当前位置:文档之家› 小波和多尺度简介

小波和多尺度简介

小波和多尺度简介
小波和多尺度简介

在众多的信号处理应用中,人们希望找到一种稀疏的数据表示,用稀疏逼近取代原始数据表示可从实质上降低信号处理的成本,提高压缩效率。传统的信号表示理论基于正交线性变换,但许多信号是各种自然现象的混合体,这些混合信号在单一的正交基变换中不能非常有效地表现出来。例如,一个含有脉冲和正弦波形的混合信号,既不能用单一的脉冲基函数,也不能用单一的正弦基函数有效地表示。在这个例子中,有两种结构类型同时出现在信号里,但它们却完全不同,其中哪一个都不能有效地模拟另一个。所以,人们希望寻找一种能够同时建立在两种基函数之上的信号表示,其结果应该比采用其中任一种基函数有效得多。

在图像和视频处理方面,常用的信号分解方式通常是非冗余的正交变换,例如离散余弦变换、小波变换等。离散余弦变换其基函数缺乏时间/空间分辨率,因而不能有效地提取具有时频局部化特性的信号特征。小波分析在处理一维和二维的具有点状奇异性的对象时,表现出良好的性能,但图像边缘的不连续性是按空间分布的,小波分析在处理这种线状奇异性时效果并不是很好。因而说,小波分析对于多维信号来说并不是最优的,不能稀疏地捕捉到图像结构的轮廓特征,因此在图像和多维编码方面的新突破,必定取决于信号表好似的深刻变革。

最近几年,研究人员在改变传统信号表示方面取得了很大的进展。新的信号表示理论的基本思想就是:基函数用称之为字典的超完备的冗余函数系统取代,字典的选择尽可能好地符合被逼近信号的结构,其构成可以没有任何限制,字典中的元素被称为原子。从字典中找到具有最佳线性组合的m项原子来表示一个信号,称作信号的稀疏逼近或高度非线性逼近。

从非线性逼近的角度来讲,高度非线性逼近包含两个层面:一是根据目标函数从一个给定的基库中挑选好的或最好的基;二是从这个好的基中拣选最好的m项组合。利用贪婪算法和自适应追踪,从一个冗余函数系统中进行m项逼近方法的理解只是些零星的片段,用高度非线性方法以指定的逼近速率来描述函数仍然是一个富有挑战的问题。

从基函数的形成来讲,在图像表示方面体现为多尺度几何分析,无论是曲波(curvelets)、带波(bandlets),还是仿形波(coutourlets),都要求基函数应具备下述特点:(i)多分辨率分析,(ii)时频定位能力,(iii)全角度分析(方向性),(iv)各向异性的尺度变换。这些新的冗余函数系统的不断涌现,使信号稀疏表示的方法更加成为研究的热点。

超完备信号稀疏表示方法肇始于20世纪90年代。1993年Mallat和Zhang首次提出了应用超完备冗余字典对信号进行稀疏分解的思想,并引入了匹配追踪(marching pursuit, MP)算法。在这篇文献中,作者用自然语言表述浅显的类比,说明超完备冗余字典对信号表示的必要性,同时强调字典的构成应较好地复合信号本身所固有的特性,以实现MP算法的自适应分解。

新思想的提出引起人们极大的关注,但由于算法所涉及的计算量十分繁重,因而早期研究的焦点集中在如何实现算法的快速计算,降低算法的复杂度,以及选择何种类型原子构造合适的字典两方面。这期间,许多音视频信号处理方面的实验都对MP算法作出了有利的支持,尤其在甚低码率视频编码方面,MP算法更显示出极大的优越性.

1999年Donoho等人又另辟蹊径,提出了基追踪(basis pursuit, BP)算法,并从实验的角度举证了MP,MOF,和BOB算法各自的优劣。稍后,又在2001年发表的另一篇重要文章中,给出了基于BP算法的稀疏表示具有唯一解的边界条件,并提出了字典的互不相干性的概念。

注:摘自《基于冗余字典的信号超完备表示与稀疏分解》

自1807年Fourier 提出任意一个周期为2π的函数都可以表示成一系列三角函数的代数和,到今天蓬勃发展的小波分析,科学家们的研究目的是对不同的函数空间提供一种直接、简便的分析方式,即寻求函数在某一特定空间下,在某种基下的最优逼近。逼近的误差体现了用此基表示函数的稀疏程度或是分解系数的能量集中程度。

Fourier分析的思想是将函数表示为具有不同频率的谐波函数的线性叠加,即将函数用一簇三角基展开,将原函数在时域中的讨论转换为对这个叠加权系数的讨论,即Fourier 变换在频域中的研究。这种三角体系展开方式的局限性促使人们去寻找其他的正交体系——小波分析。小波分析的地位在数学界是独一无二的,它较精确的时频定位特性,成为处理非平稳信号的有利工具;也证明了小波分析比Fourier 分析更能稀疏地表示一段分段光滑或有界变差函数。这是小波分析成功的一个关键原因。但是,由于张量积小波只具有有限方向数,它主要适合表示一维奇异性的对象,当它在处理二维或更高维奇异性时,就显得无能为力。小波在表示这些函数时并不是最优的或者最稀疏的表示方法。

为了更好地处理高维奇异性,一类带有方向性的稀疏表示方法——多尺度几何分析应运而生。它的产生符合人类视觉皮层对图像有效表示的要求,即局部性、方向性和多尺度性。它的目的就是为具有面奇异或线奇异的高维函数找到最优或最稀疏的表示方法。目前,已有的多尺度几何分析方法有Emmanuel J Candès等人提出的脊波变换(ridgelet transform)、单尺度脊波变换(monoscale ridgelet transform)、curvelet变换(curvelet transform),E. Le Pennec等人提出的bandelet变换,以及M.N.Do 等人提出的contourlet变换。另外,还有一些多尺度分析方法,如David Donoho 提出的wedgelet、beamlet等。本文根据以上方法出现的时间顺序来讨论其逼近性能的异同。在图像处理方面,图像的稀疏表示在对图像数据的存储、传输中得到了广泛的应用。由于余弦基和小波基能够用较少的系数达到图像较精确的非线性逼近,成为图像稀疏表示的重要方法。如今,多尺度几何分析的出现,又为图像的稀疏表示提供了一个全新而又有效的方法。

1奇异性分析

本文称无限次可导的函数是光滑的或没有奇异性的。若函数在某处有间断或某阶导数不连续,则称该函数在此处有奇异性。图像的奇异性或非正则结构通常包含了图像的本质信息。例如图像亮度的不连续性表示景物中的边缘部分,这是认识图中最重要的部分。图像的奇异性是常见的,也是重要的。在自然界中光滑物体的边界往往体现为沿光滑曲线的奇异性,并不仅是点的奇异性。在数学上,通常用Lipschitz指数刻画信号的奇异性大小[8]。

3多尺度几何分析

3.1脊波变换

脊波理论的基本框架是由E.J Candès 建立,并与D.L.Donoho等人在其后续工作中[12]逐步拓展和完善。脊波变换是一种非自适应的高维函数表示方法,对含

直线奇异的多变量函数能够达到最优的逼近阶。脊波理论的提出在多尺度几何分析史上产生了深远的影响,具有不可估量的价值。脊波变换的核心主要是经过radon变换把线状奇异性变换成点状奇异性。小波变换能有效地处理在radon域的点状奇异性。其本质就是通过对小波基函数添加一个表征方向的参数得到的,所以它不但与小波一样有局部时频分析的能力,还具有很强的方向选择和辨识能力,可以非常有效地表示信号中具有方向性的奇异特征。这是小波方法所不能得到的。

3.1.2数字脊波的实现

在实际应用中,脊波变换的离散化及其算法实现是一个具有挑战性的问题。由于脊波的径向性质,对连续公式直接离散实现时要在极坐标中进行插值。这样的变换结果或者是冗余的,或者不能完全重构。脊波变换数字实现的优劣很大程度上取决于其中radon变换数字实现的重构精度。为此,人们提出了各种各样的方法,大体上可分为在Fourier域利用投影切片定理的方法[13~15]、多尺度方法[16,17]和代数方法[18]三类。近似脊波变换建立在所谓的伪极坐标网格基础上。首先对n×n的离散点列作二维FFT,并对得到的包含n×n个点的频域点列作径向划分;然后估计各个径向直线方向上n个数据点的值。在每个径向方向都有n个节点,再对这n个点列作一维IFFT,从而得到对应于图像域的2n 2个点列,对这些点列作均匀化插值和重组就得到一次radon变换的结果。根据图1即可实现脊波变换[19]。但其有两点不足:在实现频率平面中直角坐标向极坐标变换的过程中引入误差是明显的;它具有总数为四倍的数据冗余性。因此这种脊波变换不适合图像编码压缩。

M.N.Donoho等人[20]提出另一种数字脊波实现方法,称为有限脊波变换(FRIT)。首先用有限radon变换将一幅图像变换到FRAT域中,再对每一个投影序列进行离散小波变换(DWT),r k[0],r k,…,r k[p-1]。其中方向k是固定的。这种方法可以同时做到可逆性与非冗余性,并且是完全重构的。但由于有限脊波变换是基于有限radon变换构造的,有限radon变换在表达直线时有折叠效应,有限脊波变换在几何上不是真实的。

Donoho和Flesia[21]为了克服有限脊波变换的折叠效应,构造了一种数字脊波变换。它能用真实的脊函数进行分解和合成,并且具有精确重构和框架性质。这种脊波变换采用的radon变换,称做fast slant stack[13]。首先进行fast slant stack运算,然后进行二维快速小波变换。这种构造使得离散物体(离散脊波、离散radon变换、离散伪极坐标Fourier域)具有与连续脊波理论平行的内在联系(脊波、radon变换、极坐标Fourier域)。 Donoho构造的脊波变换在几何上是真实的,即在此处radon变换的确是沿直线积分的,从而避免了折叠效应。在创建系数矩阵时,它将一个n×n的矩阵变换为2n×2n的矩阵,因此冗余因子为4。这在一定程度上影响了运算速度。这种脊波变换在实现上的缺点是正交脊波系数衰减速度相对较慢。

3.1.3脊波逼近能力

定理4设f是C r的函数,沿某一直线是不连续的,除此之外均为r阶连续。从脊波级数中选取对应于前M个最大系数的项,对f所作的非线性逼近误差为即逼近误差显示似乎不存在间断,这个结果对任意r阶光滑都是成立的。该方法的显著特点是无须知道间断的位置。类似地,一维小波变换也无须先验地知道点奇异的位置。因而对于具有直线奇异的函数,脊波的表示是最优的。

3.1.4小结与展望

从上面的分析可知,脊波在分析直线奇异的分段光滑的高维函数方面是优秀的[36],脊波已经成功应用于数学中的函数逼近、信号检测、特征提取、目标识别,以及图像恢复、去噪、增强等方面。在脊波分析的框架下,结合二进小波变换的局部脊波变换,用于检测直线的方法,应用于方向性较强的图像获得了良好的检测效果。但是必须看到,对于自然物体而言,奇异的边界是曲线的,经过radon 变换后仍然为曲线,而小波对曲线不具备稀疏表示的能力。因此脊波不能够处理曲线奇异的高维函数。另外,脊波的数字化实现仍然是一个有待进一步提高的问题。如何很好地解决冗余度和精度,提高运算速度,是制约着脊波走向广泛应用的主要因素。

http://www. math. ucdavis. edu/%

7Evershynin/ papers/ROMP-stability.pdf.

时间序列的小波分析及等值线图小波方差制作

时间序列得小波分析 时间序列(Time Series)就是地学研究中经常遇到得问题。在时间序列研究中,时域与频域就是常用得两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化得更多信息;频域分析(如Fourier变换)虽具有准确得频率定位功能,但仅适合平稳时间序列分析、然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间得变化往往受到多种因素得综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列得研究,通常需要某一频段对应得时间信息,或某一时段得频域信息、显然,时域分析与频域分析对此均无能为力。 20世纪80年代初,由Morlet提出得一种具有时-频多分辨功能得小波分析(Wavelet Analysis)为更好得研究时间序列问题提供了可能,它能清晰得揭示出隐藏在时间序列中得多种变化周期,充分反映系统在不同时间尺度中得变化趋势,并能对系统未来发展趋势进行定性估计。 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析与大气科学等众多得非线性科学领域内得到了广泛得应。在时间序列研究中,小波分析主要用于时间序列得消噪与滤波,信息量系数与分形维数得计算,突变点得监测与周期成分得识别以及多时间尺度得分析等。 一、小波分析基本原理 1. 小波函数 小波分析得基本思想就是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数就是小波分析得关键,它就是指具有震荡性、能够迅速衰减到零得一类函数,即小波函数且满足: (1) 式中,为基小波函数,它可通过尺度得伸缩与时间轴上得平移构成一簇函数系: 其中, (2) 式中,为子小波;a为尺度因子,反映小波得周期长度;b为平移因子,反应时间上得平移。 需要说明得就是,选择合适得基小波函数就是进行小波分析得前提。在实际应用研究中,应针对具体情况选择所需得基小波函数;同一信号或时间序列,若选择不同得基小波函数,所得得结果往往会有所差异,有时甚至差异很大。目前,主要就是通过对比不同小波分析处理信号时所得得结果与理论结果得误差来判定基小波函数得好坏,并由此选定该类研究所需得基小波函数。 2. 小波变换 若就是由(2)式给出得子小波,对于给定得能量有限信号,其连续小波变换(Continue Wavelet Transform,简写为CWT)为: (3) 式中,为小波变换系数;f(t)为一个信号或平方可积函数;a为伸缩尺度;b平移参数;为得复共轭函数。地学中观测到得时间序列数据大多就是离散得,设函数,(k=1,2,…,N; 为取样间隔),则式(3)得离散小波变换形式为: (4) 由式(3)或(4)可知小波分析得基本原理,即通过增加或减小伸缩尺度a来得到信号得低频或高频信息,然后分析信号得概貌或细节,实现对信号不同时间尺度与空间局部特征得分析。 实际研究中,最主要得就就是要由小波变换方程得到小波系数,然后通过这些系数来分析时间序列得时频变化特征、 3、小波方差 将小波系数得平方值在b域上积分,就可得到小波方差,即 (5)

单幅图像多尺度小波深度提取算法

第26卷第11期 2014年11月计算机辅助设计与图形学学报Journal of Computer ‐Aided Design &Computer Graphics Vol .26No .11Nov .2014 收稿日期:2013-09-02;修回日期:2014-02-17.基金项目:国家自然科学基金(61170155);上海市国际科技合作基金(09510700900);上海市科委(12510708400,11511503400).陈一民(1961—),男,博士,教授,博士生导师,CCF 高级会员,主要研究方向为增强现实、虚拟现实和机器人控制技术;姚 杰(1989—),男,硕士研究生,主要研究方向为增强现实、虚拟现实和计算机图形与图像处理.单幅图像多尺度小波深度提取算法 陈一民,姚 杰 (上海大学计算机工程与科学学院 上海 200072) (j ames 890220@y ahoo .com ) 摘要:针对浅景深图像中平滑前景区域深度提取误差大的问题,基于像素点分类思想对深度值进行修正,提出一种基于多尺度小波线索的、可同时面向单幅浅景深图像和广角图像的深度图提取算法.首先使用小波分析法在多个尺度下提取图像深度信息;然后提出自适应分类法并根据尺度与深度变化规律对像素点做深度修正,得到深度图;最后结合区域生长与边缘分割算法对深度图进行区域优化.为了加快深度计算,还提出了快速zerocount 法以及多尺度加速法来满足标清视频实时处理要求.实验结果证明,采用文中算法获得的深度图相对深度正确,前景和背景区域深度一致性好. 关键词:小波分析;多尺度;深度图;像素分类;区域生长 中图法分类号:T P 391.4 Depth Extraction Algorithm for Single Image Based on Multi ‐Scale Wavelet Chen Yimin and Yao Jie (School o f Com p uter En g ineering and Science Shan g hai Univ ersit y ,Shan g hai 200072) Abstract :Aiming at solving the problem of reducing the depth extraction error of smooth foreground in defocus image ,this work propose an algorithm to generate the depth map with a single 2D image based on multi ‐scale wavelet ,w hich can do depth correction by pixel classification techniques and is suitable for both defocus and wide angle images .Firstly ,a wavelet analysis method is used to extract depth maps from a single image at multiple scales .Secondly ,an adaptive pixel classification method is p roposed to do depth correction pixel by pixel according to the variation between scale and depth .T hirdly ,the depth map is optimized regionally using region growing integrate with edge segmentation techniques .In order to accelerate the depth calculation ,a fast zerocount method and a multi ‐scale segment method are presented ,w hich can meet the requirements of real ‐time video processing .Experiments demonstrate that the depth maps generated by our algorithm are not only visually correct but also regionally consistent in both foreground and background . Key words :wavelet analysis ;multi ‐scale ;depth map ;p ixel classification ;region grow 通过2D to 3D 技术将原有的2D 视频转换为可 以用于立体显示的3D 视频,是解决3D 影片片源稀 少的有效途径[1],该技术中的关键问题之一是如何从2D 图像中提取深度信息.2D 电影拍摄过程中大量存在2类图像:1)描绘全景有大幅背景的广角图像.Ma 等[2]提出一种基于消失点深度图特征分析的深度提取优化方法,但消失点位置的不确定性使得其应用受限.Jung 等[3]提出了基于相对高度线索估计深度信息的方法,但是相对高度线索将深度值按照图像底部近、图像顶部远的规律排列,使得输入图像受到限制.2)为了凸显主角而采用长聚焦拍 摄的浅景深图像.Zhuo 等[4]基于点扩散模型分析边 缘的模糊程度,并结合边缘分布概率分层估计相对 深度值.该方法对纹理和噪声有较强的鲁棒性,但由 于其主要依赖边缘信息,故不适用于前景纹理单一 或模糊的图像.Valencia 等[5]利用小波分析和基于

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

基于小波多尺度统计特征的图像分类解读

基于小波多尺度统计特征的图像分类 基于小波多尺度统计特征的图像分类 报告人:翟俊海 1. 小波变换 2. 图像分类问题现状 3. 小波多尺度统计特征抽取及图像分类 4. 实验比较 5. 下一步工作 6. 参考文献 报告内容 1. 小波变换 小波变换是强有力的时频分析(处理)工具,是在克服傅立叶变换缺点的基础上发展而来的.已成功应用于很多领域,如信号处理,图像处理,模式识别等. 小波变换的一个重要性质是它在时域和频域均具有很好的局部化特征,它能够提供目标信号各个频率子段的频率信息.这种信息对于信号分类是非常有用的. 小波变换一个信号为一个小波级数,这样一个信号可由小波系数来刻画. 1.1 一维小波变换(一维多尺度分析) 设有L2(R )空间的子空间序列: Vj 的正交基函数是由一个称为尺度函数的函数 (x)经伸缩平移得到的 设Wj 是Vj 相对于Vj+1的正交补空间, Wj 的正交基函数是由一个称为小波函数的函数 (x)经伸缩平移得到的 小波函数必须满足以下两个条件的函数: 小波必须是振荡的; 小波的振幅只能在一个很短的一段区间上非零,即是局部化的.如: 图1 小波例1 图2 小波例2 不是小波的例 图4 图3 构成Vj+1的正交基. 满足下列关系式(二尺度方程): 信号的多尺度分解: 1.2 二维小波变换(二维多尺度分析) 二维小波变换是由一维小波变换扩展而来的,二维尺度函数和二维小波函数可由一维尺度函数和小波函数张量积得到,即: 图像的二维小波变换包括沿行向(水平方向)和列向(垂直方向)滤波和2-下采样,如图所示: 图5 图像滤波采样 说明:如图所示,首先对原图像I(x,y)沿行向(水平方向)进行滤波和2-下采样,得到系数矩阵IL(x,y)和IH(x,y),然后再对IL(x,y)和IH(x,y)分别沿列向(垂直方向)滤波和2-下采样,最后得到一层小波分解的4个子图: ILL (x,y)—I(x,y)的(粗)逼近子图 IHL(x,y) — I(x,y)的水平方向细节子图

时间序列的小波分析

时间序列的小波分析 时间序列(Time Series )是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。 一、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2 ∈ψ且满足: ? +∞ ∞ -=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t ( a )t (2 /1b ,a -=-ψψ 其中, 0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。 需要说明的是,选择合适的基小波函数是进行小波分析的前提。在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。 2. 小波变换 若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2 ∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为: dt )a b t ( f(t)a )b ,a (W R 2 /1-f ?-= (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数;) a b x (-ψ为)a b x (-ψ的复共轭函数。 地学中观测到的时间序列数据大多是离散的,设函数)t k (f ?,(k=1,2,…,N; t ?

小波和多尺度简介

在众多的信号处理应用中,人们希望找到一种稀疏的数据表示,用稀疏逼近取代原始数据表示可从实质上降低信号处理的成本,提高压缩效率。传统的信号表示理论基于正交线性变换,但许多信号是各种自然现象的混合体,这些混合信号在单一的正交基变换中不能非常有效地表现出来。例如,一个含有脉冲和正弦波形的混合信号,既不能用单一的脉冲基函数,也不能用单一的正弦基函数有效地表示。在这个例子中,有两种结构类型同时出现在信号里,但它们却完全不同,其中哪一个都不能有效地模拟另一个。所以,人们希望寻找一种能够同时建立在两种基函数之上的信号表示,其结果应该比采用其中任一种基函数有效得多。 在图像和视频处理方面,常用的信号分解方式通常是非冗余的正交变换,例如离散余弦变换、小波变换等。离散余弦变换其基函数缺乏时间/空间分辨率,因而不能有效地提取具有时频局部化特性的信号特征。小波分析在处理一维和二维的具有点状奇异性的对象时,表现出良好的性能,但图像边缘的不连续性是按空间分布的,小波分析在处理这种线状奇异性时效果并不是很好。因而说,小波分析对于多维信号来说并不是最优的,不能稀疏地捕捉到图像结构的轮廓特征,因此在图像和多维编码方面的新突破,必定取决于信号表好似的深刻变革。 最近几年,研究人员在改变传统信号表示方面取得了很大的进展。新的信号表示理论的基本思想就是:基函数用称之为字典的超完备的冗余函数系统取代,字典的选择尽可能好地符合被逼近信号的结构,其构成可以没有任何限制,字典中的元素被称为原子。从字典中找到具有最佳线性组合的m项原子来表示一个信号,称作信号的稀疏逼近或高度非线性逼近。 从非线性逼近的角度来讲,高度非线性逼近包含两个层面:一是根据目标函数从一个给定的基库中挑选好的或最好的基;二是从这个好的基中拣选最好的m项组合。利用贪婪算法和自适应追踪,从一个冗余函数系统中进行m项逼近方法的理解只是些零星的片段,用高度非线性方法以指定的逼近速率来描述函数仍然是一个富有挑战的问题。 从基函数的形成来讲,在图像表示方面体现为多尺度几何分析,无论是曲波(curvelets)、带波(bandlets),还是仿形波(coutourlets),都要求基函数应具备下述特点:(i)多分辨率分析,(ii)时频定位能力,(iii)全角度分析(方向性),(iv)各向异性的尺度变换。这些新的冗余函数系统的不断涌现,使信号稀疏表示的方法更加成为研究的热点。 超完备信号稀疏表示方法肇始于20世纪90年代。1993年Mallat和Zhang首次提出了应用超完备冗余字典对信号进行稀疏分解的思想,并引入了匹配追踪(marching pursuit, MP)算法。在这篇文献中,作者用自然语言表述浅显的类比,说明超完备冗余字典对信号表示的必要性,同时强调字典的构成应较好地复合信号本身所固有的特性,以实现MP算法的自适应分解。 新思想的提出引起人们极大的关注,但由于算法所涉及的计算量十分繁重,因而早期研究的焦点集中在如何实现算法的快速计算,降低算法的复杂度,以及选择何种类型原子构造合适的字典两方面。这期间,许多音视频信号处理方面的实验都对MP算法作出了有利的支持,尤其在甚低码率视频编码方面,MP算法更显示出极大的优越性. 1999年Donoho等人又另辟蹊径,提出了基追踪(basis pursuit, BP)算法,并从实验的角度举证了MP,MOF,和BOB算法各自的优劣。稍后,又在2001年发表的另一篇重要文章中,给出了基于BP算法的稀疏表示具有唯一解的边界条件,并提出了字典的互不相干性的概念。 注:摘自《基于冗余字典的信号超完备表示与稀疏分解》

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

matlab时间序列的多时间尺度小波分析

小波分析—时间序列的多时间尺度分析 一、问题引入 1.时间序列(Time Series ) 时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。在时间序列研究中,时域和频域是常用的两种基本形式。其中: 时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息; 频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。 然而,许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 2.多时间尺度 河流因受季节气候和流域地下地质因素的综合作用的影响,就会呈现出时间尺度从日、月到年,甚至到千万年的多时间尺度径流变化特征。推而广之,这个尺度分析,可以运用到对人文历史的认识,以及我们个人生活及人生的思考。 3.小波分析 产生:基于以往对于时间序列分析的各种缺点,融合多时间尺度的理念,小波分析在上世纪80年代应运而生,为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 优点: 相对于Fourier 分析:Fourier 分析只考虑时域和频域之间的一对一的映射,它以单个变量(时间或频率)的函数标示信号;小波分析则利用联合时间-尺度函数分析非平稳信号。 相对于时域分析:时域分析在时域平面上标示非平稳信号,小波分析描述非平稳信号虽然也在二维平面上,但不是在时域平面上,而是在所谓的时间尺度平面上,在小波分析中,人们可以在不同尺度上来观测信号这种对信号分析的多尺度观点是小波分析的基本特征。 应用范围: 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应用。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,突变点的监测和周期成分的识别以及多时间尺度的分析等。 二、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2 ∈ψ(有限能量空间)且满足: ?+∞ ∞-=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t (a )t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2)

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

小波多尺度边缘检测

20 第二章 小波多尺度边缘检测 §1 多尺度边缘检测的基本原理 大多数多尺边缘检测器都是在不同的尺度平滑信号,然后由其一阶或二阶导数检测锐变点,所谓尺度实际上是计算信号变化的范围。 平滑函数)(x θ:其积分等于1,且当±∞→x 时速降至零,例如高斯函数,平滑函数)(x θ的一阶、二阶导数分别为 22)()(,)()(dx x d x dx x d x b a θψθψ== (2·1) 显然,)(?)(?ωθωωψ j a =,)(?)()(?2ωθωωψj b =,由于1)0(?=θ故)0(?a ?和)0(?b ?均为零,从而)(?x a ψ 和)(?x b ψ都是满足允许条件的小波。 在本章以后的讨论中,)(x s ξ表示将)(x ξ按尺度s 伸缩的同时保持面积不变,即 )(1)(s x s x s ξξ? (2·2) 将小波变换定义为信号)(x f 与)(x a s ψ和)(x b s ψ的卷积积分,即 ?∞ ∞--=*=ττψτψd s x f s x f x f w a a s a s )()(1)()( (2·3) ?∞∞--=*=ττψτψd s x f s x f x f w b b s b s )()(1)()( (2·4) 由此可以导出如下重要结论 )()()(s s a s f dx d s dx d s f x f w θθ*=*= (2·5) )()()(222222s s b s f dx d s dx d s f x f w θθ*=*= (2·6) 由上列两式可以看到,边缘检测可以通过小波变换来实现,边缘实际上是一阶导数的极 值点,即二阶导数的过零点,也就是说,我们可以通过寻找)(x f w a s 的极值点或)(x f w b s 的过零点来确定边缘的位置,但是,下面我们将会看到,通过分析)(x f w a s 的极大值和尺 度s 的关系,进而确定边缘的性质,故寻找一阶导数的极值点较寻找二阶导数过零点的方法会获得更多关于边缘的信息。 为了定量地描述一个函数的奇异性,我们首先引入Lipschitz 指数的定义。

小波分析-经典解读

时间序列-小波分析 时间序列(Time Series )是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。 一、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足: ? +∞ ∞ -=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t ( a )t (2 /1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。 需要说明的是,选择合适的基小波函数是进行小波分析的前提。在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。 2. 小波变换 若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2 ∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为: dt )a b t ( f (t)a )b ,a (W R 2 /1-f ? -=ψ (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数; )a b x ( -ψ为)a b x (-ψ的复共轭函数。地学中观测到的时间序列数据大多是离散的,设函数)t k (f ?,

基于小波变换多尺度边缘检测分析解读

基于小波变换多尺度边缘检测分析 物体边缘通常存在于目标与背景、目标与目标、区域与区域之间。它能够勾画出物体的几何轮廓特征,能够传递多种信息,能够描述物体景象的重要特征,为人们描述或识别目标、解释图像提供有价值的、重要的特征参数。这些信息对人们进行高层次的处理(如图像滤波、特征描述、模式识别等)有着重要的影响。因此,图像边缘检测在图像处理中显得尤为重要和关键。自从1965年,人们提出图像边缘检测的概念至今,世界上有很多学者为图像边缘检测这个领域做了不少贡献。经典的边缘检测算法一般情况是基于图像像素的导数关系来进行边缘检测的,常见的经典边缘检测算法有Roberts算子、Prewitt算子、Laplacian算子、Sobel算子、Canny算子等,这些都是基于图像像素的一阶或二阶导数来检测边缘。一般情况下,在数字图像处理中,这些算法是基于方形模板。但这些边缘检测算子都是在一个尺度下对图像进行边缘检测,图像局部变化则不能很好的检测出来。小波分析的多分辨分析特性为边缘检测提供了一种新的方法,用小波变换对信号进行多分辨分析非常适合于提取信号的局部特征,在提取图像边缘的同时还可以有效地抑制噪声。因而,小波函数具有较强的去除噪声的能力,同时又具有完备边缘检测能力的多尺度边缘检测方法。目前,多尺度边缘检测在图像处理领域是一个比较新颖的课目,吸引着众多学者为之努力。多尺度边缘检测算法能够在不同尺度因子下对图像边缘检测,对各个尺度下的边缘检测结果进行一系列处理,根据不同的需要,综合各尺度因子的处理结果。通过把各个尺度因子下的信息融合之后,人们能够得到更加地符合要求的图像处理结果。本文以基于小波变换多尺度边缘检测分析为主轴,简要介绍小波变换和图像处理的基础理论;简要介绍小波变换单尺度边缘检测;接着介绍文章的重要内容:小波变换多尺度边缘检测算法。本文利用二维图像小波分解的多层细节来创造性地构造三种边缘检测方法:第一种方法是基于小波分解细节多尺度边缘检测;第二种方法是基于小波分解细节多尺度模极大值边缘检测;第三种方法是基于小波分解细节模极大值及数据融合多尺度边缘检测。这三种方法是一种逐渐逼近的关系,第二种方法是在第一种方法的基础上推导出来,第三种方法是在第二种方法的基础上推导出来,这样在思维上产生了一种连环套的作用。而且,本文将这三种算法的检测结果与经典的边缘检测算法Canny算法的检测结果进行了比较。通过本文分析结果,我们可以看出这三种方法的检测效果各有特色,并不是一种逐渐改善的关系,这三种方法对图像不同部分的检测效果不同,即对图像像素变化规律的反应不同。虽然,本文提出的小波变换多尺度边缘检测算法能够检测出更多的细节信息,但对一些强度变化比较平滑的部分则检测能力则表现得有点不足。 【关键词相关文档搜索】:计算数学; 小波变换; 多尺度; 边缘检测 【作者相关信息搜索】:成都理工大学;计算数学;卢玉蓉;何世文;

小波分析理论简介

小波分析理论简介 (一) 傅立叶变换伟大的历史贡献及其局限性 1 Fourier 变换 1807年,由当年随拿破仑远征埃及的法国数学、物理学家傅立叶(Jean Baptistle Joseph Fourier ,1786-1830),提出任意一个周期为T (=π2)的函数 )(t f ,都可以用三角级数表示: )(t f = ∑∞ -∞=k ikt k e C = 20 a + ∑∞=1cos k k kt a + ∑∞ =1 sin k k kt b (1) k C = π 21 ? -π 20 )(dt e t f ikt = * ikt e f , (2) k k k C C a -+= )(k k k C C i b --= (3) 对于离散的时程 )(t f ,即 N 个离散的测点值 m f ,=m 0,1,2,……,N-1, T 为测量时间: )(t f =2 0a + )sin cos (12 1∑-=+N k k k k k t b t a ωω+t a N N 2 2cos 21 ω=∑-=1 0N k t i k k e C ω (4) 其中 ∑-== 1 02cos 2 N m m k N km x N a π ,=k 0,1,2,…,2N (5) ∑-== 1 2sin 2N m m k N km x N b π , =k 1,2,…, 2N -1 (6) ∑-=-= 1 )/2(1N m N km i m k e x N C π ,=k 0,1,2,…,N-1 (7) t N k k ?=π ω2 ,N T t =? (8) 当T ∞→ 时,化为傅立叶积分(即 Fourier 变换): ? ∞ ∞ --= dt e t f f t i ωω)()( =t i e f ω, (9) ωωπ ωd e f t f t i )(21 )(? ∞ ∞ -= (10)

基于小波变换的多尺度图像边缘检测matlab源代码

基于小波变换的多尺度图像边缘检测matlab源代码(在Matlab7.0下运行) clear all; load wbarb; I = ind2gray(X,map);imshow(I); I1 = imadjust(I,stretchlim(I),[0,1]);figure;imshow(I1); [N,M] = size(I); h = [0.125,0.375,0.375,0.125]; g = [0.5,-0.5]; delta = [1,0,0]; J = 3; a(1:N,1:M,1,1:J+1) = 0; dx(1:N,1:M,1,1:J+1) = 0; dy(1:N,1:M,1,1:J+1) = 0; d(1:N,1:M,1,1:J+1) = 0; a(:,:,1,1) = conv2(h,h,I,'same'); dx(:,:,1,1) = conv2(delta,g,I,'same'); dy(:,:,1,1) = conv2(g,delta,I,'same'); x = dx(:,:,1,1); y = dy(:,:,1,1); d(:,:,1,1) = sqrt(x.^2+y.^2); I1 = imadjust(d(:,:,1,1),stretchlim(d(:,:,1,1)),[0 1]);figure;imshow(I1); lh = length(h); lg = length(g); for j = 1:J+1 lhj = 2^j*(lh-1)+1; lgj = 2^j*(lg-1)+1; hj(1:lhj)=0; gj(1:lgj)=0; for n = 1:lh hj(2^j*(n-1)+1)=h(n); end for n = 1:lg gj(2^j*(n-1)+1)=g(n); end a(:,:,1,j+1) = conv2(hj,hj,a(:,:,1,j),'same'); dx(:,:,1,j+1) = conv2(delta,gj,a(:,:,1,j),'same'); dy(:,:,1,j+1) = conv2(gj,delta,a(:,:,1,j),'same'); x = dx(:,:,1,j+1); y = dy(:,:,1,j+1); dj(:,:,1,j+1) = sqrt(x.^2+y.^2); I1 = imadjust(dj(:,:,1,j+1),stretchlim(dj(:,:,1,j+1)),[0 1]);figure;imshow(I1); End

基于小波变换的多尺度图像边缘检测

第24卷第2期 阜阳师范学院学报(自然科学版) V o l.24,N o.2 2007年6月 Journal of Fuyang T eachers Co llege(N atural Science) Jun.2007 基于小波变换的多尺度图像边缘检测 郦丹芸1,2,陶 亮1,詹小四2 (1.安徽大学计算机科学与技术学院,安徽合肥 230039;2.阜阳师范学院计算机系,安徽阜阳 236041) 摘 要:边缘作为图像的最主要特征,成为图像信息获取的重要内容.而小波变换具有检测局域突变的能力,而且可以结合多尺度信息进行检测,因此成为图像信息边缘检测的优良工具.文章首先构造了高斯多尺度边界检测算子,然后根据信号边界与噪声边界的小波变换模值跨尺度传递的不同特性,讨论了不同尺度的检测算子检测的边缘所具有的特点,在此基础上提出由边缘传递、继承和生长构成的多尺度边缘关联融合算法.实验结果说明这种特征提取方法不仅有效地降低了噪声,而且融合的边界比较完整,定位准确. 关键词:图像处理;边缘检测;多尺度小波分析;小波 中图分类号:T P391 文献标识码:A 文章编号:100424329(2007)022******* 在图像中,边缘是指其周围像素灰度有阶跃变化或屋顶变化的像素的集合.边缘是图像的基本特征之一,.因此,边缘提取与检测在图像处理中占有很重要的地位.传统的边缘检测方法基于空间运算,借助空域微分算子进行,通过将算子模板与图像进行卷积合成,根据模板的大小和元素值的不同有不同的微分算子,如Robert算子、Sobel算子、P rew itt算子、LO G 算子、Canny算子等,这些算子虽然易于实现、具有较好的实时性,但由于边缘检测问题固有的复杂性,使这些方法在抗噪性能和边缘定位方面往往得不到满意的效果,这主要是因为边缘和噪声都是高频信号,很难在噪声和边缘中作取舍[1]. 1983年W itk in提出尺度空间的思想,对边缘检测中的多尺度多分辨的思想进行了深入、直接的研究.1992年M allat提出小波变换多尺度边缘检测方法,并将小波边缘检测方法与LO G算子及Canny 最优检测算子在小波意义下统一起来,更加明确地表达了多尺度的思想在边缘检测中的重要意义[2].然而,边缘检测的不确定性指出边缘检测算子的抑噪能力和定位精度是一对矛盾,小尺度算子有利于边缘定位,但对噪声极为敏感;大尺度算子抑噪能力强,但边缘定位精度差,甚至会丢失某些局部细节.因此,固定尺度的边缘检测算子难以兼顾良好的边界定位,噪声抑制和弱边界检测等性能指标. M arr[3]从神经生理学和心理物理学出发,指出人的视觉前期处理中有多个分辨率的边缘算子在对图像作卷积,各边缘检测算子输出的组合能提高定位精度,减少噪声干扰.由于小波变换具有良好的时频局域化特性及多尺度分析能力,本文根据多尺度分析构造多尺度边缘检测算子,通过多尺度边缘融合,实现图像边缘的检测. 1 多尺度图像边缘提取算法 在文献[4]中,Young R.A从人类视觉的生理特性和数学形式上分析,指出一个高斯平滑函数叠加一个高斯函数的二阶导数能够更加精确的模拟人类的视觉特性,即能更好地强化边缘并准确定位. 1.1 设计多尺度离散掩模算子 高斯函数的一阶导数满足允许小波函数的定义[5],利用高斯函数构造小波边缘检测算子.设Η(x, y)为均值为0,方差Ρ2的高斯函数,Ηs(x,y)= 1 s2 Η(x s ,y s )为Η(x,y)的尺度变换函数,s为伸缩因子,则71s(x,y)=s 5Ηs 5x,72s(x,y)=s 5Ηs 5y为尺度上s 收稿日期:2007204208 基金项目:安徽省高校青年教师“资助计划”项目(2007jql145) 作者简介:郦丹芸(1976-),女,硕士研究生,讲师.研究方向:图像处理.

相关主题
文本预览
相关文档 最新文档