当前位置:文档之家› 基于小波多尺度边缘的图像归档和查询

基于小波多尺度边缘的图像归档和查询

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

第26卷第11期 2014年11月计算机辅助设计与图形学学报Journal of Computer ‐Aided Design &Computer Graphics Vol .26No .11Nov .2014 收稿日期:2013-09-02;修回日期:2014-02-17.基金项目:国家自然科学基金(61170155);上海市国际科技合作基金(09510700900);上海市科委(12510708400,11511503400).陈一民(1961—),男,博士,教授,博士生导师,CCF 高级会员,主要研究方向为增强现实、虚拟现实和机器人控制技术;姚 杰(1989—),男,硕士研究生,主要研究方向为增强现实、虚拟现实和计算机图形与图像处理.单幅图像多尺度小波深度提取算法 陈一民,姚 杰 (上海大学计算机工程与科学学院 上海 200072) (j ames 890220@y ahoo .com ) 摘要:针对浅景深图像中平滑前景区域深度提取误差大的问题,基于像素点分类思想对深度值进行修正,提出一种基于多尺度小波线索的、可同时面向单幅浅景深图像和广角图像的深度图提取算法.首先使用小波分析法在多个尺度下提取图像深度信息;然后提出自适应分类法并根据尺度与深度变化规律对像素点做深度修正,得到深度图;最后结合区域生长与边缘分割算法对深度图进行区域优化.为了加快深度计算,还提出了快速zerocount 法以及多尺度加速法来满足标清视频实时处理要求.实验结果证明,采用文中算法获得的深度图相对深度正确,前景和背景区域深度一致性好. 关键词:小波分析;多尺度;深度图;像素分类;区域生长 中图法分类号:T P 391.4 Depth Extraction Algorithm for Single Image Based on Multi ‐Scale Wavelet Chen Yimin and Yao Jie (School o f Com p uter En g ineering and Science Shan g hai Univ ersit y ,Shan g hai 200072) Abstract :Aiming at solving the problem of reducing the depth extraction error of smooth foreground in defocus image ,this work propose an algorithm to generate the depth map with a single 2D image based on multi ‐scale wavelet ,w hich can do depth correction by pixel classification techniques and is suitable for both defocus and wide angle images .Firstly ,a wavelet analysis method is used to extract depth maps from a single image at multiple scales .Secondly ,an adaptive pixel classification method is p roposed to do depth correction pixel by pixel according to the variation between scale and depth .T hirdly ,the depth map is optimized regionally using region growing integrate with edge segmentation techniques .In order to accelerate the depth calculation ,a fast zerocount method and a multi ‐scale segment method are presented ,w hich can meet the requirements of real ‐time video processing .Experiments demonstrate that the depth maps generated by our algorithm are not only visually correct but also regionally consistent in both foreground and background . Key words :wavelet analysis ;multi ‐scale ;depth map ;p ixel classification ;region grow 通过2D to 3D 技术将原有的2D 视频转换为可 以用于立体显示的3D 视频,是解决3D 影片片源稀 少的有效途径[1],该技术中的关键问题之一是如何从2D 图像中提取深度信息.2D 电影拍摄过程中大量存在2类图像:1)描绘全景有大幅背景的广角图像.Ma 等[2]提出一种基于消失点深度图特征分析的深度提取优化方法,但消失点位置的不确定性使得其应用受限.Jung 等[3]提出了基于相对高度线索估计深度信息的方法,但是相对高度线索将深度值按照图像底部近、图像顶部远的规律排列,使得输入图像受到限制.2)为了凸显主角而采用长聚焦拍 摄的浅景深图像.Zhuo 等[4]基于点扩散模型分析边 缘的模糊程度,并结合边缘分布概率分层估计相对 深度值.该方法对纹理和噪声有较强的鲁棒性,但由 于其主要依赖边缘信息,故不适用于前景纹理单一 或模糊的图像.Valencia 等[5]利用小波分析和基于

基于小波多尺度统计特征的图像分类 基于小波多尺度统计特征的图像分类 报告人:翟俊海 1. 小波变换 2. 图像分类问题现状 3. 小波多尺度统计特征抽取及图像分类 4. 实验比较 5. 下一步工作 6. 参考文献 报告内容 1. 小波变换 小波变换是强有力的时频分析(处理)工具,是在克服傅立叶变换缺点的基础上发展而来的.已成功应用于很多领域,如信号处理,图像处理,模式识别等. 小波变换的一个重要性质是它在时域和频域均具有很好的局部化特征,它能够提供目标信号各个频率子段的频率信息.这种信息对于信号分类是非常有用的. 小波变换一个信号为一个小波级数,这样一个信号可由小波系数来刻画. 1.1 一维小波变换(一维多尺度分析) 设有L2(R )空间的子空间序列: Vj 的正交基函数是由一个称为尺度函数的函数 (x)经伸缩平移得到的 设Wj 是Vj 相对于Vj+1的正交补空间, Wj 的正交基函数是由一个称为小波函数的函数 (x)经伸缩平移得到的 小波函数必须满足以下两个条件的函数: 小波必须是振荡的; 小波的振幅只能在一个很短的一段区间上非零,即是局部化的.如: 图1 小波例1 图2 小波例2 不是小波的例 图4 图3 构成Vj+1的正交基. 满足下列关系式(二尺度方程): 信号的多尺度分解: 1.2 二维小波变换(二维多尺度分析) 二维小波变换是由一维小波变换扩展而来的,二维尺度函数和二维小波函数可由一维尺度函数和小波函数张量积得到,即: 图像的二维小波变换包括沿行向(水平方向)和列向(垂直方向)滤波和2-下采样,如图所示: 图5 图像滤波采样 说明:如图所示,首先对原图像I(x,y)沿行向(水平方向)进行滤波和2-下采样,得到系数矩阵IL(x,y)和IH(x,y),然后再对IL(x,y)和IH(x,y)分别沿列向(垂直方向)滤波和2-下采样,最后得到一层小波分解的4个子图: ILL (x,y)—I(x,y)的(粗)逼近子图 IHL(x,y) — I(x,y)的水平方向细节子图

在众多的信号处理应用中,人们希望找到一种稀疏的数据表示,用稀疏逼近取代原始数据表示可从实质上降低信号处理的成本,提高压缩效率。传统的信号表示理论基于正交线性变换,但许多信号是各种自然现象的混合体,这些混合信号在单一的正交基变换中不能非常有效地表现出来。例如,一个含有脉冲和正弦波形的混合信号,既不能用单一的脉冲基函数,也不能用单一的正弦基函数有效地表示。在这个例子中,有两种结构类型同时出现在信号里,但它们却完全不同,其中哪一个都不能有效地模拟另一个。所以,人们希望寻找一种能够同时建立在两种基函数之上的信号表示,其结果应该比采用其中任一种基函数有效得多。 在图像和视频处理方面,常用的信号分解方式通常是非冗余的正交变换,例如离散余弦变换、小波变换等。离散余弦变换其基函数缺乏时间/空间分辨率,因而不能有效地提取具有时频局部化特性的信号特征。小波分析在处理一维和二维的具有点状奇异性的对象时,表现出良好的性能,但图像边缘的不连续性是按空间分布的,小波分析在处理这种线状奇异性时效果并不是很好。因而说,小波分析对于多维信号来说并不是最优的,不能稀疏地捕捉到图像结构的轮廓特征,因此在图像和多维编码方面的新突破,必定取决于信号表好似的深刻变革。 最近几年,研究人员在改变传统信号表示方面取得了很大的进展。新的信号表示理论的基本思想就是:基函数用称之为字典的超完备的冗余函数系统取代,字典的选择尽可能好地符合被逼近信号的结构,其构成可以没有任何限制,字典中的元素被称为原子。从字典中找到具有最佳线性组合的m项原子来表示一个信号,称作信号的稀疏逼近或高度非线性逼近。 从非线性逼近的角度来讲,高度非线性逼近包含两个层面:一是根据目标函数从一个给定的基库中挑选好的或最好的基;二是从这个好的基中拣选最好的m项组合。利用贪婪算法和自适应追踪,从一个冗余函数系统中进行m项逼近方法的理解只是些零星的片段,用高度非线性方法以指定的逼近速率来描述函数仍然是一个富有挑战的问题。 从基函数的形成来讲,在图像表示方面体现为多尺度几何分析,无论是曲波(curvelets)、带波(bandlets),还是仿形波(coutourlets),都要求基函数应具备下述特点:(i)多分辨率分析,(ii)时频定位能力,(iii)全角度分析(方向性),(iv)各向异性的尺度变换。这些新的冗余函数系统的不断涌现,使信号稀疏表示的方法更加成为研究的热点。 超完备信号稀疏表示方法肇始于20世纪90年代。1993年Mallat和Zhang首次提出了应用超完备冗余字典对信号进行稀疏分解的思想,并引入了匹配追踪(marching pursuit, MP)算法。在这篇文献中,作者用自然语言表述浅显的类比,说明超完备冗余字典对信号表示的必要性,同时强调字典的构成应较好地复合信号本身所固有的特性,以实现MP算法的自适应分解。 新思想的提出引起人们极大的关注,但由于算法所涉及的计算量十分繁重,因而早期研究的焦点集中在如何实现算法的快速计算,降低算法的复杂度,以及选择何种类型原子构造合适的字典两方面。这期间,许多音视频信号处理方面的实验都对MP算法作出了有利的支持,尤其在甚低码率视频编码方面,MP算法更显示出极大的优越性. 1999年Donoho等人又另辟蹊径,提出了基追踪(basis pursuit, BP)算法,并从实验的角度举证了MP,MOF,和BOB算法各自的优劣。稍后,又在2001年发表的另一篇重要文章中,给出了基于BP算法的稀疏表示具有唯一解的边界条件,并提出了字典的互不相干性的概念。 注:摘自《基于冗余字典的信号超完备表示与稀疏分解》

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

小波分析的发展历程 一、小波分析 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 (1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。 (2)优点:Haar小波变换具有最优的时(空)域分辨率。 (3)缺点:Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。 1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。1981年,Stromberg引入了Sobolev空间H p的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造L2(R)的规范正交基(即Meyer基),从而证明了正交小波系的存在。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。 1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。它标志着第一代小波的开始? (1)操作过程:先滤波,再进行抽二采样。 (2)优点:Mallat算法在小波分析中的地位相当于FFT在经典傅立叶分析中的地位。它是小波分析从纯理论走向实际应用。 (3)缺点:以傅立叶变换为基础,直接在时(空)域中设计滤波器比较困难,并且计算量大。 1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。 Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。 1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 (1)操作过程:利用两组互为对偶的尺度函数和小波函数实现函数的分解与重构。 (2)优点:具有正交小波无法同时满足的对称性、紧支撑、消失矩、正则性等性质。

20 第二章 小波多尺度边缘检测 §1 多尺度边缘检测的基本原理 大多数多尺边缘检测器都是在不同的尺度平滑信号,然后由其一阶或二阶导数检测锐变点,所谓尺度实际上是计算信号变化的范围。 平滑函数)(x θ:其积分等于1,且当±∞→x 时速降至零,例如高斯函数,平滑函数)(x θ的一阶、二阶导数分别为 22)()(,)()(dx x d x dx x d x b a θψθψ== (2·1) 显然,)(?)(?ωθωωψ j a =,)(?)()(?2ωθωωψj b =,由于1)0(?=θ故)0(?a ?和)0(?b ?均为零,从而)(?x a ψ 和)(?x b ψ都是满足允许条件的小波。 在本章以后的讨论中,)(x s ξ表示将)(x ξ按尺度s 伸缩的同时保持面积不变,即 )(1)(s x s x s ξξ? (2·2) 将小波变换定义为信号)(x f 与)(x a s ψ和)(x b s ψ的卷积积分,即 ?∞ ∞--=*=ττψτψd s x f s x f x f w a a s a s )()(1)()( (2·3) ?∞∞--=*=ττψτψd s x f s x f x f w b b s b s )()(1)()( (2·4) 由此可以导出如下重要结论 )()()(s s a s f dx d s dx d s f x f w θθ*=*= (2·5) )()()(222222s s b s f dx d s dx d s f x f w θθ*=*= (2·6) 由上列两式可以看到,边缘检测可以通过小波变换来实现,边缘实际上是一阶导数的极 值点,即二阶导数的过零点,也就是说,我们可以通过寻找)(x f w a s 的极值点或)(x f w b s 的过零点来确定边缘的位置,但是,下面我们将会看到,通过分析)(x f w a s 的极大值和尺 度s 的关系,进而确定边缘的性质,故寻找一阶导数的极值点较寻找二阶导数过零点的方法会获得更多关于边缘的信息。 为了定量地描述一个函数的奇异性,我们首先引入Lipschitz 指数的定义。

小波分析—时间序列的多时间尺度分析 一、问题引入 1.时间序列(Time Series ) 时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。在时间序列研究中,时域和频域是常用的两种基本形式。其中: 时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息; 频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。 然而,许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 2.多时间尺度 河流因受季节气候和流域地下地质因素的综合作用的影响,就会呈现出时间尺度从日、月到年,甚至到千万年的多时间尺度径流变化特征。推而广之,这个尺度分析,可以运用到对人文历史的认识,以及我们个人生活及人生的思考。 3.小波分析 产生:基于以往对于时间序列分析的各种缺点,融合多时间尺度的理念,小波分析在上世纪80年代应运而生,为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 优点: 相对于Fourier 分析:Fourier 分析只考虑时域和频域之间的一对一的映射,它以单个变量(时间或频率)的函数标示信号;小波分析则利用联合时间-尺度函数分析非平稳信号。 相对于时域分析:时域分析在时域平面上标示非平稳信号,小波分析描述非平稳信号虽然也在二维平面上,但不是在时域平面上,而是在所谓的时间尺度平面上,在小波分析中,人们可以在不同尺度上来观测信号这种对信号分析的多尺度观点是小波分析的基本特征。 应用范围: 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应用。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,突变点的监测和周期成分的识别以及多时间尺度的分析等。 二、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2 ∈ψ(有限能量空间)且满足: ?+∞ ∞-=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t (a )t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2)

基于B样条小波的图像边缘检测 周何,黄山,盛贤 (四川大学电气信息学院自动化系,成都市610065;) 摘要:研究图像边缘优化检测问题。针对图像边缘信息被噪声污染影响定位精度,经典的边缘检测方法Canny算法中的高斯平滑函数边缘定位精确度较低,导致图像缓变边缘信息丢失和假边缘的现象。在Canny最优边缘检测准则下,引入了渐进最优的B样条小波函数,采用小波变换应用于图像边缘检测中的基于模极大值的方法,并结合基于Kmeans聚类的自适应双阈值方法进行图像边缘检测。实验结果表明,改进的算法改善了噪声干扰情况下图像边缘提取效果,有效提高了边缘检测的准确性,得到较高的边缘检测图像质量。 关键词:边缘检测;小波变换;定位精度; 中图法分类号: TP391.4文献标识码: A Image edge detection based on B-spline wavelet ZHOU He,HUANG Shan,SHENG Xian (School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;) Abstract:In order to solve the low positioning accuracy of image edge detection by noise, make a research on optimization of image edge detection. The Gaussian smoothing function of Canny edge detection method, the classical algorithm, causes the missing of slowly varying edge and the producing of feigned edge and the edge detection is not accurate enough. So in the Canny criteria of optimum edge detection, the introduction of the asymptotically optimal B-spline wavelet function was put forward. The method of modulus maxima of wavelet transform and Kmeans clustering method determining its duel valves automatically was used in the edge detection experiments.The experiments proved that the new algorithm was in a higher accuracy, and improved the quality of the edge detection image. Keywords : edge detection; wavelet transform; positioning accuracy; 1 引言 传统的边缘检测Canny算法是将图像与高斯滤波器相卷积以获得平滑降噪的效果,其基本思想是在图像中找出具有局部最大梯度幅值的像素点,对边缘提取的大部分工作集中在寻找能够用于实际图像的梯度数学逼近。这种算法会造成原图像的过度光滑,缓变边缘丢失,定位精度较低,且计算量大、复杂、耗时[1]。 小波分析具有多尺度分析的特点,能较好的综合噪声抑制和边缘保持这两个特性。任意一个信号可表示成经伸缩和平移的n次B样条的加权和,即可完全由B样条系数来刻画。该系数中的分辨阶数越小对信号的平滑程度越小,边缘定位越精确,在对不同尺度下的逼近函数取一阶导数或者二阶导数时就获得了多尺度边缘提取。 本文充分利用边缘信息的多尺度特性和B 样条函数是同次样条函数空间中具有最小支撑的基底的这一特点,选取正交三次中心B样条 作为边缘提取时的平滑函数,再采用模极大值和Kmeans聚类的自适应双阈值的方法,提取出最终的边缘图像。此算法的原理与实现简单,且有较好的抗噪性能,并拥有比以Gauss函数为平滑函数的Canny算法更加出色的定位精度,提取出了更加精细的边缘,去除了虚假边缘。 2 B样条小波 在对Canny边缘检测算法的应用和研究中发现,Canny算法用Gauss函数作为滤波器,会使原图像过度光滑,缓变边缘丢失。由于Canny 算子不能直接进行Z变换,即找不到递推公式,从而只有用它进行卷积运算。但对于一个大的图像,计算时间很长。为此,在Canny最优边缘检测准则下,引入了渐进最优的B样条小波函数。 2.1 Canny边缘提取准则 John Canny于1986年在IEEE 上发表了自己的文章《A Computational Approach to Edge 1

小波在图像边缘检测中的应用(比较几种算法) 检测技术与自动化装置 梅峰 0911******** 图像边缘是描述图像最基本、最有意义的特征,故边缘检测是计算机视觉和图像处理领域最经典的研究课题之一,边缘检测的主要目的是对一图像灰度变化进行度量、检测和定位。边缘检测器的工作既要将高频信号从图像中分离出来,又要区分边缘和噪声,准确的标定边缘位置。小波被誉为“数学显微镜”,在时域和频域都有良好的局部特性,以平滑函数的一阶导数作为小波函数对图像进行小波变换,小波系数的模极大值即对应图像的边缘[1-3]。 经典的边缘检测方法有一阶导数极大值点算法(例如Robert 算子、Sobel 算了、Canny 算子),二阶导数零交叉点算法(例如LoG 算子)等等。新的边缘检测方法有数学形态学的方法、模糊算子法、神经网络法、小波分析法、遗传算法、动态规划法、分形理论法等等。 原理 设)(21,x x θ是二维平滑函数]0,[2121??≠x dx x x )(θ。把它沿x 1,x 2两个方向上的一阶导数作为两个基本小波: 1 2121) 1() ,(),(x x x x x ??= θψ (1) 2 2121) 2() ,(),(x x x x x ??= θψ (2) 再令:1 2121) 1(2 21) 1() ,(),( 1),(x x x a x a x a x x a a ??== θψψ (3) 2 2121) 2(2 21) 2(),(),( 1),(x x x a x a x a x x a a ??==θψψ (4) 其中),(),(2 121a x a x x x a θθ=,对任意二维函数f (x 1,x 2)∈L 2(R 2),其小波变 换有两个分量: 沿x1方向:)2 ,1() 1(**)2,1()2,1,()1(x x a x x f x x a f WT ψ = (5) 沿x2方向:)2 ,1() 2(**)2,1()2,1,() 2(x x a x x f x x a f WT ψ = (6) 其中**代表而为卷积,他的具体含义是: 212 211212 ),( ),(1 )2,1() (**)2,1(du du a u x a u x u u f a x x i a x x f --=?? ψψ,i=1或2。 (7) 小波分量可简记成矢量形式:

基于小波变换多尺度边缘检测分析 物体边缘通常存在于目标与背景、目标与目标、区域与区域之间。它能够勾画出物体的几何轮廓特征,能够传递多种信息,能够描述物体景象的重要特征,为人们描述或识别目标、解释图像提供有价值的、重要的特征参数。这些信息对人们进行高层次的处理(如图像滤波、特征描述、模式识别等)有着重要的影响。因此,图像边缘检测在图像处理中显得尤为重要和关键。自从1965年,人们提出图像边缘检测的概念至今,世界上有很多学者为图像边缘检测这个领域做了不少贡献。经典的边缘检测算法一般情况是基于图像像素的导数关系来进行边缘检测的,常见的经典边缘检测算法有Roberts算子、Prewitt算子、Laplacian算子、Sobel算子、Canny算子等,这些都是基于图像像素的一阶或二阶导数来检测边缘。一般情况下,在数字图像处理中,这些算法是基于方形模板。但这些边缘检测算子都是在一个尺度下对图像进行边缘检测,图像局部变化则不能很好的检测出来。小波分析的多分辨分析特性为边缘检测提供了一种新的方法,用小波变换对信号进行多分辨分析非常适合于提取信号的局部特征,在提取图像边缘的同时还可以有效地抑制噪声。因而,小波函数具有较强的去除噪声的能力,同时又具有完备边缘检测能力的多尺度边缘检测方法。目前,多尺度边缘检测在图像处理领域是一个比较新颖的课目,吸引着众多学者为之努力。多尺度边缘检测算法能够在不同尺度因子下对图像边缘检测,对各个尺度下的边缘检测结果进行一系列处理,根据不同的需要,综合各尺度因子的处理结果。通过把各个尺度因子下的信息融合之后,人们能够得到更加地符合要求的图像处理结果。本文以基于小波变换多尺度边缘检测分析为主轴,简要介绍小波变换和图像处理的基础理论;简要介绍小波变换单尺度边缘检测;接着介绍文章的重要内容:小波变换多尺度边缘检测算法。本文利用二维图像小波分解的多层细节来创造性地构造三种边缘检测方法:第一种方法是基于小波分解细节多尺度边缘检测;第二种方法是基于小波分解细节多尺度模极大值边缘检测;第三种方法是基于小波分解细节模极大值及数据融合多尺度边缘检测。这三种方法是一种逐渐逼近的关系,第二种方法是在第一种方法的基础上推导出来,第三种方法是在第二种方法的基础上推导出来,这样在思维上产生了一种连环套的作用。而且,本文将这三种算法的检测结果与经典的边缘检测算法Canny算法的检测结果进行了比较。通过本文分析结果,我们可以看出这三种方法的检测效果各有特色,并不是一种逐渐改善的关系,这三种方法对图像不同部分的检测效果不同,即对图像像素变化规律的反应不同。虽然,本文提出的小波变换多尺度边缘检测算法能够检测出更多的细节信息,但对一些强度变化比较平滑的部分则检测能力则表现得有点不足。 【关键词相关文档搜索】:计算数学; 小波变换; 多尺度; 边缘检测 【作者相关信息搜索】:成都理工大学;计算数学;卢玉蓉;何世文;

基于小波变换的多尺度图像边缘检测matlab源代码(在Matlab7.0下运行) clear all; load wbarb; I = ind2gray(X,map);imshow(I); I1 = imadjust(I,stretchlim(I),[0,1]);figure;imshow(I1); [N,M] = size(I); h = [0.125,0.375,0.375,0.125]; g = [0.5,-0.5]; delta = [1,0,0]; J = 3; a(1:N,1:M,1,1:J+1) = 0; dx(1:N,1:M,1,1:J+1) = 0; dy(1:N,1:M,1,1:J+1) = 0; d(1:N,1:M,1,1:J+1) = 0; a(:,:,1,1) = conv2(h,h,I,'same'); dx(:,:,1,1) = conv2(delta,g,I,'same'); dy(:,:,1,1) = conv2(g,delta,I,'same'); x = dx(:,:,1,1); y = dy(:,:,1,1); d(:,:,1,1) = sqrt(x.^2+y.^2); I1 = imadjust(d(:,:,1,1),stretchlim(d(:,:,1,1)),[0 1]);figure;imshow(I1); lh = length(h); lg = length(g); for j = 1:J+1 lhj = 2^j*(lh-1)+1; lgj = 2^j*(lg-1)+1; hj(1:lhj)=0; gj(1:lgj)=0; for n = 1:lh hj(2^j*(n-1)+1)=h(n); end for n = 1:lg gj(2^j*(n-1)+1)=g(n); end a(:,:,1,j+1) = conv2(hj,hj,a(:,:,1,j),'same'); dx(:,:,1,j+1) = conv2(delta,gj,a(:,:,1,j),'same'); dy(:,:,1,j+1) = conv2(gj,delta,a(:,:,1,j),'same'); x = dx(:,:,1,j+1); y = dy(:,:,1,j+1); dj(:,:,1,j+1) = sqrt(x.^2+y.^2); I1 = imadjust(dj(:,:,1,j+1),stretchlim(dj(:,:,1,j+1)),[0 1]);figure;imshow(I1); End

第24卷第2期 阜阳师范学院学报(自然科学版) V o l.24,N o.2 2007年6月 Journal of Fuyang T eachers Co llege(N atural Science) Jun.2007 基于小波变换的多尺度图像边缘检测 郦丹芸1,2,陶 亮1,詹小四2 (1.安徽大学计算机科学与技术学院,安徽合肥 230039;2.阜阳师范学院计算机系,安徽阜阳 236041) 摘 要:边缘作为图像的最主要特征,成为图像信息获取的重要内容.而小波变换具有检测局域突变的能力,而且可以结合多尺度信息进行检测,因此成为图像信息边缘检测的优良工具.文章首先构造了高斯多尺度边界检测算子,然后根据信号边界与噪声边界的小波变换模值跨尺度传递的不同特性,讨论了不同尺度的检测算子检测的边缘所具有的特点,在此基础上提出由边缘传递、继承和生长构成的多尺度边缘关联融合算法.实验结果说明这种特征提取方法不仅有效地降低了噪声,而且融合的边界比较完整,定位准确. 关键词:图像处理;边缘检测;多尺度小波分析;小波 中图分类号:T P391 文献标识码:A 文章编号:100424329(2007)022******* 在图像中,边缘是指其周围像素灰度有阶跃变化或屋顶变化的像素的集合.边缘是图像的基本特征之一,.因此,边缘提取与检测在图像处理中占有很重要的地位.传统的边缘检测方法基于空间运算,借助空域微分算子进行,通过将算子模板与图像进行卷积合成,根据模板的大小和元素值的不同有不同的微分算子,如Robert算子、Sobel算子、P rew itt算子、LO G 算子、Canny算子等,这些算子虽然易于实现、具有较好的实时性,但由于边缘检测问题固有的复杂性,使这些方法在抗噪性能和边缘定位方面往往得不到满意的效果,这主要是因为边缘和噪声都是高频信号,很难在噪声和边缘中作取舍[1]. 1983年W itk in提出尺度空间的思想,对边缘检测中的多尺度多分辨的思想进行了深入、直接的研究.1992年M allat提出小波变换多尺度边缘检测方法,并将小波边缘检测方法与LO G算子及Canny 最优检测算子在小波意义下统一起来,更加明确地表达了多尺度的思想在边缘检测中的重要意义[2].然而,边缘检测的不确定性指出边缘检测算子的抑噪能力和定位精度是一对矛盾,小尺度算子有利于边缘定位,但对噪声极为敏感;大尺度算子抑噪能力强,但边缘定位精度差,甚至会丢失某些局部细节.因此,固定尺度的边缘检测算子难以兼顾良好的边界定位,噪声抑制和弱边界检测等性能指标. M arr[3]从神经生理学和心理物理学出发,指出人的视觉前期处理中有多个分辨率的边缘算子在对图像作卷积,各边缘检测算子输出的组合能提高定位精度,减少噪声干扰.由于小波变换具有良好的时频局域化特性及多尺度分析能力,本文根据多尺度分析构造多尺度边缘检测算子,通过多尺度边缘融合,实现图像边缘的检测. 1 多尺度图像边缘提取算法 在文献[4]中,Young R.A从人类视觉的生理特性和数学形式上分析,指出一个高斯平滑函数叠加一个高斯函数的二阶导数能够更加精确的模拟人类的视觉特性,即能更好地强化边缘并准确定位. 1.1 设计多尺度离散掩模算子 高斯函数的一阶导数满足允许小波函数的定义[5],利用高斯函数构造小波边缘检测算子.设Η(x, y)为均值为0,方差Ρ2的高斯函数,Ηs(x,y)= 1 s2 Η(x s ,y s )为Η(x,y)的尺度变换函数,s为伸缩因子,则71s(x,y)=s 5Ηs 5x,72s(x,y)=s 5Ηs 5y为尺度上s 收稿日期:2007204208 基金项目:安徽省高校青年教师“资助计划”项目(2007jql145) 作者简介:郦丹芸(1976-),女,硕士研究生,讲师.研究方向:图像处理.

相关主题
文本预览
相关文档 最新文档