当前位置:文档之家› 专题23 逆用韦达定理

专题23 逆用韦达定理

专题23  逆用韦达定理
专题23  逆用韦达定理

专题23 逆用韦达定理

王牌例题

【例1】若实数x 、y 满足16

3433333=+++y x ,165453333=+++y x ,则x+y= . 【基本思路】易发现已知两等式的分母一个含有,33另一个含有35,于是,可将3353、

看做某个方程的两根.

【解】由题设易知3353、是关于t 的方程16

433=+++t y t x ,即x t -++33264(0)6464()3333=--?+-x y t y 的两个根. 由根与系数关系得).64(533333y x --+-=+ 所以,.43265433333=+++=+y x

【例2】已知.12-=t 若正整数a 、b 、m 使得m m bt m at 17))((=++成立,求ab 的值.

【解】因为12-=t 所以.223,2-=t 由题意知,17)(22m m t b a m abt =+++ 则)12)(()223(-++-b a m ab .172m m =+ 所以.0]17)(3[]2)([22=-++-+-+m m b a m ab ab b a m

又a 、b 、m 是正整数,则?

??=-++-=-+,017)(3,02)(2m m b a m ab ab b a m 即???-=-=+.

17),17(22m m ab m b a 因此,a 、b 是关于x 的一元二次方程

017)17(222=-+-+m m x m x ① 的两个整数根.

方程①的判别式.0)217)(17(4)17(4)17(422≥--=---=?m m m m m 因为a 、b 、m 是正整数,所以,.0)17(2>-=+m b a 从而,?≤<2

170m 又判别式.?是一个完全平方数,经验证,只有m=8符合要求. 把m=8代入得.72172=-=m m ab

举一反三

1.已知x 和y 是正整数,且满足条件.880,7122=+=++xy y x y x xy 求+2x 2y 的值.

2.实数a 、b 、c 满足,c b a ≤≤且.1,0==++abc ca bc ab 求最大的实数k ,使得不等式||||c k b a ≥+恒成立.

商务与经济统计精要版答案 【篇一:经管类书单推荐】 与管理学院 2016.10.17 管理类推荐读物 孙耀君,《西方管理学名著提要》,江西人民出版社 1)管理学 邢以群,《管理学》,浙江大学出版社 周三多,《管理学》,复旦大学出版社 2)管理信息系统 kenneth https://www.doczj.com/doc/ec18275613.html,udon/ jane https://www.doczj.com/doc/ec18275613.html,udon ,《管理信息系统—网络化企业的组织与技术》(第六版,影印版),高等教育出版社 薛华成,《管理信息系统》(第三版),清华大学出版社 小威廉d.佩勒尔特 e.杰罗姆.麦卡锡,《市场营销学基础》:全球管理(英文版.第12版)--国际通用mba教材》,机械工业出版社 郭毅等,《市场营销学原理》,电子工业出版社malhotra,n.k.著,《市场营销研究应用导向(第3版)》,电子工业出版社 4)战略管理 项保华,《战略管理——艺术与实务》,华夏出版社 斯蒂文斯(英),《战略性思维》,机械工业出版社 arthur a. thompson, jr. and a. j. strickland Ⅲ.crafting implementing strategy. 6th ed. richard d. irwin, inc., 1995中文版《战略管理学:概念与案例(英文版.第十版)-- 国际通用mba教材》,机械工业出版社 david besanko, david dranove, mark shanley. the economics of strategy. john wiley sons, inc., 1996alan j. rowe; et al.. strategic management: a methodological approach. 4th ed. addison-wesley publishing company, inc., 1994 5)组织行为学 卢盛忠等,《组织行为学:理论与实践》,浙江教育出版社 英文版《human resource management: gaining a competitive advantage》,清华大学出版社约翰.m.伊万切维奇,《人力资源管理(英文版.原书第8版)-- 国际通用mba教材》,机械工业出版社

韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

韦达定理在解析几何中的应用 陈历强 一,求弦长 在有关解析几何的高考题型中不乏弦长问题以及直线与圆锥曲线相交的问题。求直线与圆锥曲线相交所截得的弦长,可以联立它们的方程,解方程组求出交点坐标,再利用两点间距离公式即可求出,但计算比较麻烦。能否另擗捷径呢?能!仔细观察弦长公式: ∣AB ∣=∣x 1-x 2∣21k +?=)1](4)[(221221k x x x x +-+ 或∣AB ∣=∣y 1-y 2∣2 11k + ? =) 11](4)[(2 21221k y y y y + -+ , 立刻发现里面藏着韦达定理(其中x 1、x 2分别表示弦的两个端点的横坐标,y 1、y 2分别表示弦的两个端点的纵坐标)。请看下面的例子: 例1,已知直线 L 的斜率为2,且过抛物线y 2=2px 的焦点,求直线 L 被抛物线截得的弦长。 解:易知直线的方程为y=2(x-2 p ). 联立方程组y 2=2px 和y=2(x- 2 p ) 消去x 得 y 2-py-p 2=0.∵△=5p 2>0,∴直线与抛物线有两个不同的交点。由韦达定理得y 1+y 2=p,y 1y 2=-p 2.故弦长d= 2 5p 例2,直线y=kx-2交椭圆x 2+4y 2=80交于不同的两点P 、Q ,若PQ 中点的横坐标为2,则∣PQ ∣等于___________. 分析:联立方程组y=kx-2和x 2+4y 2=80消去y 得(4k 2+1)x 2-16kx-64=0 设P(x 1,y 1),Q(x 2,y 2). 由韦达定理得 x 1+x 2= 1 4162 +k k = 4得k= 2 1.x 1x 2= -32∣PQ ∣=6 . 练习1:过抛物线 y 2=4x 的焦点作直线交抛物线A(x 1,y 1),B(x 2,y 2)两点,如果x 1+x 2=6, 那么|AB|=( ) (A)10 (B)8 (C)6 (D)4 (文尾有提示.下同) 二,判定曲线交点的个数

韦达定理及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。 说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况

专题08 解锁圆锥曲线中的定点与定值问题 一、解答题 1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标. 【答案】(1)(2) 【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得。设x轴上的定点为,可得,由定值可得需满足,解得可得定点坐标。 解得。 ∴椭圆的标准方程为. (Ⅱ)证明: 由题意设直线的方程为, 由消去y整理得, 设,, 要使其为定值,需满足, 解得. 故定点的坐标为. 点睛:解析几何中定点问题的常见解法 (1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意. 2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为的直线经过点与抛物线(为常数)交于不同的两点,当时,弦的长为. (1)求抛物线的标准方程; (2)过点的直线交抛物线于另一点,且直线经过点,判断直线是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1);(2)直线过定点 【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设,则, 则; 同理: . 由在直线上(1); 由在直线上将(1)代入(2) 将(2)代入方程,即可得出直线过定点. (2)设,则, 则即; 同理:; . 由在直线上,即(1); 由在直线上将(1)代入(2) 将(2)代入方程,易得直线过定点 3.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知抛物线过点,是上一点,斜率为的直线交于不同两点(不过点),且的重心的纵坐标为. (1)求抛物线的方程,并求其焦点坐标; (2)记直线的斜率分别为,求的值.

一元二次方程根与系数的关系(韦达定理) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:(1)定理成立的条件0?≥ (2)注意公式重12b x x a +=-的负号与b 的符号的区别 已知x1,x2是方程2x 2-x-5=0的两个根 考点:根与系数的关系.专题:应用题. 分析:利用根与系数的关系,分别求得x1+x2,x1/x2的值,整体代入所求的代数式即可. 解:∵x1,x2是方程2x 2-x-5=0的两个根 ∴x1+x2=-b/a=12,x1×x2=c/a=-5/2 本题考查了一元二次方程根与系数的关系.要掌握根与系数的关系式:x1+x2=-b/a ,x1×x2=c/a . (1)计算对称式的值 例一 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -. (2)定性判断字母系数的取值范围

例二 一个三角形的两边长是方程 的两 根,第三边长为2,求k 的取值范围。 例三 已知关于x 的方程221(1)104 x k x k -+++=,根据下列条件,分别求出k 的值. (1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =. 例四 已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根. (1) 是否存在实数k ,使12123(2)(2)2 x x x x --=-成立若存在,求出k 的值;若

【最新整理,下载后即可编辑】 韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求 的值。 思路注意a,b为方程的二实根;(隐含)。 解(1)当a=b时, ; (2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。

附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式 的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定理,得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 解(1)由韦达定理知 ,。 , 。 所以,所求方程为。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q)=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。

一元二次方程跟与系数关系(韦达定理)的应用 一 教材分析 本节教学内容为“韦达定理的应用”,此内容是学生学习“一元二次方的根与系数的关系”中解决一些简单问题的重要方法。韦达定理联系了方程根与系数的关系,是学生在解决应用问题中的重要工具,具有广泛的应用价值,根据教材内容,由学生已知的认知结构及原由的知识水平,制定如下教学目标: 二 教学目标 1、巩固上一节学习的韦达定理,并熟练掌握韦达定理的应用。 2、提高学生综合应用能力 三 教学重难点 重点:运用韦达定理解决方程中的问题 难点:如何运用韦达定理 四 教学过程 (一 ) 回顾旧知,探索新知 上节课我们学习了韦达定理,我们回忆一下什么是韦达定理? 如果)0(02 ≠=++a c bx ax 的两个根是21,x x 那么a c x x a b x x =?- =+2121, {老师:由韦达定理我们可知,韦达定理表示方程的根与系数的关系,如果在方 程中遇到需要求解根的情况,我们是否能用韦达定理来解决呢?今天我们将来探讨这个问题。) (二) 举例分析 例 已知方程0652 =-+kx x 的一根是2,求它的另一根及k 的值。 请同学们分析解题方法: 思路:应用解方程的方法,带入法 解法一:把X=2代入方程求的K=-7 把K=-7代入方程:06752 =--x x 运用求根公式公式解得5 3,221- ==∴x x 提问:同学们还有没有其它方法呢? 启发学生,我们已知方程一根,求另一根,我们否能用韦达定理建立一个关系,求解方程。

解法二:设方程的两根为21,x x ,则21,2x x =是未知数 用韦达定理建立关系式 5 3 ,5622 2-=∴-=x x 7 ,5 3 ,27 ,5 2212-=-==∴-=∴-=+k x x k k x 对比分析,第二种方法更加简单 总结:在解方程的根时,利用韦达定理会使求解过程更为简单,且不用解方程,直接求某 些代数式的值 例2 不解方程,求一元二次方程2x 2+3x -1=0两根的 (1)平方和;(2)倒数和 方法小结: (1)运用韦达定理求某些代数式的值,关键是将所求的代数式恒等变形为用2121,x x x x ?+的代数式表示。 (2)格式、步骤要求规范: ①将方程的两根设为。 ②求出2121,x x x x ?+的值 。 ③将所求代数式用2121,x x x x ?+的代数式表示 。 ④ 将2121,x x x x ?+的值代人并求值。 三 综合运用 巩固新知 1、求一个一元二次方程,使它的两根分别是 解 : 2、设 2 1,x x 是方程03422 =-+x x 的两根,利用根与系数的关系,求下列各式的值。

1、韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

韦达定理及其应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则 ,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,, 等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

韦达定理的应用 一、典型例题 例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。 解:设另一个根为x1,则相加,得x 例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和. 解:∵又 ∴代入得,∴新方程为 例3:判断是不是方程9x-10x-2=0的一个实数根? 解:∵二次实数方程实根共轭,∴若是,则另一根为 ∴,。 ∴以为根的一元二次方程即为.

例4:解方程组 解:设∴. ∴A=5. ∴x-y=5 又xy=-6. ∴解方程组∴可解得 例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值 解:不妨设斜边为C=13,两条直角边为a,b,则2。又a,b为方程两根。∴ab=4m(m-2)∴S但a,b为实数且 ∴∴ ∴m=5或6 当m=6时,∴m=5 ∴S. 例6:M为何值时,方程8x-(m-1)x+m-7=0的两根 ①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数 解:①∵∴m>7

②∵ ∴不存在这样的情况。 ③ ∴m<7 ④ ∴m=7 ⑤ ∴m=15.但使 ∴不存在这种情况 【模拟试题】(答题时间:30分钟) 1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于 2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q= 3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为() A.±8 B.8 C.-8 D.±4 4. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等? 5. 已知方程(a+3)x+1=ax有负数根,求a的取值围。

韦达定理知识点及应 用解析 Revised on November 25, 2020

一元二次方程的根与系数的关系(韦达定理)知识点及应用解析 1、定义:若x 1,x 2 是一元二次方程ax 2+bx+c=0 (a ≠0)的两个根,则有x 1 + x 2 = -a b , x 1·x 2 = a c 。对于二次项系数为1的一元二次方程x2+px+q=0,则有x 1 + x 2 =-p ,x 1·x 2 =q 2、应用的前提条件:根的判别式△≥0 ?方程有实数根。 3、若一个方程的两个为x 1,x 2 ,那么这个一元二次方程为a[x 2+(x 1+x 2)x+ x 1·x 2]=0(a ≠0) 4、根与系数的关系求值常用的转化关系: ①x 12 +x 22 =(x 1+x 2)2 -2x 1x 2=a c a 2b -2 -?? ? ??=2 22a ac b - ② c b x x x x x x -=+=+21212111 ③(x 1+a)(x 2+a)= x 1x 2 +a(x 1+x 2) +a 2 = a c -b +a 2 ④(x 1-x 2)2 =(x 1+x 2)2 -4x 1x 2 =2 a 4ac -b 2 5、方法归纳:(1)一元二次方程的根与系数的关系的运用条件条件为一元二次方程,即a ≠0,且必须有实数根,即△≥0; (2)运用一元二次方程的根与系数的关系时,一元二次方程应化为一般形式,若系数中含字母要注意分类讨论; (3)一元二次方程的根与系数的关系有时与一元二次方程根的定义综合运用,注意观察所求代数式是特点。 (4)解题思路:将含有根的代数式变形成含有两根和与两根积的式子,再通过韦达定理转化成关于系数的式子,同时要注意参量的值要满足根的实际意义。

初中数学竞赛:韦达定理 一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。 韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等。 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。 【例题求解】 【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。 思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么 b a a b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2 思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。 注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧: (1)恰当组合;(2)根据根的定义降次;(3)构造对称式。 【例3】 已知关于x 的方程:04)2(2 2 =---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。 (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。 思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。 【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

教案:韦达定理(一) 王伟光 一、教学目标 1.通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力; 2.通过本节课的学习,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。培养逻辑思维及创新思维能力。 二、教学重点、难点 1.教学重点:根与系数的关系的发现及其推导. 2.教学难点:韦达定理的灵活应用. 三、课前练习: x2+2x﹣4=0 3x2+2x﹣6=0 2x2﹣5x﹣3=0 x 1+x 2 =? x 1 +x 2 =? x 1 +x 2 =? x 1?x 2 =? x 1 ?x 2 =? x 1 ?x 2 =? (一)定理的发现及论证 问题1: 对于一元二次方程的一般式ax2+bx+c=0(a≠0)是否也具备这个特征? x1+x2=-,x1·x2=, 如何推导一元二次方程两根和与两根积和系数的关系? 设x1、x2是方程ax2+bx+c=0(a≠0)的两个根. ∴ a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - =.()0 4 2≥ -ac b

由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)—韦达定理 三:韦达定理内容: 韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则 1212b c x +x =x x =a a -?,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。其逆命题:如果12x x ,满足1212b c x +x =x x =a a -?,,那么12x x ,是一元二次方程 ()2ax +bx+c=0a 0≠的两个根也成立。 四:韦达定理应用: 韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。金鼎培训将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值; ⑤在平面几何中的应用;⑥在二次函数中的应用等。 (1)、不解方程求方程的两根和与两根积:已知一元二次方程,可以直接根据韦达定理求得两根和与两根积。 韦达(法国1540-1603)

浅谈韦达定理的应用 齐贤学校 匡双霞 【趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。 历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。消息传开,数学界为之震惊。同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间 的应用: 1. 已知一元二次方程的一根,求另一根。 2. 已知一元二次方程的两根,求作新的一元二次方程。 3. 不解方程,求关于两根的代数式的值。 4. 一元二次方程的验根。 5. 解一类特殊的二元二次方程组和通过换元等方法求解二次根式方程。 6. 与判别式的综合应用。 【中考真题欣赏】 例1 (2001年河南省)已知关于x 的方程4x 2+4bx+7b=0有两个相等的实数 根,?y 1,y 2是关于y 的方程y 2 +(2-b)y+4=0的两个根,二次方程. 解析 ∵关于x 的方程4x 2+4bx+7b=0有两个相等的实数根, ∴ △ = (4b)2 -4×4×7b=0, 即b 2-7b=0. ∴b 1=0, b 2=7. 当b=0时,,关于y 的方程化为y 2+2y+4=0, 因△=4-16=-12<0,方程无解. 当b=7时,关于y 的方程可化为y 2-5y+4=0,

直线与圆锥曲线位置关系之韦达定理的使用 【例1】已知椭圆22+197x y =的长轴两端点为双曲线E 的焦点,且双曲线E 的离心率为32 . (1)求双曲线E 的标准方程; (2)若斜率为1的直线l 交双曲线E 于,A B 两点,线段AB 的中点的横坐标为线l 的方程. 【例2】已知双曲线C : 22 221x y a b -=(0,0a b >>4. (1)求双曲线的标准方程; (2)过点()0,1,倾斜角为045的直线l 与双曲线C 相交于,A B 两点, O 为坐标原点,求

【例3】已知椭圆C:()22 2210x y a b a b +=>>的左右焦点分别为12,F F ,离心率为; 圆M :2220x y Dx +--=过椭圆C 的三个顶点.过点2F 且斜率不为0的直线与椭圆C 交于P ,Q 两点. (Ⅰ)求椭圆的标准方程; ,使得AP AQ 为定值;并求出该定点的坐标 . 【例4】的椭圆C 的一个焦点坐标为() . (1)求椭圆C 的标准方程; (2)过点() 0,2P 的直线l 与轨迹C 交于不同的两点E F 、,求PE PF ?的取值范围.

【例5】已知抛物线2:2C y x =和直线:1l y kx =+, O 为坐标原点. (1)求证: l 与C 必有两交点; OA 和OB 斜率之和为1,求k 的值. 【例6】已知椭圆C : 22221(0,0)x y a b a b +=>>,右焦点为,0). (1)求椭圆C 的方程; ,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为)

【例7】已知椭圆()22 22:10x y C a b a b +=>> ,且椭圆上任意一点到左焦点的最大距离为1 1. (1)求椭圆的方程; (2)过点10,3S ??- ??? 的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的

学科:奥数年级:初三 不分版本期数:346 本周教学内容:韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b 为实数,且,,求的值。 思路注意a,b 为方程的二实根;(隐含)。 解(1)当a=b时, ; (2 )当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b 的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2 若,且,试求代数式的值。 思路 此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m ,n 为方程 的二不等实根,再由韦达定理, 得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3 设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以 和 为根的一元二次方程仍为 。求所有这样的一元二次方 程。 解 (1)由韦达定理知 , 。 , 。 所以,所求方程为 。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q )=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。 于是,得以下七个方程 , , , ,, 01x 2x 2=++,01x 2=-,其中01x 2=+无实数根,舍去。其余六个方程均为所求。

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 解(1)当a=b时, ; (2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定

理,得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 解(1)由韦达定理知 ,。 , 。 所以,所求方程为。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q)=(0,0),(1,0),(1 -)。 -,1)或(0, 1 -,0),(0,1),(2,1),(2 于是,得以下七个方程,,,,, 1 x2= -,其中0 1 x2= +无实数根,舍去。其余六个方程均为所求。x2= +,0 x 1 + 2 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

韦达定理及其应用 【趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。 历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。消息传开,数学界为之震惊。同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理。你能利用韦达定理解决下面的问题吗? 已知:①a2+2a-1=0,②b4-2b2-1=0且1-ab2≠0,求( 221 ab b a ++ )2004的值。 解析由①知1+21 a - 2 1 a =0, 即(1 a )2-2· 1 a -1 =0,③ 由②知(b2)2-2b2-1=0,④ ∴1 a ,b2为一元二次方程x2-2x-1=0的两根. 由韦达定理,得1 a +b2=2, 1 a ·b2=-1. ∴ 221 ab b a ++ =[( 1 a +b2)+ 2 b a ]2004=(2-1)2004=1. 点评 本题的关键是构造一元二次方程x2-2x-1=0,利用韦达定理求解,?难点是将①变形成③,易错点是忽视条件1-ab2≠0,而把a,-b2看作方程x2+2x-1=0的两根来求解. 【知识延伸】 例1已知关于x的二次方程2x2+ax-2a+1=0的两个实根的平方和为71 4 ,求a的值.

【内容综述】 设一元二次方程 宀肚…。佃弄°)有二实数根可和也,贝U “f 的关系, 为韦达定理。 其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中 数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1. 求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a , b 为实数,且以+力十l = n , “ + 十1 = (],求石打的值。 思路注意a , b 为方程Q +覽+1 = 0的二实根;(隐含A 土 0)。 解(1)当a=b 时, (2)当说护■^时,由已知及根的定义可知,a ,b 分别是方程*打"1二D 的两根,由韦 达定理得 .b d _ 盘2 +於 _ ?4对'一M)_ [-餌一*1 ..—4 — ---- ---------- -- -------------------- - ----------------- -- / L? h ■ 说明此题易漏解a=b 的情况。根的对称多项式对,工扌 程的系数表达出来。一般地,设 可「丁为方程宀E = D 的二根,'-卅+对,则有递 推关系。 其中n 为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出 a ,b 值进而求出所求多项式值,但计算量 较大。 ★★★例2若榊3=疏+1 ,池27-1 = 口且聊5|,试求代数式也G 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为 宀,由根的定义知m n 为方程*-z = 0的二不等实根,再由韦达定理, 这两个式子反映了一元二次方程的两根之积与两根之和同系数 a , b ,c 称之 b 电等都可以用方 的值。

数学学习方法指导(精) 指导中学生如何学习数学,是数学教师必须完成的重要任务。作为一个数学教师,必须精通上述提到的7个方面的学习方法,广览各种学习方法的精要所在,然后有计划、有步骤、分阶段、分层次、有针对性地指导学生掌握各种学习方法。使我们的学生能够主动地、独立地学习,达到新课程要求标准。 ㈠让学生明确学好数学需要抓好哪些学习环节。 在学生开始学习某门数学教材之前,我们老师必须告诉学生,学好数学需要注意抓好下列环节——八环节学习方法: ⑴制订计划,⑵课前预习,⑶认真听讲,⑷及时复习,⑸独立作业,⑹解决疑难,⑺系统小结,⑻课外学习。 本方法是武汉黎世法老师调查全国200名各科学习成绩平均90分以上的优秀中学生、原华中工学院的40名少年大学生及以高分考入武汉大学的60名大学生的学习经验总结出来的,一个学生只要能够按照这八个环节学习,步步落实到位,那么这个学生就将成为学习的主人,并成为班上的优秀学生。 八个环节中的每个学习环节还需要老师作具体的指导,如怎样听课,如何预习,如何小结等,在每一学期的前几周课中老师应逐步介绍给学生。 ㈡让学生明确完成一项数学学习任务,需要分步骤逐项完成,才能牢固掌握知识。因为数学学习过程是一个复杂的认识过程,因而完成一项数学学习任务,真正掌握知识,必须全面完成各个步骤。心理学上把认识过程一般分为感知、理解、巩固、应用四个基本阶段。在四轮学习方略中,也把学习一节课分为四轮,第一轮:预习,查出障碍;第二轮:听课,破除障碍;第三轮:复习,扫除障碍;第四轮:作业,学会应用。其实这四轮与上面认识过程的感知、理解、巩固、应用是对应吻合的,虽然所述的角度不同,但都有分阶段的四步,每一步的学习要求非常相似。预习就是为了对一节课初步感知,听课就是为了更好地理解课文,复习是为了巩固,作业就是把所学知识进行应用。四轮学习方略是近几年流行全国的一种学习方法,由于它符合一般认识过程,故严格坚持按这四个步骤学习每一节课,必能取得较好的效果。 还有其它的学习方法,根据不同的学习情境,将学习过程分为四步、五步等,学生可以据自己所学内容的特点进行选择,甚至还可以自己进行创造,提出适合自己的学习步骤:如读、听、写、练四字学习法,再如浏览、发问、阅读、复述、复习五步学习法等。 ㈢让学生明确怎样学习才算真正地掌握了知识。把数学知识看成是一个系统,那么数学知识结构具有四大要素,即事实、事理、事用、事体。具体来讲这四大要素据不同层次的知识结构,可对应地罗列如下: 四事事实事理事用事体 问题题目题理题法题路 提问是什么为什么怎么用有何启发

第三讲韦达定理及其应用 趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣:常利用业余时间钻研数学.韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代生之父”历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提岀了一个45次的方程向各国数学家挑战.国王于是把这个问题交给韦达,韦达当即得岀一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)?消息传开,数学界为之震惊.同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达左理,你能利用韦达泄理解决下而的问题吗?已知:①0+2“一1=0,②夕一2沪一1=0日1 一c/HO.求(严a 的值。 解析由①知1 + 2丄一丄=0? a cr 即(丄尸+2丄一1 = 0,③a a 由②知(护)2一2沪一1=0,④ 由韦达泄理,得丄+ Z/=2丄,=一1 , a a ...严=[(* +町+ 乡「(2-1 严 62为一元二次方程2 -21-1 =0的两根。 点评本题的关键是构造一元二次方程X2-2A-1=0,利用韦达立理求解,难点是将①变形成③,易错点是忽视条件1 一ab2 #0,而把“,一夕看作方程/+加一1 =0的两根来求解. 知识延伸】 例1已知关于x的二次方程2x2+av-2z/+l= 0的两个实根的平方和为7丄,求“的值. 4 解析设方程的两实根为小,也,根据韦达泄理,有 一2“ +1 于是,Xj24-A22=(X14-X2)2-2.¥I%2

相关主题
文本预览
相关文档 最新文档