[a ,b ]中的点,在x 0点f (x 0)≠0,可取f (x 0)>0,

∵f (x )在区间上连续,必存在

x 0的一个充分小邻域上f (x )>0, x 0-

又∵

x

为任意连续函数(满足边界条件),可取

x 也在该邻域内大于零,而在该邻域外恒等于零。所以有

?

>b

a

dx x x f 0)()(?

矛盾!即)(x f 必须为零;同理可证小于零情况。 该定理可推广多元变量的函数问题。

1.2.1 定积分?'b

a

dx y y x F ),,(的驻值(变分)问题

目的:通过简单泛函的极值分析,获得建立变分法的基本概念、计算步骤(把

变分解转化成微分方程)

问题:在自变量x 的区间[ a ,b ]内决定一个函数y (x ),使它满足边界条件:

a x y ==|α,

b x y ==|β并使泛函:

?'=b

a

dx y y x F V ),,(取极值。

计算V δ方法1:

先用变分观点解释G.H 曲线的增量

y

β

α A

x dx

● 设想已取得了一条曲线GACH 方程为:y= y (x )

在GACH 附近另取一条曲线GBDH ,令该曲线无限接近GACH ,其方程为:

)()()(1x y x y x y δ+=

)(x y δ是一个无穷小量,称为自变函数的变分(若x 不变,即为曲线纵坐标的增量)(注意与函数微分的区别,这里函数的变分仍然是一个函数) ●

相应两条曲线,获得两个泛函值:

dx y y x F V b

a ?'=),,(

?'+'+=?+b

a

dx y y y y x F V V ),,(δδ

基本引理:y y '='δδ)(

证:y x y x y y x y x y x y '≡'-'='?-=δδδ)()()()()()(1

1 推广:y y ''=''δδ)(

另一条认识y y '='δδ)(的思路:

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

变分法的发展与应用

变分法的发展与应用 应用数学11XX班XXX 104972110XXXX 摘要:变分法是研究泛函卡及值的数学分支,其基本问题是求泛函(函数的雨数)的极值及相应的极值函数。变分法是重要的数学分支,与诸如微分方程、数学物理、极小曲面用论、微分几何、黎曼几何、积分力‘程、拓扑学等许多数学分支或部门均有密切联系。变分法有着广泛的应用:变分法构成了物理学中的种种变分原理,成为物理学理论不可缺少的组成部分,是研究力学、弹性理论、电磁学、相对论、量子力学等许多物理学分支的重要工具;变分法通过“直接方法”而成为近似计算的有效于段,为微分方程边值问题的数值解法开辟了一条途径,形成了有限元方法的基础之一。近年来,变分法又在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 关键词:起源;发展;应用 1.引言 变分法是17世纪末发展起来的一门数学分支,是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。它最终寻求的是极值函数:它们使得泛函取得极大或极小值。变分法起源于一些具体的物理问题学问题,最终由数学家研究解决。变分法在科学与技术的各个领域尤其是在物理学中有着十分重要的作用,它提供了有限元方法的数学基础,它是求解边界值问题的强有力工具。它们在材料学中研

究材料平衡中大量使用。微分几何中的测地线的研究也是显然的变分性质的领域。 近年来,变分法在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 2.变分法的起源 物理学中泛函极值问题的提出促进了变分学的建立和发展,而变分学的理论成果则不断渗透到物理学中。 费马从欧几里得确立的光的反射定律出发提出了光的最小时间原理:光线永远沿用时最短的路径传播。他原先怀疑光的折射定律,但在1661年费马发现从他的光的最小时间原理能够推导出折射定律,不仅消除了早先的怀疑,而且更加坚信他的原理。 受费尔马的影响,约翰伯努利研究了“最速降线”问题:给 定空间中的两个点,a b,其中a比b高,求一条连接两点的曲线使得一个质点从a沿曲线下降到b用时最少。 变分法对于几何的应用在早期主要是对曲面上的测地线和欧氏空间中给定边界的极小曲面(Plateau问题)的研究。但在很长时间内仅限于一些特殊情形,没有重要进展。 3.变分法的发展 18世纪是变分法的草创时期,建立了极值应满足的欧拉方程并据此解决了大量具体问题。19世纪人们把变分法广泛应用到数学物理中去,建立了极值函数的充分条件。20世纪伊始,希尔伯

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

变分原理与变分法

第一章 变分原理与变分法 1、1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总就是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理就是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也就是光传播最短路径(Heron); ③ 光线折射遵循时间最短的途径 CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上就是势能最小的原理。 二、变分法就是自然界变分原理的数学规划方法(求解约束方程系统极值的数学 方法),就是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映 射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

② 函数的积分: 函数空间 D ?=?n b a n f dx x f J )( Note : 泛函的自变量就是集合中的元素(定义域);值域就是实数域。 Discussion : ① 判定下列那些就是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i 、 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii 、 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii 、 外力位能: ?-=∏l l qwdx 0 iv 、 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统 势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 与B ,A 高于B ,要求在两点间连接一条曲线,使得有 重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i 、 通过A 与B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii 、 建立泛函: x

变分原理与变分法

变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切, 似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Exa mp les ① ② Summary:实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的 (映射)关系 第一章 光线最短路径传播; 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); 光线折射遵循时间最短的途径(Fermat ); AE+ EB A AC +CB ③

特征描述法:{ J: X u D T R | J ( x ) = r € R } Exa mp les ① 矩阵范数:线性算子(矩阵)空间— 数域 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 i.梁的弯曲应变能: □b =-f' EJ (雪 2 P dx 2 ii.弹性地基贮存的能量: n f 1 J 2 =一 J kw dx 2 0 iii.外力位能: 口 l l =-0 qwdx iv.系统总的势能: )2dx 11 AII 1 = max 2 a j i4 ;|A L = max 2 a ij ; I A 2 仁 )12 ②函数的积分:函数空间i 数域 b J = a f n (X )dX fn U D Note:泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussi on : ①判定下列那些是泛函: c f (x y) --- '—-3x+5y=2; J 6(x-x 0) f (x)dx = f (x 0) f i=ma 少(x )i ; ex ②试举另一泛函例子。 物理问题中的泛函举例 q(x) /■'■'I rmTrfT ① 弹性地基梁的系统势能 ■ d 丨 L l d 2 w 2 □卡E J( dxr) 2 Tkw - qW}dx; x = 0 d w = 0 dx x x = 0,固支;x =

变分原理与变分法

第一章变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称 /相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Examples: ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ 光线折射遵循时间最短的途径(Fermat ); , Summary 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 、变分法是自然界变分原理的数学规划方法 (求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映 射)关系 特征描述法:{ J: X D R|J (x ) r R } Examples: ① 矩阵范数:线性算子(矩阵)空间 = 数域 ② 函数的积分:函数空间数域 n II A II 1 = max a ij j i 1 max a ij i j 1 n n A 2 ( a ij 产 j 1 i 1 AE EB AC CB

b J f n (X )dX f n D a Discussi on : ① 判定下列那些是泛函: ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 系统势能 泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B, A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从 A 到B 所需时间最短(忽略摩擦 力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。 B 点坐标(a, b ), 设曲线为 y = y (x ),并已知:x = 0, y = 0 ; x = a, y = b ii. 建立泛函: i.梁的弯曲应变能: 1 ' d 2 w 2 b o 0 EJ( 2 ) dx 2 0 dx ii.弹性地基贮存的能量: f — kw 2 dx 2 0 iii.外力位能: l I o qwdx iv.系统总的势能: 左Ej (d 丫)2 1 2 2 kw qw}dx; x 0 w 0削0 dx x = 0,固支;x = l, 自由 Note:泛函的自变量是集合中的元素(定义域) ;值域是实数域。 max f (x); a x b f(X,y) ; 3x+5y=2; x (x x °)f(x)dx f(X o ) q(x) con sts E 、J x

变分原理与变分法

第一章 变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ①光线最短路径传播; ②光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③光线折射遵循时间最短的途径( CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ①判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(;3x+5y=2;?+∞∞-=-)()()(00x f dx x f x x δ ②试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i.梁的弯曲应变能:?=∏l b dx dx w d EJ 02 22)(21 ii.弹性地基贮存的能量:dx kw l f ?=∏0 221 iii.外力位能:?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ②最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得有重 物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii.建立泛函: 设P (x , y )是曲线上的点,P 点的速度由能量守恒定律求得: x

变分原理

变分原理 泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值。 对于弹性力学问题,根据能量关系可以使偏微分方程的边值问题转化为代数方程。弹性体的应变能是基本未知量应力或者应变分量的函数,当然应力或者应变分量是坐标的函数。因此,应变能就是泛函。 在数学分析中,讨论函数和函数的极值。变分法讨论泛函的极值,是极值问题的推广。 下面简单介绍复变函数的定义和基本性质。如果需要深入探讨复变函数问题,请查阅参考资料。 §1 泛函和泛函的极值 首先引入泛函的概念。泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值 作为变分法的简单例题。考察x,y平面上连接两个定点的所有曲线中,求满足边界条件的任意曲线y(x)中的最短曲线。 (补充图) 设P1(x1,y1)和P2(x2,y2)为平面上给定的两点,y(x)为连接两点的任意曲线。于是,这一曲线的长度为

连接P1,P2两点的曲线有无数条,每一条曲线都有一个L值与其对应。满足边界条件的y(x)称为容许函数,问题是要从这些曲线,容许函数中找出使得曲线长度L最小的一条。 根据上式,L [y]依赖于y(x),而y(x)是x的函数,因此称y(x)为自变函数;L [y]是倚赖于自变函数的函数,称为泛函。 求解最短程线问题,即在满足边界条件 在x=x1时,y(x1)=y1,y'(x1)= y'1 在x=x2时,y(x2)=y2,y'(x1)= y'2 的函数y(x)中,求使得泛函L [y]为极值的特定函数。因此y(x)称为容许函数。 上述问题应用变分法可以概括为求解泛函 在边界条件y(x1)=y1,y(x2)=y2的极小值问题。 §2 泛函极值的必要条件-欧拉方程 假设函数y(x)是使得泛函L [y]为最小的特定函数(真实的)。变分法有兴趣研究的是邻近于y(x)的任意容许函数引起泛函L [ ]的改变。设 其中ε 为小参数,而η (x)为边界值为零的任意函数。当x固定时,容许函数 与y(x)的差 δ y称为泛函自变函数的变分,即 类似地,容许函数的斜率与y(x)斜率的差δ y',称为泛函自变函数斜率的变分,即 应该注意δ y与函数y(x)的微分d y之间的差别,d y是自变量x的改变量d x 引起的y(x)的无穷小增量。而变分δ y是y(x)的任意一个微小的改变量。设泛函增量 按泰勒级数展开,则

能量原理的应用 变分法 变分法数学基础

第七章能量原理及其应用 偏微分方程求解的困难 ——应力函数解法的限制 能量原理的应用 变分法 变分法数学基础

目录 §7.1基本概念 §7.2虚功原理 §7.3最小势能原理§7.4虚应力方程§7.5最小余能原理§7.6有限元概念

格林公式 §7.1基本概念 (密度) 外力功——变形体的能量关系变形能xz xz yz yz xy xy z z y y x x U U U U U U γτγτγτεσεσεσ??= ??=??=??= ??= ??= 000 ij ij U εσd d 0=xz xz yz yz xy xy z z y y x x γτγτγτεσεσεσ+++++d d d d d =

注意 线弹性问题的变形能 ) (2 1 0xz xz yz yz xy xy z z y y x x U γτγτγτεσεσεσ+++++=ij ij U εσ2 1 0=V U U V d 0???=

功-能关系 位移边界面力边界 V S u F V u F k ij s ij k i i k i i d d d s b ??? ?????=+εσ弹性体体积V ,表面积为S 。 位移给定表面S u 面力给定表面S σ 静力可能的应力与几何可能的位移 S =S u +S σ b ,=+i j ij F σj ij i n F σ=s )(21,,i j j i ij u u +=εi i u u =S u S σ s ij σ k i u k ij ε

§7.2虚功原理 弹性体处于平衡状态,对于满足变形连续条件的虚位移及其虚应变,外力在虚位移上所做的虚功,等于真实应力分量在对应的虚应变上所做的虚功,即虚应变能。 虚功原理 V S u F V u F V ij ij V S i i i i d d d s b ????????=+δεσ δδσ

变分法

变分法综述 1.变分法 1.1.变分法起源 变分法是17世纪末发展起来的一门数学分支,主要是古典变分法,它理论完整,在力学、光学、物理学、摩擦学、经济学、宇航理论、信息论和自动控制论等诸多方面有广泛应用。20世纪中叶发展起来的有限元法,其数学基础之一就是变分法。[1] 变分法是处理泛函的数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A 到达不直接在它底下的一点B 。在所有从A 到B 的曲线中必须极小化代表下降时间的表达式。 变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。 变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄力克雷原理。最优控制的理论是变分法的一个推广。[2] 同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,摩尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工作,称为Plateau 问题。 1.2变分问题类型 固定边界的变分问题,可动边界的变分问题,条件极值变分问题和参数形式的变分问题。[3] (1)古典变分问题举例 例1:最速降线或捷线问题(Brachistorone or curve of Steepest descent )问题。这是历史上出的第一个变分法问题,1696年约翰·伯努利提出的。设A 、B 是沿平面上不在同一直线上的两点,在所有连接A 、B 两点的平面直线中,求出一条曲线,使仅受重力作用且初速为零的质点从A 到B 沿该曲线运动时所需时间最短。 解:以A 为原点建立平面指标坐标系,设B 点的坐标11(,)x y ,曲线方程设为()y y x =,10x x ≤≤,且满足端点条件(0)0y =,11()y x y =。 设(,)M x y 为曲线()y y x =上任意一点,由能量守恒定律得

相关主题
文本预览
相关文档 最新文档