当前位置:文档之家› 轴流引风机变频改造控制及运行方式

轴流引风机变频改造控制及运行方式

轴流引风机变频改造控制及运行方式
轴流引风机变频改造控制及运行方式

轴流引风机变频改造控制及运行方式

引风机变频运行方式分为手动控制及由现场DCS系统通过炉膛负压PID调节自动控制二种方式。正常情况每台锅炉的2台变频引风机同时投入运转,引风机DCS控制系统自动强制引风机出口静导叶控制指令100%,根据运行工况出口电动门全开,炉膛负压值有DCS系统通过控制引风机转速稳定负压。

当单台变频器故障跳闸时,系统联跳变频器上口的高压开关,由引风机原有的联锁动作逻辑实现单侧引风机掉闸,锅炉联跳单侧引风机,机炉自动降负荷的动作逻辑关系。炉膛负压自动调节系统通过状态反馈自动提高另一台引风机的转速,通过引风机的反馈信号延时关闭跳闸引风机的出口挡板,为满足系统的快速响应特性,炉膛负压自动调节系统自动调整PID控制参数,从而提高单台引风机的响应速度,保证机炉在变负荷运行时的控制品质。

通过判断,确认单侧引风机跳闸的故障点是在变频器本体,原有引风机动力系统没有问题的情况下,可以将引风机手动恢复工频运行方式。同时将单侧送风机投入运行。首先将恢复工频运行的引风机出口门全开,然后调整静叶开度投入工频引风机运行;炉膛负压调节系统通过压力自适应平衡回路,实现2台引风机的风量平衡。从而达到一台引风机变频调速,另一台引风机静导叶调整下二种不同的控制对象,仍然能够实现机组设备的全负荷响应的控制要求。

系统恢复变频运行时,可以关闭引风机出口挡板,依靠单台变频引风机带锅炉50%~70%的负荷。将引风机切换至变频运行方式,依托变频器提供的飞车启动功能,在引风机没有完全停止的情况下恢复设备运行,从而大大减少机组减负荷的时间。

针对高压变频器在引风机系统中的应用,在系统的设计中还采取了以下几个措施:

1、炉膛压力调节系统设有防止锅炉内爆的措施。当发生燃料跳闸时,系统应能

快速提供减少引风机转速信号,快速降低引风机转速,防止炉膛负压过大。

从而,大大提高系统的安全性能。

2、为了防止炉膛负压变化过大,系统还设计了调节方向闭锁信号。当炉膛负压

低值报警触发时延迟3秒闭锁转速增加,当炉膛负压高值报警时,延时闭锁转速降低。

3、当系统处于二台引风机变频运行时,系统闭锁静叶自动调节回路,要求静叶

开度信号超过90%,允许引风机变频转速调节炉膛压力。自动投入时静叶指令100%,保证引风机具有足够的调整空间。系统偏差大时,自动退出,强制手动。

4、系统处于二台工频引风机运行时,系统闭锁变频转速调节回路,系统采用工

频控制和调节回路。变频运行的状态和联锁逻辑全部切除,避免在变频器检修和退出的情况下,对运行系统产生影响,导致误动。

5、单侧风机的变频跳闸联锁相应一侧的送风机(RB方式)。并联关相应挡板及

静叶的逻辑不变。

系统对继电保护方面的逻辑要求

1、变频器内部输入侧有过压、过流等保护,过压为额定电压的115%、过流为额

定电流的200%;具体保护采用变频设备内部系统硬件固化保护方式;

2、变频设备内部变压器输出侧通过功率模块做了欠压(低于额定电压的65%

时)、缺相等保护;

3、变频器输出对电机加差动保护装臵,其它保护通过变频器系统完成。

引风机变频操作规程

1 工作原理 荣信RHVC系列第五代高压变频器根据不同的电压等级、负载状况以及用户的要求,提供多种串联级数的高压变频器,但不论串联级数多少,其基本工作原理都是一致的。下面以常用的6kV,5级功率单元串联的荣信RHVC系列第五代高压变频器为例,介绍其工作原理。 1.1 系统连接电路 荣信RHVC系列第五代高压变频器的典型系统连接电路如图 4-1所示变压器的原边通过高压真空接触器K1连接到母线电网,母线电压经多组副边绕组降压移相后,输入到变频器功率单元输入侧,功率单元输出侧经串联后驱动高压电动机工作。 可以选配高压旁路柜,通过旁路柜中的高压真空接触器K1连接到母线电网,通过旁路柜中的高压隔离开关K2连接到高压电动机,出现故障时,可以通过闭合旁路柜内的高压隔离开关K3使高压电动机工作于工频运转状态。 运行前,通过充电电阻向变频器功率柜内功率单元充电,以减小充电电流,保护功率单元内的整流模块及电容在充电过程中的安全。充电结束后,自动将充电电阻分断,闭合高压真空接触器K1,进入工作状态。 1

图4-1 典型系统连接主回路 通过变频器柜内置的传感器,可以直观而准确的显示荣信RHVC系列第五代高压变频器的输入输出电压电流。 1.2 主电路(6kV电压等级示例) 荣信RHVC系列第五代高压变频器的主电路如 图4-2所示。通过主电路图,可以直观的了解变压器的副边绕组与功率单元以及各功率单元之间的电路连接方式,具有相同标号的3组副边绕组,分别向同一功率柜(同一级)内的三个功率单元供电。第一级内每个功率单元的一个输出端连接在一起形成星型连接点,另一个输出端则与下一级功率单元的输出端相连,依此方式,将同一相的所有功率单元串联在一起,便形成了一个星型连接的三相高压电源,驱动电动机运行。

引风机变频分析

引风机电机改变频调速的分析 (平电公司引风机电机改变频调速的可行性) 一、前言 我公司引风机电机的调速问题,已经提了多年,一直未能得到解决。2000年9月#1机组检修期间曾经作过很多工作,目的是恢复随机安装的变速开关运行,实现引风机电机的高/低速切换,但未能成功。主要原因有两个,一是变速开关设备的可靠性不能保证;另一是此种开关操作方式对其他设备的影响。从现在的情况看,即使开关设备能够恢复正常操作,运行中高/低速切换,对锅炉稳定运行来说也有一定风险,所以变速开关恢复正常运行的问题最终放弃。 引风机电机改变频调速,前几年也曾进行过技术咨询,主要是变频技术满足不了我公司电压高、功率大的要求,而且改造费用非常高。但近几年大容量、高压变频器发展很快,目前国内300MW及以下发电机组进行风机变频改造的电厂已不少于5家(如山东德州电厂、河南三门峡电厂、辽宁青河电厂等)。虽然600MW发电机组风机改变频目前国内尚无一例,但进行此类变频改造,技术上已有一定的可行性。下面将有关引风机电机的调速方式及改变频调速的利弊作简要分析。 二、风机电机调速的方法及其区别 调速方法:对一般的风机电机(如#1、#2机组的引风机电机)来说,实现调速的方法有三种,一是恢复当前的变速开关;二是每台电机电源增加两台真空开关及相应的电缆,通过开关的相互切换方式,实现电机的变级调速,这两种方法原理相同,只不过是后者用两台真空开关代替前者一台变速开关,按现在的机组运行调节要求,这两种变速方式都存在严重不足,其能够实现高/低变速(496 rpm或594 rpm),但不能实现真正意义上的调速。因为这两种变速的原理是改变电机定子绕组接线的极对数,只能实现高/低两种速度的切换,过程中无法实现转速的线性调节,这就是电机典型的变极调速。两种方法操作的过程是:停电—高/低速开关切换—送电。变速切换时,风机电机会出现短时停电,相当于风机停开各一次,切换的过程对风机、电机以及电源母线都会有冲击。第三种方法是变频调速,即在电机电源侧增加一套变频调节装置,通过改变电机电源的频率,从而达到调速的目的,对我公司引风机电机来说,调速的范围可以达到0—600rpm。 变极调速、变频调速的区别:因为电机的同步转速与电压频率及电机定子绕组级对数的关系为:n=60f/p 其中n-电机的同步转速,f-电源频率,p-电机的极对数。所以两种调速的区别很大,也很明显。 1、变极调速:变极调速是通过绕组接法的改变来改变电机的极对数p以达到变 速的目的,因为电机的极对数不是任意可调,所以这种方式变速是跳跃式,达不到连续性调速的目的。我公司#1、#2机安装的变速开关改变的是电机的极对数p ,高/低速时对应的电机极对数是5/6极,所以电机高/低速的同步转速分别是600/500rpm,实际转速是594/496 rpm

风机变频改造功能设计说明书

引风机变频改造功能设计说明书 国电湖南宝庆煤电有限公司#1、2机组引风机变频技改工程所采用的变频器为西门子(上海)电气传动设备有限公司提供的空冷型完美无谐波变频器,6KV AC,3相,50HZ,AC输入,0-6KVAC输出。变压器采用7000KVA空冷干式30脉冲隔离变压器。该变频器的控制方式采用多极PWM叠加技术,结构采用多个变频单元串联叠加输出的方式。整套变频装置由旁通柜、变压器柜、功率单元柜和控制柜四部分组成,可以在机组正常运行中实现变频回路和工频回路的自动切换或手动切换。 引风机高压变频改造采用“一拖一自动旁路”方式,如下图所示。变频器一次回路由真空断路器QF1、QF2、QF3组成。变频回路由QF2、QF3两台真空断路器控制, 工频回路由真空断路器QF1组成。真空开关均采用铠装移开式开关设备。 变频装置与电动机的连接方式见下图: 6kV电源经真空断路器QF2到高压变频装置,变频装置输出经真空断路器QF3送至引风机电机变频运行;6kV电源还可经真空断路器QF1直接起动引风机工频运行。QF1与QF3电气硬接线闭锁,保证远方就地操作均不能两台开关同时合闸。 1、引风机电源开关QF逻辑 1.1引风机电源开关QF合闸允许条件 1)任一台冷却风机运行

2)任一台引风机电机油站油泵运行 3)引风机电机油站供油压力正常(大于0.2MPa) 4)引风机轴承温度正常<90℃ 5)引风机电机前、后轴承温度<70℃ 6)引风机电机三相线圈温度<125℃ 7)风机调节导叶关状态 8)引风机入口烟气挡板1、2关闭 9)引风机出口电动门开状态 10)任一台空预器投入运行 11)引风机无电气故障 12)脱硫系统启动允许 13)建立烟风通道 14)无跳闸条件 15)变频器进线开关QF2在分闸位置 16)工频旁路开关QF1在分闸位置 1.2引风机电源开关QF保护跳闸条件 1)引风机A轴承温度>110℃,延时5s 2)引风机A电机前轴承温度或后轴承温度>80℃ 3)引风机A电机三相线圈温度>130℃ 4)引风机A轴承X向振动过大7.1mm/s且Y向振动报警4.8mm/s加品质 判断(延时3s)

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

引风机说明

引风机说明 变频改造的提出背景 引风机是我公司燃煤锅炉烟气系统中的主要设备之一。通过控制引风机入口静叶开度调节引风量,维持锅炉炉膛负压稳定。如果炉膛负压太小,炉膛容易向外喷粉,既影响环境卫生,又可能危及设备和操作人员的安全;负压太大,炉膛漏风量增大,增加了引风机的电耗和烟气带来的热量损失。因此,控制引风量大小,稳定炉膛负压值,对保证锅炉安全、经济运行具有十分重要的意义。 异步电动机在启动时启动电流一般达到电机额定电流的6~8倍,对厂用电形成冲击影响电网稳定,同时强大的冲击转矩对电机和风机的使用寿命存在很大的不利影响。锅炉引风机系统的电气一次动力回路采用一拖一自动工/变频切换方案,单台机组系统主电气原理图如下。

1)注:#2机#1引风机开关编号为QFA21、QFA22、QFA23;#2机#2引风机开关 编号为QFB21、QFB22、QFB23。 2)上图中,QFIA、QFIB表示原有引风机高压开关; 3)QFA11、QFB11表示变频器输入侧电源开关; 4)QFA12、QFB12表示变频器输出侧电源开关; 5)QFA13、QFB13表示工频旁路电源开关; 6)TF1、TF2表示高压变频器,M表示引风机电动机。 7)QFA11~QFA13、QFB11~QFB13、TF1~TF2均为新增设备。 8)其中,QFA12和QFA13、QFB12和QFB13之间存在电气互锁和逻辑双重闭锁 关系,防止变频器输出与6kV电源侧短路。 9)正常运行时,断开QFA13、闭合QFA11、QFA12高压真空断路器,1#引风机 处于变频运行状态;断开QFB13、闭合QFB11、QFB12高压真空断路器,2#引风机处于变频运行状态;由变频器启/停设备,实现引风机控制和电气保护。 10)当机组运行过程中TF1变频器(TF2变频器)故障时,系统自动联跳变频器 上口的高压真空断路器QFA11(QFB11),断开变频器输出侧高压真空断路器QFA12(QFB12)。系统自动根据故障点位置判断是否能够切换至工频,并根据运行工况启动引风机工频运行,转为采用入口静叶开度控制风量与另外一台变频引风机协调运行。切实保障引风机变频器故障情况下的无扰切换、无需锅炉降负荷运行。 同时,为提高系统的安全性、可靠性,对高压真空断路器柜的控制逻辑进行整体设计。主要包括以下几个方面: 1.对变频器上口高压真空断路器的合、分闸控制回路进行改造与变频器实现联 锁保护功能。当变频器不具备上电条件时,闭锁高压真空断路器合闸允许回路,防止误送电;当变频器出现重故障时,紧急联跳上口高压真空断路器,断开厂用10kV段侧电源,确保设备安全。 2.变频器与下口高压真空断路器实现联锁功能。当变频器下口开关没有合闸 时,禁止变频器启动;当引风机变频运行时,下口开关异常分断,变频系统发出运行异常信号,确保引风系统及时有效的采取紧急处理措施。 3.变频器与上口高压真空断路器、下口高压真空断路器配合通过对运行工况的 实时监测处理,引风系统分级、分点地判断分析故障点位置,确定10kV网

高压变频器改造

高压变频器用于火力发电厂节能分析报告 第一章概述 国家大力提倡走节约型发展之路,做到珍惜资源、节约能源、保护环境、可持续发展。由于目前国内仍然以燃煤电厂为主,怎样在火力发电厂来落实和贯彻减能、增效的方针政策,大力促进火力发电厂节能是一个值得探讨的问题,而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。信息、通讯、计算机、智能控制、变频技术的发展,为火力发电厂的高效、节约运作、科学管理,以及过程优化提供了前所未有的手段,进而促进火力发电厂的科学管理和自动化水平的提高。 针对节能工程必须追求合理的投资回报率,下面的报告就是针对火力发电厂在提高用电率方面实施的节能工程的跟踪与效益的分析。 第二章国内火力发电厂能源消耗的分析 据国家《电动机调速技术产业化途径与对策的研究》报告披露,中国发电总量的66%消耗在电动机上。且目前电动机装机容量已超过4亿千瓦,高压电机约占一半。而高压电机中近70%拖动的负载是风机、泵类、压缩机。具体到火力发电厂来说主要有九种风机和水泵:送风机、引风机、一次风机、排粉风机、脱硫系统增压风机、锅炉给水泵、循环水泵、凝结水泵、灰浆泵。 可以说这些设备在火力发电厂中应用极广,种类数量繁多,总装机容量大,而且平均耗电量已占到厂用电的45%左右。 但是泵与风机这些主要耗电设备在我国火力发电厂中普遍存在着“大马拉小车”的现象,大量的能源在终端利用中被白白地浪费掉。浪费的主要原因有以下两点: 1、运行方式技术落后 据调查,目前我国火力发电厂中除少量采用汽动给水泵、液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动,阀门式挡板调节。这种定速驱动的泵,在变负荷的情况下,由于采用调节泵出口阀开度(风机则采用调节入口风门开度)的控制方式,达到调节流量得目的,以满足负荷变化的需要。所以在工艺只需小流量的情况下,其泵或风机仍以额定的功率,恒定的速度运转着,特别是在机组低负荷运行时,其入口调节挡板开度很小,引风机所消耗的电功率大部分将被风门节流而消耗掉,能源损失和浪费极大。另外,风机档板执行机构为大力矩电动执行机构,故障较多,风机自动率较低,存在严重的节流损耗。 2、运行实际效率低下 从实际运行效率上来说,在机组变负荷运行时,由于水泵和风机的运行偏离高效点,偏离最优运行区,使运行效率降低。调查显示,我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。这是因为,我国许多大中型泵与风机套用定型产品,由于型谱是分档而设,间隔较大,一般只能套用相近型产品,造成泵与风机的实际运行情况运行效率低,能耗高。同时在设计选型时往往加大保险系数,裕量过大,也是造成运行工况偏离最优区,实际运行情况运行效率低下的原因。 第三章降低能源消耗的技术策略 为了降低上述火力发电厂运行设备的能源消耗,同时提高火力发电厂的发电效率,新建火力发电厂可选用高效辅机和配套设备,做法有二。一是采用液力耦合器、双速电动机、叶片角度可调的轴流式风机等设备;二是采用变频调速装置。尽管采用液力耦合器在一次投资方面具有一定的优势,但液力偶合调速装置除在节能方面比变频调速效果过相差很远以外,还在功率因数、起动性能、运行可靠性、运行维护、调节及控制特性、综合投资及回报等方面有较大差异。因此,现有老的火力发电厂减少能耗最经济,最简单可行的方法就是加装变频调

引风机改造施工技术方案

批准: 分管副总工程师审核: 生产技术部审核: 相关专业会签: 专业技术审核: 编制: 日期:2013年09月15日

本施工方案是为国电电力大同第二发电有限公司#3炉引风机改造制定的。由于施工工期短,工作量大,方案中对施工进度做了详细编排。在具体施工时,可根据现场的具体情况相互穿插进行。 1施工部署 1.1联系电厂有关人员,开热机检修工作票,经批准后方可施工。 1.2经电厂审核批准施工方案后,对全体施工大修人员宣读讲解施 工技术方案和安全措施及工期进度。 1.3 装好检修临时电源,容量不小于100KW,装好施工照明灯。1.4 选现场方便之处张贴安全措施及工期进度表。 1.5 引风机施工现场6台电焊机就位,置于#2炉引风机房。 1.6备好充足的氧气和乙炔,分别放到引风机房内指定位置。 1.7更换的备件运入现场,放在方便处,不得影响通行。 1.8改造设备的吊装临时通道准备就绪。 1.9准备好跳板,脚手架杆、卡扣运入现场。 1.10打开全部人孔门和检修所必须割开的检修孔。 1.11在合适的位置开设运送改造设备用的临时通道。 1.12清扫壳体内浮灰,装入袋中运至零米电厂指定地点。 2 施工方案及主要技术措施 2.1、#2炉原#1、#2引风机4台风机本体部分全部拆除,拆除范围包括进口调节挡板膨胀节法兰至原出口膨胀节法兰的所有部分(包括膨胀节)及隔声保温装置,需搭设脚手架,脚手架长10米,宽1.5米,

高6米,分三面搭设,拆除保温及装饰面积约300平米,拆除吨位约30吨/台。 2.2、#2炉#1、#2引风机2台新风机本体部分安装,安装范围包括进口调节挡板、膨胀节法兰至风机出口膨胀节、逆止风门法兰的所有部分(包括进出口挡板、逆止风门支撑架、检修平台制作等)及隔声保温装置,恢复保温及装饰铁皮面积约200平米,安装吨位约50吨/台。 2.3、#2炉#1、#2引风机原液力偶合器、执行器及冷油器全部拆除,安装2台新电机润滑油站(包括冷却水系统、电气、热控系统连接)。 2.4、#2炉#1、#2引风机原入口调节挡板全部拆除,更换安装2套新入口调节挡板(包括电气、热控系统连接,挡板检修平台制作)。 2.5、#2炉#1、#2引风机原电动机全部拆除,更换安装2台配套新引风机电动机(包括电机台板就位找中心,轴瓦润滑油系统连接)。2.6、#2炉#1、#2引风机出口安装2套逆止风门(包括气动执行机构、电控柜安装,风门支撑检修平台制作)。 2.7、#2炉#1、#2引风机入口烟道加固处理(引风机入口膨胀节至电除尘出口膨胀节,联络烟道等)并清理烟道。 2.8、#2炉#1、#2引风机改造安装后引风机整体试运调试。 2.9施工工艺及技术要求 2.9.1 风机的拆除 2.9.1.1原引风机在拆除前要检查各部件连接情况,确认各部件的连接方式及位置后再进行拆除,拆除吊卸时要注意保护人身设备安全,

引风机电机变频改造项目设计方案

内蒙古丰泰发电 引风机电机变频改造项目设计方案 北京天福力高科技发展中心 2007年3月

目录 1. 概述 (1) 2. 系统改造方案 (1) 2.1. 主回路方案 (1) 2.2. 变频器运行方案 (2) 2.2.1. 变频器正常工况 (2) 2.2.2. 变频器异常工况 (2) 2.2.3. 变频器基本性能简介 (3) 2.2.4. 变频器控制接口(可按用户要求扩展) (5) 2.2.5. 变频器结构 (5) 2.2.6. 变频器的保护 (6) 3. 施工方案 (6) 3.1. 变频器的安放 (6) 3.2. 变频器进线方式 (11) 3.3. 暖通设计方案 (11) 3.4. 变频器内部安装接线及端子排出线图 (12) 3.4.1. 变频器内部的电气接线 (12) 3.5. 变频器进机组DCS信号(供参考) (15) 3.6. 变频器输入输出接口说明 (16) 3.6.1. 高压接口 (16) 3.6.2. 低压控制接口 (16) 3.7. 电源要求、接地要求 (17) 3.7.1. 电源要求 (17) 3.7.2. 接地要求 (17) 3.8. 变频控制方案 (17) 3.9. 施工方案计划 (18) 3.10. 施工材料表 (19)

1.概述 利用变频器驱动异步电机所构成的调速系统,对于节能越来越发挥着巨大的作用,利用变频器实现调速运行,是变频器应用的最重要的一个领域,尤其是风机、水泵等机械运行的节能效果最为明显。由于变频器可以方便的实现软起动,因而可以有效地减少电动机启停时对电网的冲击,改善电源容量裕度。 2.系统改造方案 对于内蒙古丰泰发电有限公司引风机电机变频装置,北京天福力高科技中心根据招标书要求提供西门子罗宾康品牌完美无谐波系列(Perfect_Harmony)高压变频器。该系列变频采用若干个低压PWM变频功率单元串联的方式实现直接高压输出。 该变频器具有对电网谐波污染极小,输入功率因数高,输出波形质量好,不存在谐波引起的电机附加发热、 转矩脉动、噪音、dv/dt及共模电压等问题 的特性,不必加输出滤波器,就可以使用 普通的异步电机,包括国产电机。 2.1.主回路方案 如图一:K1、K2、K3组成旁路刀闸 柜;K2与K3互锁,K2闭合,K3断开, 电机变频运行;K2断开,K3闭合,电机

浅谈火力发电厂引风机改造的一些问题

浅谈火力发电厂引风机改造的一些问题 为了响应国家节能减排的号召,降低厂用电的消耗,提高经济效益,引风机和脱硫增压风机合并运行是现在大型火电企业的一个新趋势。我厂继#8号炉引风机和脱硫增压风机合并改造成功后于2011年五月继续对#7炉引风机进行改造。 由于#7号炉的引风机压头不够,所以必须进行改造。主要工作是拆除脱硫风机改风道直通,提高引风机的出口风压。#7号炉的引风机是上海鼓风机厂生产的TLT-SAF型动叶可调轴流风机,通过对轮毂尺寸和叶片的数量、尺寸进行改造以提高压头。原来引风机是16片叶片现增加到26片,轮毂直径增加到1884mm,但风机的下壳体尺寸和整体标高不变,电机进行增容。 面临的主要问题:改造工作的工期控制、各配合工种的协调等问题。 面临的主要难点:风机下壳体定位、电机定位、和轴系找正等。 电机增容对电机的底座没有影响故尺寸不变,所以风机还是利用原基础进行定位,以电机的基础为基准。风机下壳体的定位比较困难,因为电机的定子线圈增加,磁场中心未知,且电机在后期才到,风机本体只能在就位后等待电机的到货。因工期紧,不能电机空转后再定位本体及轴系找正,另外因灌桨问题及电机动力电缆未敷设好等等问题必须先找正、定位。 拆除前先做好原始记录以作参考,考虑到安装时尺寸定位不一样(在此不做详细说明)。由于原风机的轴承箱还要继续使用,所以必须尽快把轴承箱拆下交给厂家。在拆除原本体时,由于本体底脚螺栓还要继续使用,只能拆除螺母,因使用时间太长导致底脚螺栓很难拆,使用了除油漆、除

锈、固定螺杆等方法拆下螺母,拆除连轴器后,整体吊出本体机壳,对基础进行清理,因原基础的高度可能不一定适用新的风机本体,所以要对原二次灌浆进行局部清理,特别是对机壳定位有影响的要多次清理保证定位无阻碍,避免二次起吊,在清理基础上,对螺栓、螺母进行进一步清理,以保证顺利安装。 风机本体无整体底板,是分体式底板,除靠近的螺栓共用一块底板外,每个螺栓孔均只有一只底板,底板下部为校平螺钉,用以在定位时对高度和水平进行调整。 在风机本体及电机全部就位后,开始进行机壳定位,并同时进行电机找正。在风机下壳体就位后,我们根据电机的高度对下壳体大概进行高度定位,用校平螺钉支撑住下壳体,用手旋紧底脚固定螺栓,连接电动机和风机的二个刚挠性半联轴器,并在中间用中间轴相连接,在联接时一定要清理联轴器的结合面,因联轴器的结合面为凸凹型的,我们一般不找轴系的外围偏差,仅找开口偏差,两对联轴器各用4只螺栓对称上紧后,先大概找平轴系的左右开口,再找上下开口,在找正的过程中一定注意可能产生的热膨胀位移,主要是径向位移和轴向位移。 径向位移的消除一般采取叶轮端对轮开口上开口稍大些,电机端对轮开口下开口稍大些,这样在运行状态下,由于引风机的工作温度很高,导致风机本体产生热膨胀从而消除开口,保持轴系的精确,由于这种联轴器,是刚挠性联轴器,它是一种真正的平衡联轴器,它本身就能够平衡安装和运行时的误差,但是如果安装偏差太大的话,会大大影响其使用寿命,故我们在考虑径向误差时仅考虑放±0.15mm的开口误差。而轴向位移就必须

风机变频节能改造案例

风机变频节能改造案例 一、森兰变频恒压供风系统节能原理 1、恒压供风变频调速系统原理 说明:图中风机是输出环节,转速由变频器控制,实现变风量恒压控制。变频器接受PID调节器的信号对风机进行速度控制,控制器综合给定信号与反馈信号后,经PID调节,向变频器输出运转频率指令。压力传感器监测风口压力,并将其转换为控制其可接受的模拟信号,进行调节。 2、系统工作原理 变频调速恒压供风控制终极通过调节风机转速实现的,风机是供风的执行单元。通过调速能实现风压恒定是由风机特性决定的,风机特性见下图所示。图中,横坐标为风机风量Q,纵坐标为压力P。EA 为恒压线,n1、n2……nn是不同转速下的风量—压力特性。可见,在转速n1下,假如控制阀门的开度使风量从QA减少到QB,压力将沿n1曲线到达B点,很显然减少风量的同时进步了压力。假如转速由n1到n2,风量将QA减少到QC,而压力不变,由此可见,在一定范围,可以保持风压恒定的条件下,可以通过改变转速来调节风量,并且不改变风压。这种特性表明,调节风机转速,改变出风压力,改变风量,使压力稳定在恒压线上,就可以完成恒压供风。 二、250KW风机变频节能改造方案及功能 1、贵厂风机运行目前现状 现有风机一台,配套电机为250KW一台,工作电压380V,电流

460A,现采用阀门调节,控制供风风量、压力。这种调节方式既不方便,又浪费大量的电能,很轻易造成阀门及风机的损坏。 我公司经过多年对化工、轮胎行业的水泵、风机等设备的节能改造,积累了丰富的经验,具有雄厚的技术实力。 2、改造方案 现采用一台280KW森兰变频器控制一台250KW风机。 3、系统功能 A.风压任意设定,风压稳定且无波动 B.软启动软停机,对电网无冲击,无需电力增容 C.延长风机机械寿命 D.缺相,欠压,过流,过载,过热及堵转保护 E.节约电能,投资回收快 三、供风风机运用变频节能分析 1、现行实际运行功率(I实=350A) P运=√3UICOSω=√3×380×350×0.85=196kw W=196×320×24=1505280kwh 注:按一年320天运行计算 2、转速自动控制节能 A理论基础 因风机属于典型的平方转矩负载类型, 所以其功率(轴功率),转矩(压力),转速(风量)满足以下关系(相似定理):

引风机高压变频器改造研究

引风机高压变频器改造研究 发表时间:2014-12-02T14:31:05.810Z 来源:《价值工程》2014年第10月中旬供稿作者:刘斌[导读] 为减少故障和检修时间,延长锅炉引风机电机使用寿命,河北灵达环保电厂对锅炉引风机高压变频进行改造。 刘斌LIU Bin (河北灵达环保能源有限责任公司,石家庄051430)(Hebei Lingda Environment-friendly Energy Co.,Ltd.,Shijiazhuang 051430,China)摘要:为减少故障和检修时间,延长锅炉引风机电机使用寿命,河北灵达环保电厂对锅炉引风机高压变频进行改造。介绍了高压变频改造的必要性和实施方案,阐述了高压变频改造后的效果,对类似情况下的高压变频器具有指导意义。 Abstract: In order to reduce malfunctions and maintenance time and prolong the service life of boiler induced draft fan motor, HebeiLingda Environment-friendly Power Plant reforms the high-voltage frequency converter of boiler induced draft fan. This paper introducesthe necessity and implementation programmes of high-voltage frequency conversion, and describes the effect of high-voltage frequencyconversion reform, which is of guiding significance for high-voltage frequency converters in similar situations. 关键词院高压变频器;引风机;改造方案 Key words: high-voltage frequency converter;induced draft fan;improvement plan 中图分类号院TN77 文献标识码院A 文章编号院1006-4311(2014)29-0053-02 1 设备概况 目前我公司引风机电机规格为250KW 10000VYKK-450-2 型.变频器采用DFCVERT-MV 高压大功率变频器,自投运以来出现运行不稳定,故障率较高的状况,故障类型主要分为控制系统故障和硬件系统故障两类,控制系统方面主要有“单元系统通讯故障”,硬件方面主要有“单元缺相故障,旁通运行”、“单元直流过压”、“单元直流欠压”“单元系统通讯故障”由于是单机运行风险比较大,因此对变频器运行的可靠性要求非常高,在此基础上进行改造。 2 主控系统改造 2.1 改造目的 现有功率单元控制板故障率较高,经常出现单元直流过压问题就是控制板设置的保护定值漂移所致,究其原因是因为板件设置的电位器工作不稳定,且没有功率单元测温功能,当冷却风扇停运后跳高压开关,稳定性较差。 2.2 改造方案 2.2.1 更换硬件:主控板、光纤。 2.2.2 升级软件:PLC 软件、触摸屏、功率单元控制程序、296 升级到7058 配套软件,功率单元控制板和触摸屏修改软件程序。 2.2.3 实施方案 现有主控系统设备,包括主板及端子板、光通子板及母板、光纤拆除。 于升级现有功率单元控制板程序为122 控制板。盂将原连接功率单元和光通子板的光纤,由一对一改接同级三单元串联后连接主控板方式。榆根据硬件的变更,连接相应的二次连接线。虞对PLC 软件、触摸屏、功率单元控制程序进行升级,并将主板程序由296 升级到7058 配套软件。 2.3 改造前后效果对比 2.3.1 技术参数对比,如表1。 2.3.2逻辑功能对比,如表2。

变频器的远程控制及调速原理.

变频器远程控制及调速原理 -----唐玉龙 一、变频器的远程控制 什么是变频器远程控制器在许多变频器的应用现场,电机与操作室距离较远。如将变频器安装在现场,不便于工人的观察与操作;如安装在操作室内,则动力线拉的距离太远,成本高,且对变频器本身及系统中其他设备造成干扰。针对上述应用情况,我们开发研制了变频器远程控制器产品。变频器远程控制器是一种实现变频器远程操作的智能仪表,通过RS485网络远程控制变频器的启动、停止、加速、减速、正反转,并实时显示变频器的工作频率、转速等运行状态信息。单机通讯距离可达1200米(9600bps),有效减少变频器的干扰。这样就可将变频器安装在电动机附近,通过屏蔽通讯线接到远端操作室内仪表盘上的变频器远程控制器上,在操作室内就能观察和操作变频器的运行状态。另外,变频器远程控制器还可接外置操作按钮,有手动/自动切换及监听等功能,可接入计算机控制系统,便于工程使用。二、变频器远程控制器的种类和功能我们研发的变频器远程控制器根据变频器的不同可分为标准型和加强型;根据通讯方式的不同可分为有线通讯、无线通讯;根据不同的通讯协议也分别有相应的产品。如果没有通讯接口或无法知道其通讯协议的变频器,可在变频器一端接上我们的远端转换器,将模拟信号和开关信号通过485网络传送到远程控制器上。这样对没有通讯口或无法知道通讯协议的变频器也都能使用,真正实现变频器万能远程控制器的功能。 二、交流异步电动机变频调速原理 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。

引风机增容改造引风机技术协议精编

引风机增容改造引风机 技术协议精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

中国国电集团公司 国电民权发电有限公司1、2号机组引风机 增容改造引风机设备采购 技术协议 最终用户:国电民权发电有限公司 买方:国电国际经贸有限公司 卖方:成都电力机械厂 二〇一五年十二月

目录

1 总则 1.1本技术协议适用于国电民权发电有限公司1、2号机组烟气超低排放改造工程引风机增容改造工程中所用引风机及其附属设备改造的设计、性能、制造、包装和运输、现场安装指导、质量保证、调试、培训、文件等方面的技术要求。 1.2本技术协议包括引风机本体(含电机)及其驱动装置、辅助设备系统的功能设计、结构、性能和试验等方面的技术要求。本改造工程的范围为2台锅炉共4台引风机设备(每炉2台)。 1.3本技术协议所提出要求和供货范围都是最低限度的技术要求,并未对一切技术细节作出详细规定,也未充分引述有关标准和规范的条文。卖方须提供符合技术规范要求和现行中国或国际通用标准的功能齐全的优质产品及相应服务。 1.4卖方须提供高质量的设备。这些设备须是全新的、成熟可靠、技术先进的产品,且制造厂已有相同容量机组设备制造、运行的成功经验;同时满足国家的有关安全、职业健康、环保等强制性法规、标准的要求。相关产品如配套特种设备必须取得相关部门检验合格证。1.5凡在卖方设计范围之内的外购件或外购设备,卖方至少推荐2~3家同质量等级、性能可靠的优质产品供买方最终确认。卖方对供货范围内的所有设备(包括分包和外购设备)负有全责。 1.6在签订合同之后,到卖方开始制造之日的这段时间内,买方有权提出因参数、规范、标准和规程发生变化而产生的一些补充修改要求,卖方遵守这个要求,具体款项内容由双方共同商定。

锅炉房鼓引风机变频改造技术方案

锅炉房鼓引风机变频改造技术方案 一:施工依据 1.1 依据华东石油局安排,为华东石油局锅炉房鼓引风机变频改造。 1.2 本工程施工执行《电气装置安装工程电缆线路施工及验收规范(GB50168-92 )》 二:工程简介及主要工作量 2.1 本工程位于华东石油局试采大队腰滩大站站内。 2.2.新增上位机显示控制系统一套及两台锅炉鼓引风变频控制柜。 配电控制柜的功能:为整台锅炉设备提供电源,实现引风机变频闭环 控制、鼓风机变频闭环控制。 三、改造要求: 引风机根据炉膛负压值,闭环控制引风机变频器转速,鼓风机根据锅炉含氧量值,闭环控制鼓风机变频器转速,保证安全生产,炉排电机采用电磁调速。 四、改造方案 该项目有两个控制回路,人机界面采用国内流行的组态王系统,实现友好的人机操作界面。锅炉控制台控制系统内使用美国OPTO22 控制器,现场增加负压检测传感器、氧化锆检测仪表,液位传感器, 将炉膛负压控制相对稳定,同时将所控制含氧量数值控制在一定范 围,直观显示,具体改造方案如下: 1、增加上位机操作系统一套,内含锅炉OPTO22 控制系统,包括 工控机、显示器、界面组态系统。 2、增加锅炉控制操作台两台,内含变频器,电器元件,显示仪表, 手/ 自动操作切换旋钮等。 3、现场增加安装部分智能变送器(测炉膛负压,测含氧量值)。 4、现场增加蒸汽流量计,通过RS485 通讯连接到上位机,实时 显示蒸汽流量、蒸汽压力、蒸汽温度(现场如有,此处

可省略现场传感器部分) 5、完善锅炉的连锁保护系统。 五、系统组成: 1 、现场变送器 2、信号管,信号传输电缆 3、上位机显示操作 系统 4、OPTO2 2 控制系统 5、智能后备手操器, 6、现场执行 设备(变频器) 7、独立的接地系统。图(略) 四、控制方案原理 1、对于给定炉膛负压的情况下,对于一定的鼓风风量,需要调 节引风 机转速,使锅炉运行在最佳状态。见图二 反馈 图二:炉膛负压调节框图 2、对于给定风道含氧量值的情况下,对于一定的引风风量,需 要调节鼓风机转速,使锅炉运行在最佳状态。见图三 反馈 鼓风机变频器 图三:风道含氧量调节框图 给定负 压值 引风机变频器 给定含氧量值

高压变频技术改造可行性研究报告

概述 国家第十二个五年计划纲要中,提出了在满足社会经济持续发展需要前提下实行“节能减排”的政策。由于我国目前电源结构分布不合理,严重缺乏调峰电源,随着电力系统商业化运营的不断发展,各大型生产企业的节能降耗工作已成为降低用电成本、提高经济效益的重要措施之一。“节能减排”不仅是长期的基本国策,也成为一项必须为之的任务。 对一般工业生产企业而言,电机容量大、能耗高的辅机设备只能按定速的方式运行,功耗无法随机组负荷变化进行调整;只能采取改变挡板或阀门开度的方式调整辅机运行工况满足机组运行需要。因此,需要采用一种手段来及时地调节风机、水泵等辅机主设备的运行状态,改变其运行速度、频率、电压和功率等参数;使之既满足生产要求,又可以达到节能降耗、减少因调节挡板或阀门开度而造成的经济损失。目前,实现辅机调速的重要手段之一是采用变频技术。已在工业领域广泛使用的高压变频技术既可以满足辅机负荷变化的运行要求,又可以降低设备损耗、节约电能。 引风机是锅炉送引风系统的主要设备之一。通过控制引风机入口挡板开度调节引风量,维持炉膛负压在一定的范围内运行。如果炉膛负压太小,炉膛容易向外喷粉,既影响环境卫生,又可能危及设备和操作人员的安全;负压太大,炉膛漏风量增大,增加了引风机的电耗和烟气带来的热量损失。因此,控制引风量大小,稳定炉膛负压值,对保证锅炉安全、经济运行具有十分重要的意义。 二、存在的问题 XX集团XX球团厂,采用1台定速电动机带动引风机,靠液力耦合器调节引风量,以适应机组负荷变化。液力耦合器是液力传动元件,是利用液体的动能来传递功率的一种动力式液压传动装置,它相当于离心泵和涡轮泵的组合。将其安装在异步电机和负载(风机、水泵等)之间来传递转矩,可以在电机恒速运转情况下,无级调节负载的转速。液力耦合器是一种转差损耗的低效调速设备。在高压变频技术尚未成熟,尚未在工业中应用之前,液力耦合器在风机、水泵等调速节能方面曾有过较多的应用,发挥过其应有的作用。随着高压变频调速技术的日渐成熟及应用推广,液力耦合器也将逐步退出风机、泵类调速节能的市场。 相比较于高压变频装置,液力耦合器存在如下缺点: 1、高压变频器调速范围宽,达到10:1以上,甚至达到100:1;而调速型液力耦合器的调速范围最大为4:1。 2、高压变频器调速精度高达0.1Hz,而且稳定性高;液力耦合器调速精度差,转速波动大。 3、高压变频器效率高,无转差损耗,其效率达0.95以上,并且不随调速的范围而变化;液力耦合器效率低,其效率与调速比成正比,负载的转速越低,其效率越低。液力耦合器属转差损耗型调速,是低效调速设备,在调速的过程中转差功率以热能的形式耗损在油中。这不仅消耗了能量,而且使液力耦合器油温升高,为此必须采取妥善的冷却方式,否则威胁到液力耦合器安全,进而导致停机,影响生产。 4、高压变频器没有转差率问题,负载与电动机同轴,电机能达到额定转速,即电机转速与负载转速相同,能达到额定压力和额定风量。在电机结构允许的情况下,还可以超过额定转速运行;液力耦合器由于是柔性连接,存在着固定的转差率,即液力耦合器的转差率≥3%,所以负载的转速不可能达到电机的转速,最高只能达到电机转速的97%,因此负载(风机)就不能达到额定输出,其压力最高只能达到额定压力的94%,而风量最高只能达到额定值的91%左右。 5、高压变频器具有真正意义上的软启动功能,它可以使启动电流保持在额定电流之以内,不会对电网造成冲击,也不会对所传动的负载造成机械上的冲击,是最理想的软启动设备;液力耦合器属于直接起动类型,电动机的起动电流约为额定电流的4-7倍,易对电网造成冲击,特别是电网容量受限而电机容量较大时。 6、高压变频器可靠性高,故障率低,维修工作量小,这在众多高压变频器应用中得到证实;液力

引风机变频器的应用

引风机变频器的应用 姬三菊韩洪轩 (华能济宁运河发电有限公司,山东济宁272057) 运河电厂二期#5、6机组为330MW亚临界压力一次中间再热控制循环汽包锅炉,两台引风机原采用静叶调节,耗电量大,开度较大时线性差,引起炉膛负压波动大。针对存在的问题,2008年3月利用#5机大修机会,通过比较,#5炉引风机改为变频调节,采用北京利德华福HARSVERT-A高压变频调速系统。 利德华福HARSVERT-A高压变频调速系统,以高可靠性、易操作、高性能为设计目标,满足用户对于风机、水泵类机械调速节能、改善生产工艺的迫切需要。本调速系统适配各种通用三相异步电机。利德华福HARSVERT-A高压变频调速系统采用新型IGBT功率器件,全数字化微机控制,具有以下特点:高-高电压源型变频调速系统,直接3、6、10kV输入,直接3、6、10kV输出,无须输出变压器;输入功率因数高,电流谐波少,无须功率因数补偿/谐波抑制装置;输出阶梯正弦PWM波形,无须输出滤波装置,可接普通电机,对电缆、电机绝缘无损害,电机谐波少,减少轴承、叶片的机械振动,电机无附加发热,输出线可以长达1000米;标准操作面板配置或彩色液晶屏全中文操作界面;变频器对电网电压波动有极强的适应能力,在+10%— -10%范围内变频器能满载工作,可以承受35%的电网电压下降而降额继续运行,电网瞬时失电5个周期可满载运行不跳闸等。 HARSVERT-A高压变频调速系统的结构,由移相变压器、功率单元和控制器组成。我公司厂用电系统采用6kV 电压等级,有15个功率单元,每5个功率单元串联构成一相。每个功率单元结构上完全一致,可以互换,其电路结构为基本的交-直-交单相逆变电路,整流侧为二极管三相全桥,通过对IGBT 逆变桥进行正弦PWM控制,可得到需要的波形。 输入侧由移相变压器给每个单元供电,移相变压器的副边绕组分为三组,对6kV系列,构成30脉冲整流方式,这种多级移相叠加的整流方式可以大大改善网侧的电流波形,使其负载下的网侧功率因数接近1。另外,由于变压器副边绕组的独立性,使每个功率单元的主回路相对独立,类似常规低压变频器,便于采用现有的成熟技术。 输出侧由每个单元的U、V输出端子相互串接而成星型接法给电机供电,通过对每个单元的PWM波形进行重组,可得到阶梯PWM波形。这种波形正弦度好,dv/dt小,可减少对电缆和电机的绝缘损坏,无须输出滤波器就可以使输出电缆长度很长,电机不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗大大减少,消除了由此引起的机械振动,减小了轴承和叶片的机械应力。当某一个单元出现故障时,通过使继电器K闭合,可将此单元旁路出系统而不影响其他单元的运行,变频器可持续降额运行;如此可减少很多场合下停机造成的损失。 控制器核心由高速单片机来实现,精心设计的算法可以保证电机达到最优的运行性能。控制器还包括一台内置的PLC,用于柜体内开关信号的逻辑处理,以及与现场各种操作信号和状态信号的协调,增强了系统的灵活性。控制器结构上采用VME标准箱体结构,各控制单元板采用FPGA、CPLD等大规模集成电路和表面焊接技术,系统具有极高的可靠性。另外,控制器与功率单元之间采用光纤通讯技术,

关于引风机电机变频改造的方案

关于引风机电机变频改造的方案 一、引风机电机运行现状 热电公司两台130T/H锅炉所配置的两台引风机额定功率为560KW,平均消耗功率约为401KW,月耗电约30万度,其运行参数如下: 二、原一次风机变频改造效果分析及引风机变频改造的必要性 (一)原两台一次风机变频改造效果分析 2007年10月在进行变频改造前公司专业技术人员对锅炉两台一次风机的运行情况进行了调查,其运行情况如下: 运行工况:通过调节风门开度来调节风量,从而达到调节锅炉负荷的目的,锅炉负荷小范围变化对电机功率消耗影响不大。但由于3#锅炉与4#锅炉在带负荷特性上有些差异,所以在同负荷情况下其风量要求不一样(3#炉风量>4#炉风量),其电机消耗功率也不一样。 平均运行电流3#炉I3:67A 4#炉I4:63A 额定电压U:6KV 平均运行功率: 3#炉P3 =1.732*平均运行电流*额定电压*功率因数 =1.732*67*6*0.85=595(KW) 4#炉P4=1.732*平均运行电流*额定电压*功率因数 =1.732*63*6*0.85=554(KW)

加装变频装置后,其运行情况如下: 运行工况:风门全开,通过调节风机电机的输入电压频率来改变电机的转速来调节风量,从而达到调节锅炉负荷的目的,锅炉负荷变化对电机功率消耗影响较大。 平均运行电流:3#炉I3:45A 4#炉I4:39A 额定电压U:6KV 平均运行功率: 3#炉P3变=1.732*平均运行电流*额定电压*功率因数 =1.732*45*6*0.85=397(KW) 4#炉P4变=1.732*平均运行电流*额定电压*功率因数 =1.732*39*6*0.85=344(KW) 从以上统计数据我们可以得出: 平均节省电量:3#炉P3省= P3-P3变=595-397=198(KW) 4#炉P4省= P4-P4变=554-344=210(KW) 节电率:3#炉= P3省/P3*100%=198/595*100%=33% 4#炉= P4省/P4*100%=210/554*100%=38% 以2008年3月至2009年3月这一时间段为例,3#炉运行4309小时,4#炉运行5563小时,电价按0.41元/度计算,节省电量和电费为: 3#炉总节省电量=运行时间*平均节省电量=4309*198=85.3182万度总节省电费=节省电量*电价=85.3182*0.41=34.9804万元4#炉总节省电量=运行时间*平均节省电量=5563*210=116.823万度总节省电费=节省电量*电价=116.823*0.41=47.8974万元两台共节省电量和电费为: 总节省电量=3#炉总节省电量+4#炉总节省电量 =85.3182+116.823=202.1412万度 总节省电费=3#炉总节省电费+4#炉总节省电费 =34.9804+47.8974=82.8778万元 (二)引风机电机变频改造的必要性 公司电气专业技术人员通过对该两台风机电机运行数据的分析,发现该两台

相关主题
文本预览
相关文档 最新文档