当前位置:文档之家› 山大数学分析报告试题

山大数学分析报告试题

山大数学分析报告试题
山大数学分析报告试题

2000年试题

一、 填空。

1. 222

333

12(1)lim[]?n n n n n →∞-+++=L 2.10

(1)

lim ?x

x e x x

→-+= 3.设3cos ,2sin (02),x t y t t π==<<则22?d y

dx =

4.21

2

1

[ln(1)]

?1x x x dx x -++=+? 5.

设r =则

2216

[]?x y r dxdy +≤=??

6.设Γ表示椭圆22

149x y +=正向,则()()?x y dx x y dy Γ-++=?? 7.级数1

3(2)(1)n n

n n x n ∞

=+-+∑的收敛范围为? 8.设()(1)ln(1),f x x x =++则()(0)?n f = 二、

1.设()f x 在[,]a b 上可积,令()(),x

a F x f t dt =?证明:()F x 在[,]a

b 上连续。 2.求2

0cos(2)(x e x dx αα∞

-?为实数)。 3.试求级数21n n n x ∞

=∑的和函数。

三、任选两题。

1.设()f x 在[,]a b 上连续且()0,f x >证明:21

()().()

b

b

a a

f x dx dx b a f x ≥-??

2.求20cos sin n x nxdx π

?(1n ≥为正整数) 3.

(),()

f x

g x 在

[0,)

+∞上可微且满足

lim

(1)lim ()(0),(2)lim ()().x x f x A A g x g x x →∞

→∞

=<<+∞≠

→∞

求证:存在数列{}(,)n n c c n →+∞→∞使得()()()().n n n n f c g c g c f c ''<-

2001年试题

一、1.220

cos 21

lim

?sin x x x x

→-=+

2.2!

lim

?n n

n n n →∞= 3.设ln(),u x xy =则22?u

x

?=?

4

0?x π

=?. 5.交换积分顺序2

1

20(,)?x x dx f x y dy -=??

6.(3,4)

(0,1)?xdx ydy -+=? 7.1(1)n n n n x ∞

=+∑的和函数为?

8.设()arctan ,f x x =则(21)(0)?n f += 二、

1.叙述函数()f x 在[,]a b 上一致连续和不一致连续的εδ-型语言。

2.计算定积分2

.x e dx +∞

-?

3.叙述并证明连续函数的中间值定理。 三、本题任选两题。

1.设(,)f x y 处处具有连续的一阶偏导数且(1,0)(1,0).f f =-试证在单位

圆上存在两点11(,)x y 和22(,)x y 满足下列两式:

(,)(,)0,1,2.i y i i i x i i x f x y y f x y i ''-==

2.设

()

f x 在

[0,)

+∞上连续

0,

f ≥如果

2

2

2

()()()()()(),f x f y f z x yf z y zf x z xf y ≤++求证:5

20

().2

a

f x dx a ≤?

3.设()f x 在(0,)+∞上连续可微,且()

lim

0.x f x x

→+∞

=求证:

存在序列{}n x 使得n x →+∞且()0.n f x '→

2002年试题

一、

1. lim ?n →∞

= 2. 21

00sin lim ()?x x x x

→+= 3.设2

1(1)()(1),(1)0,x f x e

x f -

-=≠=求(1)?f '=

4.设3

3

cos ,sin ,x a t y a t ==求22?d y dx

=

5.设()arctan ,f x x =求(21)(0)?n f +=

6.

3

()(),C

x y dx x y dy -++?

?其中22:4C x y +=(正向)。 7.7(cos )?x x x e e x dx π

π-+=? 8.求3

(1)V

dxdydz

x y z +++???

的值,其中V 是由0,0,0x y z ===及1x y z ++=所围

成的四面体。 二、1.

(0)ax bx

e e dx b a x

--+∞

->>?

。 2.设()f x 在[,]a b 上连续,在(,)a b 上二阶可导且()0,f x ''≥证明:对任何

12,[,],x x a b ∈有1212()()

(

).22

x x f x f x f ++≤

3.设有界函数()f x 在[,]a b 上的不连续点为1{}n n x ∞=,且lim n n x →∞

存在,证明:

()f x 在[,]a b 上可积。

三、1.设0,b a ≥≥试证:sin 3.b

a

x

dx x

≤? 2. 设()f x 在[,]a b 上连续,且()0,f x >证明:21

()().()

b

b

a a

f x dx dx b a f x ≥-?? 3. .设()f x 在[,]a b 上可导,且()().f a f b ''<证明:对任何((),()),r f a f b ''∈存在0(,),x a b ∈使得0().f x r '=

2003年试题

1. 设()f x 在(,)a b 上可微,()f x '在(,)a b 上单调,求证:()f x '在(,)a b 上连续。

2. 设()f x 在[,]a b 上连续,1

[,],(())n

n x a b f x ∞

=?∈∑收敛,求证:1

(())n n f x ∞

=∑在

[,]a b 上一致收敛。

3. 设()f x 在圆盘221x y +≤上有连续的偏导数,且()f x 在其边界上为0,

求证:22

1(0,0)lim

,2x y S f x f y f dxdy x y ε

επ

→+=-+??

其中222{(,):1}.S x y x y εε=≤+≤

4. 设()f x 在(,)-∞+∞上无穷次可微,且()()(),n f x x n =→∞o 证明:当

1k n ≥+时,(),..

lim ()0.k x x s t f x →+∞

?= 5. 设0()sin ,n f x tdt π

=?求证:当n 为奇数时,()f x 是以2π为周期的周期函数;当n 为偶数时,()f x 是一线性函数与一以2π为周期的周期函数之和。

6. 设()f x 在(,)-∞+∞上无穷次可微;(0)(0)0,lim ()0.n x f f f x →+∞

'≥=证明:()

11{},,0,..()0.n n n n n n x n x x s t f

x ∞=+??≤≤=

7. 设()f x 在(,)a +∞上连续,且lim sin(()) 1.x f x →+∞

=求证:lim ().x f x →∞

?

2004年试题

1. 叙述数列{}n a 发散的定义,并证明数列{cos }n 发散。

2. 设()f x 在[,]a b 上连续,对[,],x a b ∈定义()inf ().a t x

m x f t ≤≤=证明:设()m x 在

[,]a b 上连续。

3. 设()f x 在(,)c -∞内可导,且lim ()lim ().x x c f x f x A →-∞→-

==求证:存在一点

(,)..()0.c s t f ξξ'∈-∞=

4. 设()f x 在(0,1]上连续,可导,并且3

2

0lim ().x x f x →+

'?求证: ()f x 在(0,1]上一致连续。

5. 设0,1,2,3,n a n >=L 且有1lim (1)0,n

n n a n c a →∞+-=>求证:11

(1)n n n a ∞+=-∑收敛。 6.

求级数21

1

2n n n ∞

=++∑的和。

7. 设()f x 在[0,1]上二阶可导,且有[0,1]

1

(0)(1)0,min ().2

x f f f x ∈===-证明:

(0,1),..() 4.s t f ξξ''?∈≥

8. 证明:对于任意2

()00,sin x e tdx αα+∞

-+>?关于(0,)t ∈+∞一致收敛。 9. 设()f x 在[,][,]a b c d ?上连续,函数列()n x ?在[,]a b 上一致收敛,且

(),n a x b ?≤≤函数列()n x ψ在[,]a b 上一致收敛,且(),n c x d ψ≤≤求证:

函数列((),())n n n F f x x ?ψ=在[,]a b 上一致收敛。

10. 设()f x 在[0,1]上可积,且在1x =处连续,证明:1

lim ()(1).n n x f x dx f →∞=? 11. 设33()ij A a ?=是实对称正定矩阵, Ω是椭球体:3

,1

1,ij i j i j a x x =≤∑求Ω的

体积。

12. 设()ij a 是n 阶实对称方阵,定义n

R 上的齐二次函数,1

().n

ij i j i j h x a x x ==∑证

明:函数()h x 在条件21

1n

i x =∑下的最小值是A 的最小特征值。

13. 计算积分:222222()()(),I y z dx z x dy x y dz Γ=-+-+-?其中Γ为平面

3

2x y z ++=

和立方体0,0,0x a y a z a ≤≤≤≤≤≤的交线,站在第一象限3

2x y z ++>处看Γ为逆时针方向。

2005年试题

一、1.求极限1222lim

n

n a a na n

→∞

++L ,其中lim .n n a a →∞= 2.求极限2

1lim (1).x x x e x

-→+∞+ 3.证明区间(0,1)和(0,)+∞具有相同的基数(势)。 4.计算积分:21

,D

dxdy y x

+??

其中D 是由0,1,x y y x ===所围成的区域。 5.计算:2222

,:21C

ydx xdy

I C x y x y

-+=+=+?方向为逆时针。 6.设0,0,a b >>证明:11(

)().1b b a a

b b

++≥+ 二、设()f x 为[,]a b 上的有界可测函数且

2[,]

()0,a b f x dx =?

证明: ()f x 在

[,]a b 上几乎处处为零。

三、设()f x 在(0,)+∞内连续且有界,试讨论()f x 在(0,)+∞内的一致连续性。

四、

设22222

0(,)0,0

x y f x y x y ?+>=+=?,讨论(,)f x y 在原点的连续性,偏导

数存在性及可微性。 五、设

()

f x 在

(,)

a b 内二次可微,求证:

2

()(,),..()2()()().24

a b b a a b s t f b f f a f ξξ+-''?∈-+=

六、

()

f x 在R

上二次可导,,()0,x f x ''?∈>R 又

00,()0,lim ()0,lim ()0.x x x f x f x f x αβ→-∞

→+∞

''?∈<=<=>R 证明:()f x 在R 上恰有

两个零点。

七、设()f x 和()g x 在[,]a b 内可积,证明:对[,]a b 的任意分割

0121:,,[,],0,1,2, 1.

n i i i i a x x x x b x x i n ξη+?=<<<<=?∈=-L L 有

1

lim ()()()().n b

i i i a

i f g x f x g x dx ξη-?→=?=∑?

八、求级数:0

1

(1).31

n

n n +∞

=-+∑ 九、试讨论函数项级数22

22

22

(1)1

[(1)]n x n x n x n e

n e

+∞

---=--∑在区间(0,1)和(1,)

+∞上的一致收敛性。

十、计算222(),I x dydz y dzdx z dxdy ∑=++??其中∑为圆锥曲面222x y z +=被平面0z =与2z =所接部分的外侧。

十一、设()f x 在[0,1]上单调增加,且(0)0,(1) 1.f f ≥≤证明:

3[0,1],..().s t f ξξξ?∈=

十二、设()f x 在[0,)+∞上连续,

()x dx ?+∞

?

绝对收敛,证明

0lim

()()(1)().n x

f x dx f x dx n

??+∞→+∞=? 十三、设0,n a >证明:当下极限1

ln(

)lim inf 1ln n

n a n →∞>时,级数1

n n a +∞=∑收敛。 当上极限1

ln(

)lim sup 1ln n

n a n →∞<时,级数1

n n a +∞=∑发散。

2007年试题

1. 求sin 0

lim(cot )x x x →. 2. 求222222

222222(),: 1.V

x y z x y z dxdydz V a b c a b c ++++=???

3. 求211

.n n n x ∞

-=∑

4. 证明:2

lim sin 0.n n xdx π

→∞=? 5. ()()0,()f a f b f x ''==有二阶导数。证明:存在,ξ满足

2

4

()()().()f f b f a b a ξ''≥

--

6.

22

22

0(,)0,0.

x y f x y x y +≠=+≠?,证明:(,)f x y 在(0,0)连续,有有

界偏导数,x y f f '',在(0,0)不可微。 7. 22[()]()().b b

a a f x dx

b a f x dx ≤-??

8. 21(),n n x f x n

==∑证明:2

()(1)ln [ln(1)],0 1.6f x f x x x x π+-+-=<<

9. lim ()x f x →∞'存在,lim ().x f x K const →∞==证明:lim ()0.x f x →∞'= 10.

2

1

()(1),2x t x f x t =+?求1lim ()sin .n f n n →∞

山东大学数学分析

2005年试题 一、1.求极限1222lim n n a a na n →∞ ++L ,其中lim .n n a a →∞= 2.求极限21lim (1).x x x e x -→+∞+ 3.证明区间(0,1)和(0,)+∞具有相同的基数(势)。 4.计算积分:21,D dxdy y x +??其中D 是由0,1,x y y x ===所围成的区域。 5.计算:2222,:21C ydx xdy I C x y x y -+=+=+?方向为逆时针。 6.设0,0,a b >>证明:11()().1b b a a b b ++≥+ 二、设()f x 为[,]a b 上的有界可测函数且 2[,]()0,a b f x dx =?证明: ()f x 在 [,]a b 上几乎处处为零。 三、设()f x 在(0,)+∞内连续且有界,试讨论()f x 在(0,)+∞内的一致连续性。 四、 设222220(,)0,0 x y f x y x y +>=+=?,讨论(,)f x y 在原点的连续性,偏导数存在性及可微性。 五、设()f x 在(,)a b 内二次可微,求证: 2 ()(,),..()2()()().24a b b a a b s t f b f f a f ξξ+-''?∈-+= 六、()f x 在R 上二次可导,,()0,x f x ''?∈>R 又00,()0,lim ()0,lim ()0.x x x f x f x f x αβ→-∞→+∞''?∈<=<=>R 证明:()f x 在R 上恰有两个零点。 七、设()f x 和()g x 在[,]a b 内可积,证明:对[,]a b 的任意分割

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

山东大学837化工原理考研真题及笔记详解

山东大学837化工原理考研真题及笔记详解 2021年山东大学《837化工原理》考研全套 目录 ?山东大学《837化工原理》历年考研真题汇编 ?全国名校化工原理考研真题汇编(含部分答案) 说明:本部分收录了本科目近年考研真题,方便了解出题风格、难度及命题点。此外提供了相关院校考研真题,以供参考。 2.教材教辅 ?陈敏恒《化工原理》(第4版)笔记和课后习题(含考研真题)详解?[预售]陈敏恒《化工原理》(第4版)(上册)配套题库【考研真题精选+章节题库】 ?[预售]陈敏恒《化工原理》(第4版)(下册)配套题库【考研真题精选+章节题库】 ?夏清《化工原理》(第2版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】

?夏清《化工原理》(第2版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】 说明:以上为本科目参考教材配套的辅导资料。 ? 试看部分内容 名校考研真题 绪论 本章不是考试重点,暂未编选名校考研真题,若有将及时更新。 第1章流体流动 一、填空题 1.某液体在内径为的水平管路中作稳定层流流动其平均流速为u,当它以相同的体积流量通过等长的内径为()的管子时,则其流速为原来的倍,压降是原来的倍。[四川大学2008研] 【答案】4 16查看答案 【解析】由流量可得,流速,因此有:,即流速为原来的4倍。 根据哈根-泊肃叶(Hagen-Poiseuille)公式(为压强降),则有:

因此,压降是原来的16倍。 2.一转子流量计,当通过水流量为1m3/h时,测得该流量计进、出间压强降为20Pa;当流量增加到1.5m3/h时,相应的压强降为。[四川大学2008研]【答案】20Pa查看答案 【解析】易知,当转子材料及大小一定时,、及为常数,待测流体密度可视为常数,可见为恒定值,与流量大小无关。 3.油品在φ的管内流动,在管截面上的速度分布可以表示为 ,式中y为截面上任一点至管内壁的径向距离(m),u为该点上的流速(m/s);油的粘度为。则管中心的流速为 m/s,管半径中点处的流速为 m/s,管壁处的剪应力为。[清华大学2001研]【答案】0.4968 0.3942 1查看答案 【解析】管内径。 在管中心处,则流速为。 在管半径中心处,则流速为。 由题意可知,则管壁处剪切力为: 4.某转子流量计,其转子材料为不锈钢,当测量密度为的空气的流量时,最大流量为。现用来测量密度为氨气的流量时,其最大流量为。[清华大学2000研]

三年级期末考试试卷数学分析

三年级期末考试试卷数学分析 第一大题:计算题;共两道题;满分30 分;正确率较高;说明学生学生的口算能力及计算能力较高;失分的主要原因是计算马虎不细心造成的;但仍有学生计算题竖式正确;横式写错或忘写得数.缺乏良好的考试习惯;自己检查错误的能力亟待加强. 第二大题;填空题:学生马虎现象严重:本题面广量大;分数占全卷的1/5. 本题主要考 察学生运用书本知识解决日常生活中的问题的掌握情况.很多学生不能根据书本上知识灵活处理问题.错的较多的题是第1、2、4、小题.第1、2 小题都与测量中的填合适的单位和换 算有关;学生不会灵活运用;第 4 小题是对时间的简单计算有关;审题不仔细. 第三大题;选择题:分数占全卷的1/10. 失分最多的是1、2 、8、题.其中第1、2 小题选择合适的单位错的比较多;如 1 题:交通局的叔叔要测量一条公路的宽度;应选择用()作测量单位.很多学生选择 A 、千米学生不会选择合适的面积单位;说明学生对面积单位不能准确感知;对生活常识比较缺乏.第教学时;要给学生充分的时间实际去做;关注 学生做的感受. 在充分动手操作的过程中体验、感知面积单位的大小;重视学生在操作和体 验中学习数学. 第8 小题不透明的纸袋里有一些乒乓球;忽视了题中的“一些”没能理解题意;学生的理解能力以及分析能力还有待加强. 第四大题;实践与操作:共 3 道小题;满分10 分;正确率比较高. 但也有失分较多的是第 3 小题;少数学生没标出所测量平行四边形的长度单位.教学时没能对学生严格要求作图的规范性. 第五大题:解决实际问题;共 6 道小题;满分30 分;正确率稍差. 主要是审题不仔细及计 算马虎造成的. 比如第 1 小题:出示题后让学生先提出一个用加法计算的问题并解答;再提出一个用减法计算的问题并解答.有少数学生出现漏题现象;只做第一个题;忘了第二个题第4小题:快过年了;县城某商场搞促销活动;牛奶每盒4元;买10 盒送2盒;妈妈到商场买14 盒牛奶一共用多少钱?这道题学生失分很严重.主要原因是学生对题目中的条件 ‘买10 盒送 2 盒'理解不够透彻;学生都是农村的孩子对促销理解不到位.第 5 小题考查的是正方形的周长;少数学生忘写单位;及计算粗心导致失分. 三、改进思考及措施: 1 、教师及时反思进行详细卷面分析;针对每个学生进行分析. 2 、加强课堂教学向40 分钟要质量. 3 、培养良好的学习习惯和态度.在平时的教学中;不能忽视学生良好学习习惯和学习态度 的培养;首先需要提高审题能力. 审题是做题的第一步;在课堂上;常常是老师刚一提问; 学生就争先恐后的举手回答;并没有完整把握题目的内容.反思一下自己的教学;也存在这 样的问题.所以;在平时的课堂教学中;多给学生思考的时间和空间;让他们想好了再回答无论是公开课还是平时的随堂课;都不要怕冷场;要让同桌讨论和小组合作更加深入;而不是让学生发表肤浅的见解.再者;可以培养学生良好的审题习惯.例如读题时;让学生圈 画出重点词句;突出题目的要求. 第二;要做到长抓不懈;因为任何良好习惯不是一朝一夕 能培养出来的;而是要有一个比较长的过程.只有这样;才能把学生因审题不清、看错题 目、漏写结果、计算不细心等原因所产生的错误减少到最低程度.

数学分析大一上学期考试试题 B

数学分析第一学期期末考试试卷(B 卷) 一、叙述题(每题5分,共10分) 1.上确界; 2.区间套的定义。 二、填空题(每题4分,共20分)1.函数|3|ln 3)(--=x x x f 的全部间断点是. 2.定义在]1,0[区间上的黎曼函数的连续点为. 3.)1ln()(2 x x f +=,已知5 6)2()(lim 000=--→h h x f x f h ,=0x .4.正弦函数x y sin =在其定于内的拐点为.5.点集}1)1({n S n +-=的所有聚点为.三、计算题(每题4分,共28分)(1)求]1 21 11[lim 222n n n n n ++++++∞→ ;(2)求30sin tan lim x x x x -→;(3)求)1ln(sin 1tan 1lim 30x x x x ++-+→;(4)求2210)21(e lim x x x x +-→;(5)求)1ln(2x x y ++=的一阶导; (6)求3)(sin )(+=x x x f 的一阶导; (7)求???==; cos ,sin 22t t y t t x 的一阶导。四、讨论题(共12分)1.极限x x 1sin lim 0 →是否存在,说明原因。2.设000)()(=≠?????-=-x x x e x g x f x ,其中)(x g 具有二阶连续导数,且

1)0(,1)0(-='=g g .求)(x f '并讨论)(x f '在),(+∞-∞上的连续性. 五、证明题(共30分)1.证明.x x f 2cos )(=在),0[+∞上一致连续. 2.设f 在],[b a 上连续,],[,,,21b a x x x n ∈ ,另一组正数n λλλ,,,21 满足121=+++n λλλ .证明:存在一点],[b a ∈ξ,使得 )()()()(2211n n x f x f x f f λλλξ+++= . 3.设函数)(x f 在[]b a ,上连续,在),(b a 内可导,且0>?b a .证明存在),(b a ∈ξ,使得)()()()(1 ξξξf f b f a f b a b a '-=-.

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = +=, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存 在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。?解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4 分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 222 2w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

山东大学 高等数学 【三套试题汇总】

一 求下列极限 1 1 lim sin n n n →∞ 1sin ≤n Θ 01lim =∞→n n ∴ 0sin 1lim =∞→n n n 2 求 lim x x x → Θ1lim 0 -=- →x x x 1lim 0 =+ →x x x ∴0 lim x x x →不存在 3 求 1 lim x x e → Θ ,lim 10 +∞=+→x x e 0lim 10 =-→x x e ∴10 lim x x e →不存在 0sin 4 lim sin 5x x x x x →++ 原式=1 5sin 1sin 1lim 0=+ + →x x x x x 一 求下列极限 1 1 lim cos n n n →∞ Θ ,1cos ≤n 01lim =∞→n n ∴ 0cos 1lim =∞→n n n 2 求2 2lim 2x x x →-- Θ ,122 lim 22lim 22-=--=--++→→x x x x x x 122lim 2=--- →x x x ∴2 2lim 2x x x →--不存在 3 求10 lim 2 x x → Θ ,2 2lim 1lim 10 0+∞==+→+→x x x x 02 2lim 1 lim 10 0==-→-→x x x x ∴ 10 lim 2 x x →不存在 02sin 4 lim 3sin x x x x x →++求 原式=43sin 3 1sin 21lim 0=++→x x x x x 一 求下列极限 1 1 lim n tgn n →∞ 不存在 2 求lim x a x a x a →-- Θ ,1lim lim =--=--+ + →→a x a x a x a x a x a x ,1lim lim -=--=----→→a x x a a x a x a x a x ∴lim x a x a x a →--不存在 3 求120lim x x e → Θ ,lim 210 +∞=+→x x e 0lim 21 0=- →x x e ∴ 120 lim x x e →不存在

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1 n n ∞ = C . 21 (1)n n n ∞ =-∑ D . 1 1 (1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2 f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原 函数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 0 (0)1dx k kx +∞>+?收敛于1,则k =( ) A . 2π B .22π C . D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<< 二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,10 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+? ? 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 .

山东大学

山东大学-- 019 数学学院2011年硕士研究生招生目录

一、学术型学位 1.复试方式 全部初试上线考生均可参加复试,其形式为笔试和面试相结合,复试成绩实行百分制。复试成绩=(复试笔试成绩+复试面试成绩)×95%+外语听力成绩。 硕士拟录取成绩=初试成绩÷5×50%+复试成绩×50% 2.复试笔试科目: 基础数学:常微分方程、复变函数、实变函数(各约占1/3); 计算数学:数值逼近、数值方法、微分方程数值解(各约占1/3); 概率论与数理统计:概率论、数理统计(各约占1/2); 应用数学:计算方法、线性规划、数学模型(各约占1/3); 运筹学与控制论: 运筹学方向:概率论与数理统计、线性规划、整数线性规划(各约占1/3); 控制论方向:概率论与数理统计、线性系统(各约占1/2); 信息安全:概率论与数理统计、数论与代数结构、应用密码学(各约占1/3); 金融学、金融数学与金融工程:概率论、数理统计(各约占1/2); 系统理论:概率论与数理统计、线性规划、整数线性规划(各约占1/3)。 3.复试面试内容: 基础数学:英语、数学分析、线性代数、常微分方程、复变函数、实变函数; 计算数学:英语、数学分析、线性代数、微分方程数值解、数值逼近、数值代数、算法

语言; 概率论与数理统计:英语、数学分析、线性代数、概率论、数理统计、实变函数; 应用数学:英语、数学分析、线性代数、常微分方程、线性规划、数学模型、计算方法; 运筹学与控制论:英语、数学分析、线性代数、常微分方程、线性规划、整数线性规划、概率论与数理统计;或英语、数学分析、线性代数、常微分方程、自动控制原理、线性系统理论、概率论与数理统计; 信息安全:英语、数学分析、线性代数、概率论、数论与代数结构、计算机网络安全、应用密码学; 金融数学与金融工程:英语、数学分析、线性代数、概率论、数理统计、实变函数; 系统理论:英语、数学分析、线性代数、概率论、线性规划。 4.复试笔试科目参考书目: 基础数学:《复变函数》(第四版),余家荣著,高等教育出版社2007年版;《复变函数论》(第三版),钟玉泉编著,高等教育出版社2004年版;《实变函数与泛函分析》(第二版),郭大钧、黄春朝、梁方豪编著,山东大学出版社2005年版;《常微分方程教程》(第二版),丁同仁、李承治编著,高等教育出版社2004年版。 计算数学:《数值逼近》,孙淑英、张圣丽等编著,山东大学出版社;《数值线性代数》,徐树方著,北京大学出版社2006年版;《偏微分方程数值解法》,李荣华等编著,吉林大学,高等教育出版社2005年版;也可参考其他同类教材。 概率论与数理统计:《概率论基础》(第二版),复旦大学李贤平编,高等教育出版社2008年第十四次印刷;《数理统计》(一),复旦大学编,高等教育出版社1979年版;《概率论与数理统计》,刘建亚、吴臻编,高等教育出版社2004年版;《数理统计》,胡发胜、宿洁编,山东大学出版社2004年版。 应用数学:《数学模型》(第三版),姜启源编著,高等教育出版社2003年版;《计算方法引论》(第三版),徐萃薇、孙绳武编著,高等教育出版社2007年版;《运筹学》(第三版)(线性规划部分),刁在筠等编著,高等教育出版社2007年版。 运筹学与控制论:《概率论基础》(第二版),复旦大学李贤平编,高等教育出版社2008年第十四次印刷;《概率论与数理统计》(第二版),茆诗松、周纪芗编著,中国统计出版社2000年版;《运筹学》(第三版),刁在筠等编著,高等教育出版社2007年版;《自动控制原理》(第三版),高国桑、余文等著,华南理工大学出版社2009年版;《线性系统理论》,程兆林、马树萍编著,科学出版社2006年版;《数字信号处理——理论、算法与实现》(第二版),胡广书编著,清华大学出版社2003年版; 信息安全:英语、数学分析、线性代数、概率论同其它专业。《数论与代数结构》,王小云编,讲义;《密码学导引》,冯登国、裴定一编,科学出版社1999年版;《网络安全》,胡道元、闵京华著,清华大学出版社2004年版。 金融数学与金融工程:《概率论与数理统计》,刘建亚、吴臻编,高等教育出版社2004年版;《数理统计》,胡发胜、宿洁编,山东大学出版社2004年版;《概率论基础》(第一、二分册)(第二版),复旦大学李贤平编,高等教育出版社2008年第十四次印刷;《数理统计》,复旦大学编,高等教育出版社1979年版。 系统理论:《概率论》,华东师范大学出版社。 5.加试科目参考书目: 复变函数:《复变函数论》(第三版),钟玉泉编,高等教育出版社2004年版;《复变函数论》,张培璇编,山东大学出版社1993年版;《复变函数》(第四版),余家荣,高等教育出版社2007年版。 实变函数:《实变函数与泛函分析》(第二版),郭大钧、黄春朝、梁方豪编著,山东大

数学分析3期末测试卷

2012 –2013学年第一学期期末考试题 11数学教育《数学分析》(三) 一、单项选择(将正确答案的序号填在括号内,每题2分,共20分) 1. 下列数项级数中收敛的是 ( ) A. 211 n n ∞ =∑; B. 2 1n n n ∞ =+∑; C. 1 1 n n ∞ =∑; D. 0 1 23n n n ∞ =++∑. 2. 下列数项级数中绝对收敛的是 ( ) A. 1(1)n n n ∞ =-∑ B. 1n n n ∞=1n n n n ∞= D. 1 sin n n n ∞ =∑ 3.函数项级数1n n x n ∞ =∑的收敛域是 ( ) A. (1,1)- B. (1,1]- C. [1,1)- D. [1,1]- 4.幂级数0 21n n n x n ∞ =+∑的收敛半径是 ( ) . A B C D 1 .2 .1 .02 5. 下列各区域中,是开区域的是 ( ) 2. {(,)|}A x y x y > . {(,)|||1}B x y xy ≤ 22.{(,)|14}C x y x y <+≤ .{(,)|1}D x y x y +≥ 6.点集11{,|}E n N n n ?? =∈ ??? 的聚点是 ( ) A. ){0,0} B.()0,0 C. 0,0 D.{}{}0,0 7.点函数()f P 在0P 连续,是()f P 在0P 存在偏导数 ( ) A.必要条件 B.充分条件 C.充要条件 D.既不充分也不必要 条件 8. 函数(,)f x y 在()00,x y 可微,则(,)f x y 在()00,x y 不一定 ( ) A.偏导数连续 B.连续 C. 偏导数存在 D. 存在方向导数 9. 设函数)()(y v x u z =,则 z x ??等于 ( ) A. ()()u x v y x y ???? B. ()()du x v y dx y ?? C. () ()du x v y dx D. ()()u x v y x y ??+?? 10. 函数(,)f x y 在()00,x y 可微的充分必要条件是 ( ) A. 偏导数连续; B. 偏导数存在; C.存在切平面; D. 存在方向导数. 二、填空题(将正确答案填在横线上,每题2分,共20分) 11. 若数项级数1 1n p n n ∞ =-∑() 绝对收敛,则p 的取值范围是 ; 12. 幂级数0(1)n n n x ∞ =+∑的和函数是 ; 13.幂级数2 01 (1)n n x n ∞ =-∑ 的收敛域是 . ; 14.平面点集22{(,)|14}E x y x y =<+≤的内点是_________ ___ __ _______; 15.函数33(,)3f x y x y xy =+-的极值点是 ______________________. 16.曲面221z x y =+-在点(2,1,4)的切平面是 ______________________ 17.函数y z x =,则 z y ?=? ______________________; 18.函数u xyz =在(1,1,1)沿方向(cos ,cos ,cos )l αβγ= 的方向导数是 ___________; 19.设cos sin x r y r ? ?=??=?,则 x x r y y r ?? ????=???? ; 20.若22arctan y x y x +=,则dy dx =______________________。 三、判断题(请在你认为正确的题后的括号内打“√”,错误的打“×”,每题 1分,共10 题号 一 二 三 四 五 总分 复核人 分值 20 20 10 32 18 100 得分 评卷人 得分 得分 得分

大学工科数学分析期末考试_(试题)A

20XX年复习资料 大 学 复 习 资 料 专业: 班级: 科目老师: 日期:

一、填空题(每题4分,共20XX 分) 1. 设 ABC L 是从 (1,0) A 到 (0,1) B -再到 (1,0) C -连成的折线,则曲线积分 d d |||| ABC L x y x y +=+? . 2. 设向量场222(1)(1)(1)A x x z i y x z j z x z k =++-+-,则向量场在点012 1M -(,,)处的旋度A =rot . 3. 若x y xe -=和sin y x =为某四阶常系数齐次线性微分方程的两个解,则该方程是 . 4. 函数(),(),(,)x x f x y ?ψ皆可微,设()(),()z f x y xy ?ψ=+,则 z z x y ??-=?? . 5. 锥面 22 z x y +被圆柱面 222,(0) x y ax a +=>截下的曲面的面积 为 . 二、单项选择题(每题4分,共20XXXX 分) 本题分数 20XX 得 分 本题分数 20XXXX 得 分

(多选不得分) 6.若 ()() 0000,,, x y x y f f x y ????都存在,则(,)f x y 在()00,x y ( ) (A )极限存在但不一定连续 (B )极限存在且连续 (C )沿任意方向的方向导数存在 (D )极限不一定存在,也不一定连续 7. 12,L L 是含原点的两条同向封闭曲线,若已知122 d d L y x x y K x y -+=+?(常数), 则222d d L y x x y I x y -+= +?的值 ( ) (A )一定等于 K (B )一定等于K - (C ) 与2L 的形状有关 (D )因为 Q P x y ??=??,所以0I = 8.∑为球面2222x y z a ++=外侧,Ω为球体2222x y z a ++≤,则有 ( )

第四章 非线性规划 山大刁在筠 运筹学讲义教学内容

第四章 非线性规划 教学重点:凸规划及其性质,无约束最优化问题的最优性条件及最速下降法,约束最优化问题的最优性条件及简约梯度法。 教学难点:约束最优化问题的最优性条件。 教学课时:24学时 主要教学环节的组织:在详细讲解各种算法的基础上,结合例题,给学生以具体的认识,再通过大量习题加以巩固,也可以应用软件包解决一些问题。 第一节 基本概念 教学重点:非线性规划问题的引入,非线性方法概述。 教学难点:无。 教学课时:2学时 主要教学环节的组织:通过具体问题引入非线性规划模型,在具体讲述非线性规划方法的求解难题。 1、非线性规划问题举例 例1 曲线最优拟合问题 已知某物体的温度? 与时间t 之间有如下形式的经验函数关系: 3 12c t c c t e φ=++ (*) 其中1c ,2c ,3c 是待定参数。现通过测试获得n 组?与t 之间的实验数据),(i i t ?, i=1,2,…,n 。试确定参数1c ,2c ,3c ,使理论曲线(*)尽可能地与n 个测试点 ),(i i t ?拟合。 ∑=++-n 1i 221)]([ min 3i t c i i e t c c ?

例 2 构件容积问题 通过分析我们可以得到如下的规划模型: ??? ????≥≥=++++=0 ,0 2 ..)3/1( max 212 121222211221x x S x x x x a x x t s x x a V ππππ 基本概念 设n T n R x x x ∈=),...,(1,R R q j x h p i x g x f n j i α:,...,1),(;,...,1),();(==, 如下的数学模型称为数学规划(Mathematical Programming, MP): ?? ? ??===≤q j x h p i x g t s x f j i ,...,1,0)( ,...,1,0)( ..) ( min 约束集或可行域 X x ∈? MP 的可行解或可行点 MP 中目标函数和约束函数中至少有一个不是x 的线性函数,称(MP)为非线性规划 令 T p x g x g x g ))(),...,(()(1= T p x h x h x h ))(),...,(()(1=, 其中,q n p n R R h R R g αα:,:,那么(MP )可简记为 ?? ? ??≤≤ 0)( 0 ..)( min x h g(x)t s x f 或者 )(min x f X x ∈ 当p=0,q=0时,称为无约束非线性规划或者无约束最优化问题。 否则,称为约束非线性规划或者约束最优化问题。 定义4.1.1 对于非线性规划(MP ),若X x ∈*,并且有 X ),()(*∈?≤x x f x f 设计一个右图所示的由圆锥和圆柱面 围成的构件,要求构件的表面积为S , 圆锥部分的高h 和圆柱部分的高x 2之 比为a 。确定构件尺寸,使其容积最 大。

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

山大数学分析试题

山大数学分析试题

2000年试题 一、 填空。 1. 222 333 12(1)lim[]?n n n n n →∞-+++=L 2.10 (1) lim ?x x e x x →-+= 3.设3cos ,2sin (02),x t y t t π==<<则22?d y dx = 4.21 2 1 [ln(1)] ?1x x x dx x -++=+? 5.设22,r x y =+则 2216 []?x y r dxdy +≤=?? 6.设Γ表示椭圆22 149x y +=正向,则()()?x y dx x y dy Γ-++=?? 7.级数1 3(2)(1)n n n n x n ∞ =+-+∑的收敛范围为? 8.设()(1)ln(1),f x x x =++则()(0)?n f = 二、 1.设()f x 在[,]a b 上可积,令()(),x a F x f t dt =?证明:()F x 在[,]a b 上连续。 2.求2 0cos(2)(x e x dx αα∞ -?为实数)。 3.试求级数21n n n x ∞ =∑的和函数。 三、任选两题。 1.设()f x 在[,]a b 上连续且()0,f x >证明:21 ()().() b b a a f x dx dx b a f x ≥-??

2.求20cos sin n x nxdx π ?(1n ≥为正整数) 3. 设 (),() f x g x 在 [0,) +∞上可微且满足 lim (1)lim ()(0),(2)lim ()().x x f x A A g x g x x →∞ →∞ =<<+∞≠ →∞ 求证:存在数列{}(,)n n c c n →+∞→∞使得()()()().n n n n f c g c g c f c ''<- 2001年试题 一、1.220 cos 21 lim ?sin x x x x →-=+ 2.2! lim ?n n n n n →∞= 3.设ln(),u x xy =则22?u x ?=? 401cos 2?x xdx π -=?. 5.交换积分顺序2 1 20(,)?x x dx f x y dy -=?? 6.(3,4) (0,1)?xdx ydy -+=? 7.1(1)n n n n x ∞ =+∑的和函数为? 8.设()arctan ,f x x =则(21)(0)?n f += 二、 1.叙述函数()f x 在[,]a b 上一致连续和不一致连续的εδ-型语言。 2.计算定积分2 .x e dx +∞ -? 3.叙述并证明连续函数的中间值定理。 三、本题任选两题。 1.设(,)f x y 处处具有连续的一阶偏导数且(1,0)(1,0).f f =-试证在单位

最新三年级期末考试试卷数学分析资料

一、试卷命题情况 在本次人教版小学三年级数学考试中,本张试卷命题的指导思想是以数学课程标准为依据,紧扣新课程理念。整个试卷可以说全面考查了学生的综合学习能力,全面考查学生对教材 中的基础知识掌握情况、基本技能的形成情况及对数学知识的灵活应用能力。把学生对数 学知识的实际应用融于试卷之中,注重了学科的整合依据学生操作能力的考查,努力体现《数学课程标准》的基本理念与思想,做到不出偏题、怪题、过难的题,密切联系学生生 活实际,增加灵活性,又考查了学生的真实水平,增强了学生学数学、用数学的兴趣和信心。为广大教师的教学工作起到了导向作用,更好地促进我区数学教学质量的提高。现将2018——2019学年度上期三年级数学期末试卷命题情况分析如下: (一)内容全面,覆盖广泛。 命题中采用直观形象、图文并茂、生动有趣的呈现方式,在注重考查学生的基础知识和基 本能力的同时,适当考查了学习过程,较好地体现了新课程的目标体系。三年级数学试卷 容量大,覆盖面广,从“数与代数”、“空间与图形”、“统计与概率”、“实践活动” 四个方面进行考查,共计五个大题,考察了学生区分旋转与平移现象、解决有关时间的简 单问题、小数、分数的初步认识、测量和面积等知识,以及乘、除法计算等等。试题较好 地体现了层次性,难易适度 (二)贴近生活,注重现实。 本试卷从学生熟悉的现实情境和知识经验出发,选取来源于现实社会、生活,发生在学 生身边的,让学生切实体会数学和生活的联系,感受数学的生活价值。如:解决实际问题 中商场搞促销活动考查了学生解决简单实际问题的能力;考查有余数的除法时就是做灯笼 的事情;考查正方形的周长就是沿正方形果园走一圈,一共是多少米;考查时间的简单计 算就是妈妈进城办事用的时间。这些题目都是学生现实生活特别熟悉的事和物,它为学生 提供了活生生的直观情境,便于学生联系实际分析问题和解决问题。让学生在对现实问题 的探索和运用数学知识解决实际问题的过程中,体会到数学与生活的联系,体验到数学的 应用价值,增强数学的应用意识。 (三)实践操作,注重过程。 本试卷通过精心选材,巧妙考查了教学过程和学生的实践能力。如:第四题:1、在下列 图形中表示出相应分数。2、考查可能性中,按要求涂一涂。3、测量平行四边形各边的长度并计算出这个图形的周长。以上的题如果老师在教学过程中不重视学生的动手操作,不充分让学生经历探究的过程,那么,学生解答时就会束手无策。它为老师在新课程理念下 组织实施课堂教学指明了正确的方向。 (四)体现开放,培养创新。 为了培养学生观察能力,分析能力,发现问题、提出问题、解决问题的能力,在命题中, 设计有弹性的、开放性的题目。如第五题的1小题,你能提出一个用加法计算的问题并解答及再提出一个用减法计算的问题并解答。给学生提供了一个广阔的思维空间,充分发挥 学生的主动性,让学生从情境中捕捉信息去发现问题、提出问题,从而提高学生解决问题 能力,同时学生的创新思维也能得到体现。 二、学生答卷情况

相关主题
文本预览
相关文档 最新文档