当前位置:文档之家› 沼气净化

沼气净化

沼气净化
沼气净化

沼气净化

天然的沼气是一种低热值气体,使用范围极其有限,且效率低,一些国家现有的沼气工业主要将沼气应用于改良的炉灶与发动机使其产热或发电,作为能源供当地用户使用。而沼气经纯化后则可提高其成分中甲烷的相对含量,增加其热值,纯化后的沼气目前在国外主要是作为一种新型的能源用于管网供能或作为机动车燃料。沼气纯化的主要过程包括: 脱除硫化氢、二氧化碳和水及其他不助燃的杂质。

1 沼气中H2S的去除

H2S总是存在于沼气中,尽管其含量因为发酵原料的不同有所变化,但是必须予以去除,以免腐蚀压缩机、气体储存罐和发动机。H2S可以和大部分金属反应,并且随着浓度和压力的变化反应也会改变。由于H2S的存在会导致很多问题,如沼气含有一定量的硫化氢,有时也含极少量的有机硫,硫化氢是剧毒的有害物质,空气中含0.1%的硫化氢数秒内可使人致命。它对输气管、仪器仪表、燃烧设备有很强腐蚀作用,其燃烧产物二氧化硫也是一种腐蚀性很强的气体,同时进入大气能产生“酸雨”。为保证人体健康和保护大气环境,延长燃气设备等的使用寿命,必须在沼气净化过程中尽早予以进行脱硫。

1.1 干法脱硫

干法脱硫常用于低含硫气体的处理,常用方法有活性炭法、膜分离法、变压吸附(PSA)法和不可再生的固定床吸附法等。沼气脱硫常用不可再生固定床吸附法,其方法有很多,从物系上大致可分为铁系、锌系、活性炭等,常用于低含硫气体的精脱过程。

目前,国内脱硫技术已比较成熟,脱硫方法及脱硫工艺众多,但是都存在着以下缺点:干法脱硫效率不高,脱硫剂再生困难,硫容相对较低,操作不连续、更换脱硫剂劳动强度大以及装置占地面积大等缺点,主要适用于精细脱硫。

1.1.1 活性炭法

活性炭与其他吸附剂(如分子筛)相比所具有的优点是发达的比表面、微孔结构、热稳定性,能选择性的脱除液相或气相中某些化学、在湿气中高的吸附容量以及价格低廉等。它在常温下具有加速H2S氧化为硫的催化作用并使之被吸附。吸附在活性炭上的硫,可用质量分数为12%—14%的硫化铵溶液萃取活性炭上的游离硫而得到回收。

活性炭法适用于H2S含量小于0.3%的沼气的脱硫要求,故可以考虑使用活性炭法来净

化大中型沼气工程的沼气。具有关在天然气中的脱硫化氢试验研究表明,其脱硫率可达99%以上,净化后气体的H2S含量小于10×10—6g/m3。其优点在于简单的操作便可以得到纯净度高的硫,如果选择合适的活性炭,还可以除去有机硫化物。H2S与活性炭的反应快(活性炭吸附H2S的速度比氢氧化铁的快)、接触时间短、处理气量大。

如采用双床活性炭系统,还具有以下优点:当两个吸附床串联工作,在第一个吸附床吸附H2S时另一个吸附床并不起作用。当第一个吸附床吸附饱和时,H2S会穿过进入第二个吸附床被吸附。当第一个吸附床流出的H2S的含量等于进气中的H2S含量时,更换第一个吸附床的活性炭。更换后,新的吸附床作为第二个活性炭床继续工作。这种工作方式能够最大限度地利用活性炭进行吸附。

1.1.2 膜分离法

20世纪70年代开始,世界上许多国家对膜分离技术用于气体分离进行了工业试验。该方法方便灵活,能够适应各种操作条件变化,处理费用相对较低,因此,膜分离法用于分离大量的H2S及CO2,具有很大潜力,而且对环境影响小。尽管膜分离法有其内在的优点,但至今尚未在工业上广泛应用,主要原因是复杂的制膜工艺使得膜系统造价昂贵。此外在工业条件下,分离膜的性能也不够稳定。

1.1.3 氧化铁吸收法

氧化铁吸收法是将Fe2O3屑(或粉)和木屑混合制成脱硫剂,以湿态(含水40%左右)填充于脱硫装置内。Fe2O3脱硫剂为条状多孔结构固体,对H2S能进行快速的不可逆化学吸附,数秒内可将H2S脱除到1ppm以下。

采用氧化铁法脱硫时,沼气中的硫化氢在固体氧化铁的表面进行化学反应,沼气在脱硫器内的流速越小,接触时间越长,反应进行得越充分,脱硫效果也就越好。脱硫剂工作一定时间后,其活性会逐渐下降,脱硫效果逐渐变差。一般情况下,当脱硫装置出口沼气中H2S 的含量超过20mg·m-3时,就需要对脱硫剂进行处理;当脱硫剂中硫未达到30%时,脱硫剂可进行再生,将失去活性的脱硫剂与空气接触,把硫化铁氧化析出硫磺,即可使失效的脱硫剂再生;当脱硫剂中的硫化铁质量分数达到30%以上时,脱硫效果明显变差,脱硫剂不能继续使用,就要更换新脱硫剂。

氧化铁法的优点是Fe3+具有相当高的氧化还原电位,能够将S2-转化为单质硫,又不能将单质硫进一步氧化为硫酸盐;在硫化氢的吸收过程中所生成的单质硫颗粒对整个吸收过程具有催化作用;此外氧化铁资源丰富,价廉易得,是目前使用最多的沼气脱硫方法。但其缺点是脱硫剂的吸收与再生需交替进行,从而增加了劳动强度,影响了设备运行的连续性。

将上述的氧化铁脱硫剂改用氧化锌作为脱硫剂,就形成了氧化锌法沼气脱硫净化法。氧化锌还具有部分转化吸收的功能,能将CO2、CS2等有机硫部分转化成硫化氢而吸收脱除。由于生成的ZnS难离解,且脱硫精度高,脱硫后的气体含硫量在0.1×10—6mg/m3以下。所以一直应用于精脱硫过程。氧化锌法沼气脱硫净化技术与氧化铁法相比,其脱硫效率极高,吸附H2S的速度快。氧化锌脱硫能力随温度增加而增加,但脱除H2S在较低温度下(200℃)即可进行,从而节约了能耗成本。该方法适合于处理H2S浓度较低的气体,脱硫效率高,据其在工业煤气脱硫净化中的试验研究表明,其脱硫率可达99%。

但氧化锌法脱硫后一般不能用简单的办法来回复脱硫能力,而且目前氧化锌在常温下硫容低,且价格昂贵。

1.1.5 铁锰锌复合氧化物吸收法

铁锰锌复合氧化物是一种新型催化剂,可称MF.1型脱硫剂,用于大型氨厂和甲醇厂的原料脱硫。这种催化剂以含铁、锰、锌等氧化物为主要活性组分,添加少量助催化剂及润滑剂等加工成型。

铁锰锌复合氧化物脱硫法的优点如下:1、脱硫费用省,它的操作费用比通用的一些方法都省;2、效果好,脱硫精度高可将天然气中总脱硫至0.5×10—6以下;3、设备简单,运行稳定,操作弹性大;4、压力降小,即使入口天然气的总压低至1kg/cm2(表压),也不致引起减产停车;5、脱硫原理为热化学反应,在脱硫过程中,气体中的活性组分反应生成稳定地金属硫化物,对环境无二次污染。

铁、锰、锌混合氧化物脱硫法的缺点是脱硫需加热设备。从反应机理上来研究,铁、锰、锌混合氧化物脱硫法也可应用于大中型沼气的脱硫净化,但具体的工艺、数据尚有待进一步深入研究。

1.2 湿法脱硫

湿法脱硫有直接氧化法、化学吸收法、化学氧化法、物理吸收法。目前国内常用的主要是直接氧化法脱硫,将硫化氢在液相中氧化成单质硫,流程比较简单,可以直接得到单质硫。这种方法主要用于处理量大、硫化氢浓度较低而二氧化碳浓度较高的气体。湿法脱硫的处理溶液循环量大、回收硫的处理量大、脱硫效率高、可连续操作,适用于脱硫量<10t/d的气体。但投资运行费用也高,沼气利用一般用户难以承受。

其中化学氧化法是通过氧化剂将硫化物转化为单质硫。如果采用氧化剂的氧化还原电位过高,产物中单质硫会进一步被转化为硫酸盐,使得脱硫不彻底,从而影响脱硫的效率。

本方法采用碳酸钠溶液吸收酸性气体,由于弱酸性的缓冲作用,pH不会很快发生变化,保证了系统的操作稳定性。此外,碳酸钠溶液吸收H2S比吸收CO2快,由于在沼气中这两种酸性气体同时存在,可以部分地选择吸收H2S。该法通常用于从气体中脱除大量CO2,也可以用来脱除含CO2和硫化氢的天然气及沼气中的酸性气体,净化气中硫化氢质量浓度下降到20mg/m3。

该方法的主要优点是设备简单、经济。主要缺点是一部分碳酸钠变成了重碳酸钠而使吸收效率降低,一部分变成硫酸盐而被消耗,因而需要及时补充碳酸钠,从而增加人力成本;实际运行中碳酸钠溶液的吸收受到流速、流量、温度等因素的影响,H2S的溶解度很可能达不到100%;此外,脱硫时易形成NaHS而非Na2S,NaHS再生时会与O2反应生成硫酸盐和硫代硫酸盐,有害物质在吸收液中富集,并使溶液的吸收能力降低,从而需不定期的排除脱硫循环液,浪费了大量的原辅材料也可能带来二次环境污染。

1.2.2 氨水吸收法

采用碱性的氨水吸收沼气中的硫化氢,第一阶段是物理溶解过程,气体中硫化氢溶解于氨水;第二阶段是化学吸收过程,溶解的硫化氢和氢氧化铵起中和反应。再生方法是往含硫氢化铵的溶液中吹入空气,以产生吸收反应的逆过程,使硫化氢气体解析出来。解析后的氢氧化铵溶液经补充新鲜氨水后,继续用于吸收;再生时产生的硫化氢必须进行二次加工,避免造成环境污染。如采用氨水液相催化脱硫,借助溶液对苯二酚的氧化作用,使硫化氢氧化成元素硫而被分离,同时溶液获得再生。

该方法的缺点是生成的硫颗粒由于比较细,不易过滤回收,对填料和器壁附着力强,塔内易形成硫堵影响生产,此外氨法采用氨水作吸收剂,对设备腐蚀较大,且污染环境。

1.2.3 萘醌氧化—空气再生法脱硫法

有研究表明,某些醌系物具有将硫化氢转化为单质硫的能力,因为它们具有合适的氧化还原电位,但由于各自特殊的物理性质和化学性质,并不是所有醌系物都适合于工程的应用。另外,在沼气中含有浓度较高的二氧化碳,副反应的发生也使得这些物质的应用受到了一定程度的限制。萘醌作为醌系物中的一种物质,具有足够高的氧化还原电位,溶于水,常温下不升华,不挥发,而且在作为氧化剂氧化硫化氢的过程中不受二氧化碳的影响。

萘醌脱硫效率很高且不受温度的影响,在常温条件下就可以接近100%完成。另外,该方法还适用于气态硫化氢向单质硫的转化过程,因此可以广泛应用于化工厂,炼油厂及污水的厌氧处理设施的脱硫过程。但采用萘醌脱硫时需注意的是随着单质硫的分离会有部分萘醌

的流失,为了维持吸收剂的平衡需要向系统中不断补充吸收剂,因为萘醌的价格比较贵,所以萘醌法脱硫并没有得到广泛应用。

1.2.4 HPAS 氧化—空气再生法脱硫法

HPAS氧化—空气再生法是以Na3PMo12O40和NaCl,Na2CO3,以及NaNO3组成的混合物溶液为吸附剂,在常温下将硫化氢转化为单质硫。经过絮凝、重力分离后得到硫污泥。还原态HPAS在空气中氧的作用下转化为氧化态HPAS并循环使用。

在该方法中,HPAS具有合适的氧化还原电位,使得它能够恰好将硫化氢转化为单质硫,自身又能够通过接触空气再生。为了提高吸收剂的吸收效率和再生效率,需要加入少量的碳酸钠和氯化钠。此外,吸收过程和再生过程几乎不受温度影响,常温下即可完成。不足的是该方法同样存在吸收剂流失的问题,需要不断补充吸收剂以保证系统的正常运行。截至目前,该方法还处在相关的研究阶段,尚无实际应用的报道。

1.2.5 Zn/Fe体系湿法催化氧化法

该方法采用含Zn和Fe的混合溶液作脱硫剂,通过Zn与溶液中溶解的S反应,以低溶度积的ZnS沉淀的形式实现H2S的高效脱除;然后溶液中的Fe将ZnS氧化为高纯度的元素硫,并释放Zn循环脱硫;定期氧化再生活性组分Fe,同时将元素硫人工分离,脱硫体系完全还原,循环使用。全过程相当于液相催化反应H2S=S+H2,可见进入脱硫器的硫化氢最终以硫磺和氢气的形式予以脱除,不在反应器中积累,因而具有脱硫容量大的优点。

全过程不消耗任何化工原料,活性组分无降解。其主要优特点如下:1、Zn/Fe体系湿法催化氧化脱除沼气中H2S的新方法,在实验室的优化操作条件下脱硫效率达到99.6%以上;2、该体系脱硫受初始pH和气液接触时间的影响较大;3、脱硫液可以进行吸收—再生循环利用,产物硫磺易分离,脱硫容量大,再生方便,运行成本低;4、工艺、设备简单,操作弹性大,试剂价廉易得,过程除消耗电能外不消耗任何化工原料,不会产生二次污染,体系无降解问题。

1.2.6 三氯化铁吸收—电化学再生脱硫法

由于Fe3+具有独特的化学性质以及其在脱硫过程的独特特点,利用三氯化铁作为吸收剂脱硫技术倍受研究人员的关注。近年来采用电解电化学给三氯化铁吸收电化学再生脱硫技术带来了新影响。三氯化铁吸收—电化学再生方法脱硫过程如下:

吸收过程:H2S(g)—— H2S(aq)

H2S(aq) + Fe3+(aq)——Fe2+(aq) + S(s) ↓

再生过程:Fe2+(aq)—2e——Fe3+(aq) (阴极反应)

有实验室研究表明,在室温15℃、2分钟的吸收时间的情况下,硫化氢的吸收率可以达到85 %~92 %,并且不受二氧化碳和氨的影响。再生阶段在经过特殊配置的电解电化学反应器内部完成。

该法具有如下优特点:再生速度快,没有对环境产生不良影响的副产品生成,铁盐价格便宜,降低了成本,还可以利用钢渣中的铁作为吸收剂的补充,在硫的混凝、重力分离过程中吸收剂的流失几乎不影响整个工艺的运行成本。此外,整个工艺的各个环节容易控制。1.3 生物脱硫法

生物脱硫是替代化学脱硫的一种新技术,它能够在很多方面克服化学脱硫的不足。在生物脱硫过程中,涉及两大类微生物,即光能自养型微生物和化能自养型微生物。

光能自养型微生物主要指含有光合色素、可进行光能营养的硫细菌,它们从光获得能量,依靠体内的光合色素,通过光合作用同化二氧化碳。光能自养型硫细菌在进行光合作用时,能以H2S作为同化CO2的供氢体,H2S被氧化为硫或近一步氧化为硫酸,它们大都是厌氧菌,能代谢硫化物的光能自养型微生物主要有绿色硫细菌和紫色硫细菌。其中,绿色硫细菌是一种严格厌氧的光能自养型微生物。在光照和无机营养物质存在的情况下,绿色硫细菌可以利用CO2合成新的细胞物质,同时这种微生物的脱硫效率高,并且代谢产物单质硫释放在细胞外部,比较容易分离。

但是,光合细菌在转化过程中需要大量的辐射能,在经济技术上难以实现。因为废水中生成硫的微颗粒后,附着在细胞外,废水将变得混浊,透光率将大大降低,从而影响脱硫效率。另外,光合细菌处理负荷偏低,水力停留时间长,要求光照与厌氧等苛刻条件,研究进展不大,仍处于分批试验或实验室小试的探索阶段。此外,脱硫效果与光照强度之间存在的关系是光照不足影响脱硫效果,光照过剩导致SO42-的生成,只有在光照适宜的条件下,硫化物才能完全的转化为单质硫而无SO42-产生,所以,在采用绿色硫细菌脱硫过程中必须严格控制反应条件。

化能自养菌属于无色硫细菌(还包括化能异养菌),其中化能自养型微生物以CO2为碳源,同时在氧化S2-的过程中获得能量。在有机碳源存在的情况下,部分种类的自养微生物可以利用有机体碳源进行异养代谢。生存于含硫水体中的贝氏硫菌属和发硫菌属的丝状硫磺细菌也能将H2S氧化为元素硫,既可以在有氧的条件下进行,也可以在无氧的条件下进行。在有氧的情况下氧作为电子受体,而在无氧的情况下可以利用硝化物作为电子受体。很多化能自养型微生物都能以单质硫、H2S、硫代硫酸盐以及有机硫化物为电子供体。

在硫细菌的微生物类群中,并非所有的硫细菌都能够用于硫化物氧化。由于有些硫细菌

将产生的硫积累于细胞内部,此外杂菌生长还会造成反应器中的污泥膨胀,从而影响单质硫的分离。如果单质硫不能及时得到分离,就存在进一步氧化的问题,从而影响脱硫效率,所以在脱硫单元运行的过程中,还必须严格控制反应条件,以控制这类微生物的优势生长。1.3.1 谢尔—帕克(Shell-Paques)脱硫技术

谢尔—帕克(Shell-Paques)脱硫技术工艺原理其反应的基本原理是将含H2S的沼气和含有化能自养型微生物的苏打水溶液进行接触,H2S被碱性溶剂吸收后,经微生物催化生成单质硫或硫酸盐。

目前,谢尔—帕克工艺是全球比较成熟的脱硫技术之一,具有以下优点:1、安全:整个生物脱硫系统是封闭运行的,且沼气中的H2S被完全吸收,在吸收器的下游没有游离的H2S,不会有中毒和伤亡事件,无环境污染;2、节省:该技术所要的投资少,其主要设备和仪器数量少。运行成本低,生产所需的操作人员少,减少人力成本;不需要化学催化剂,生物催化剂不会失活,它自动再生,无须更换,运行中所需化学药品少,节约生产成本;该工艺的操作成本、维护费用均很低;3、高效:运用该技术保证脱硫后的天然气中H2S含量小于4ppmv;而且操作弹性大,适应H2S浓度范围50ppmv—100vol%,压力范围1—100barg,具有很高的灵活性,能适应H2S高峰负荷;4、该技术的工艺流程简单,控制系统和监测系统很少,没有复杂的控制回路,操作维护简单方便。适用于对含H2S浓度高的小型气田,更经济,效益更好;而且运用该技术的装置性能稳定,工艺可靠,经济效益好。

1.3.2 铁盐吸收生物脱硫法

铁盐吸收生物脱硫法的基本原理是在吸收阶段H2S被Fe3+氧化成单质硫,而后在酸性条件下(pH=1.2—1.8)借助氧化亚铁硫杆菌的代谢,将Fe2+转化Fe3+,并循环到吸收阶段重复利用。

Fe3+具有相当高的氧化还原电位,能够将H2S转化为单质硫,又不能将单质硫进一步氧化为硫酸盐。所生成的单质硫通过分离后回收,而后的Fe2+又通过氧化亚铁硫杆菌代谢为Fe3+,并循环使用。因此,大多数研究人员认为此方法能耗低、投资少、废物排放少,更适合沼气脱硫的过程。

在严格控制供氧的条件下,利用化能自养型微生物去除沼气中的H2S具有很广阔的市场应用前景,尤其是两阶段脱硫工艺,已经有了工程应用的先例(谢尔—帕克工艺)。该工艺具有不影响沼气的回收利用,不产生新的环境污染等特点。另外,以铁盐吸收脱出H2S,然后用生物氧化再生铁盐吸收液,使铁盐再生的方法近年来成为新的研究热点。

2 沼气中CO2的去除

沼气的净化要去除沼气中CO2是因为CO2降低了沼气的能量密度,如果所用的沼气需要达到天然气标准或者被用作汽车燃料,那么就必须对其中的CO2进行去除;如果只作为一般的没有特殊要求的用途,就没有必要脱除CO2。通过去除CO2可以提高单位体积气体的能量值,此外,去除CO2也可以提高沼气品质,沼气中的脱碳方法主要是液体吸收法和固体吸附法,液体吸收法分为两大类:一类是物理吸收法,不同的溶剂吸收CO2的能力不同,最终达到的纯化度也不一样,但一般都比化学吸收的纯化度低。物理吸收法的优点是理论上吸收能力是无限的。另一类是化学吸收法,化学吸收法在不太高的压力下就可将气体中的CO2精制到很高的程度。但用化学吸收时,当化学吸收剂完全反应完后就不再具有吸收CO2的特性,所以化学吸收剂的吸收能力是有限的。

2.1 物理吸收法

采用物理溶剂吸收CO2,没有形成新的化合物。其中一种方法采用甲醇作为吸收剂。工艺特点是不会加湿原料气并且再生能耗低。在再生阶段,CO2从物理溶剂中闪蒸出来,贫溶剂用泵打回吸收塔。物理溶剂吸收法特别适合重烃含量少的贫气,这是因为甲烷在甲醇中的溶解度只是CO2在甲醇中溶解度的40%,而丙烷在甲醇中的溶解度与CO2的相近,因此需要一循环系统以提高气体的回收率。物理溶剂吸收法还可采用无水碳酸丙烯脂等溶剂。但从目前的大中型沼气工程的投资和效益来考虑,还是不适用的。

2.1.1 水洗法

水洗法是利用CO2和H2S在水中溶解度与甲烷的差异,通过物理吸收过程,实现CO2和H2S与甲烷的分离。通常沼气经压缩后从吸收柱底部进入,水从顶部进入进行反相流动吸收。为提高CO2在水中的溶解度,水洗工艺一般采用较高压力,吸收了CO2和H2S的水可以再生循环使用,可以在吸收柱中通过减压或者用空气吹脱再生,增加了运行成本。吸收过程需要大量纯化工业用水,产生的废水需进行回收处理,净化后气体也需干燥处理,设备比较复杂。此外,当水中的H2S浓度比较高的时候,一般不推荐使用空气吹脱,因为水很快又会被硫污染。如果有废水可以利用,不推荐对水进行再生。

2.1.2 聚乙二醇洗涤法

聚乙二醇洗涤和水洗一样也是一个物理吸收过程。现多采用一种商品名为Selexol的溶剂,主要成份为二甲基聚乙烯乙二醇(DM PEG)。和在水中一样,CO2和H2S在Selexol中的溶解度比甲烷大,不同之处是CO2和H2S在Selexol中溶解度比水中大,这样所需Selexol 的量也会减少,更加经济和节能。另外,水和卤化烃(填埋场沼气中的成份)也可以用Selexol

洗涤去除。可以再生重复使用可以使用水蒸汽或者惰性气体(净化后的沼气和天然气)吹脱Selexol中的元素硫,但是不推荐使用空气。

2.1.3 膜分离法

气体膜分离技术的基本原理是根据混合气体中各组分在压力的推动下透过膜的传递速率不同,从而达到分离的目的。膜法分离主要有两种方法,一种是膜的两边都是气相的高压气体分离;另一种是通过液体吸收扩散穿过膜的分子的低压气相—液相吸收分离。

2.1.

3.1 高压气相分离法

将压缩到36×105Pa的沼气首先通过活性炭床以去除卤化烃和H2S,接着通入滤床和加热器。膜是由醋酸纤维素制成,可以用来分离像CO2,水蒸汽和残留的H2S等极性分子,它有一定的选择性,即在不同的区域吸收H2S和CO2,但不能分离甲烷中的N2。

经验表明,膜可以持续使用三年,在使用一年半后,因为萎缩的缘故,膜的渗透性会减少30%。

2.1.

3.2 气相—液相吸收膜分离法

气相—液相吸收膜工艺最近才被用在沼气净化上,其实质是沼气中的H2S和CO2分子穿过一个多孔的疏水膜在液相中被吸收去除,从吸收膜下方进入的气体,其中的H2S和CO2分子能够扩散穿过膜,然后被相反方向流过的液体吸收,吸收膜在一个标准大气压下工作。在25—35℃,可以非常有效地把沼气中的H2S浓度从2%减少到小于250ppm,液相的吸收剂可以用NaOH溶液。

由于气体分离效率多受膜材料、气体组成、压差、分离系数以及温度等多种因素的影响,且对原料气的清洁度有一定要求,膜组件价格昂贵,膜分离法中使用的膜需要经常更换,运行成本较高,因此气体膜分离法一般不单独使用,常和溶剂吸收、变压吸附、深冷分离、渗透蒸发等工艺联合使用。

2.2 化学吸收法

化学吸收法是利用二氧化碳和吸收液之间的化学反应将二氧化碳从排气中分离出来的方法,常用的有热钾碱法、有机胺吸收法、石灰水溶液吸收法、氨水法等。化学吸收法设备成本低、操作简便、净化效果好,但能耗较高,存在废液处理问题,而且常用的吸收剂有机胺在一定程度上存在着毒性,不利于吸收的二氧化碳再利用。

2.2.1 热钾碱吸收法

热钾碱法是有效去除二氧化碳的方法,特别适合低含或不含H2S的气体(沼气),其原理为利用少量有机物或大量无机物作为热碳酸钾法的活化剂,以去除二氧化碳。吸收和再生

反应式如下:吸收二氧化碳过程,溶剂再生过程。由于反应为可逆反应,所以其吸收二氧化碳效率相对较低,若要提高其吸收量需加大容器体积,而且经气水分离出的CO2气体可能含有极微量对人体有害的砷化物,并有特殊的气味,必须加以清除。可以利用KMnO4、Na2CO3、分子筛、活性炭等化学或物理吸附去除。所以采用热钾碱法时要采用过滤程序使其产生的有害物质脱除。

热钾碱法的缺点是气体不仅被加湿,而且还被加热,这可能引起相当大的热量浪费,特别是下游气体要冷却以分离NGL或LPG,热钾碱也不是很活泼,所以,当产品要求的CO2浓度低对就需要两级吸收。热钾碱法最适合于从高浓度的原料气中大量脱除CO2,另一个好处是吸收剂成本相对低。

2.2.2 石灰水溶液吸收法

石灰水溶液吸收法脱除沼气中的二氧化碳,主要利用二氧化碳与氢氧化钙水溶液生成碳酸钙沉淀,从而去除沼气中的二氧化碳。这种工艺的特点是成本较低,相对来说石灰的成本也较低。所以脱除二氧化碳的原料获取方便,成本低。净化产物是碳酸钙和水,没有造成二次污染。所以,采用石灰水溶液脱除沼气中的二氧化碳是一种较为经济和有前途的方法。2.2.3 氨水法吸收

氨水法既可以除掉CO2,又可以除掉H2S。具体内容可见前文,其主要缺点是脱硫过程要在加压装置下完成,这就增加了运行成本。

2.2.4 有机胺吸收法

最普遍的溶剂是胺基溶剂,许多化合物都利用它来脱除酸性气体,如一乙醇胺(MEA)、二乙醇胺(DEA)、三乙醇胺(TEA)和二异丙醇胺(DIPA),它们活性强而不仅限于CO2脱除。这些胺类溶剂也适合脱除其他酸性种类,如H2S。目前主要溶剂是甲基二乙醇胺(MEDA),如果其他杂质需要脱除,可以由更具活性的二胺激活。采用MEDA的其他优点是降低了再生负荷,降低了腐蚀性和提高了抗降解性.低的胺类蒸汽压可以使其在较高的浓度下操作,因而提高了富胺的负荷。其他具有位阻效应的胺有二甘酵胺和二异丙醇胺。从再生能耗和溶剂受原料气杂质影响的敏感性上去判断以甲基二乙醇胺(MDEA)为基础的工艺具有胺类溶剂的低挥发度和可利用中间闪蒸减少再生负荷的优点,此外,CO2通过胺溶液作液相去除后,胺溶液可以通过加热再生,释放处纯净的CO2可作工业应用。其缺点是当原料气被吸收塔里产生的流态或胶体的重烃污染时,化学溶剂吸收工艺容易产生发泡问题。2.3 变压吸附(PSA)法

变压吸附法(简称PSA)是近年来兴起的基于吸附单元操作发展起来的气体分离循环

过程的新工艺,用于混合气中某种气体的分离与精制。吸附的工艺原理是利用吸附剂对不同气体的吸附力不同,不同气体在吸附剂上的吸附能力差异、扩散速率的不同(如N2、O2分离)或气体分子大小不同来实现选择性吸附气体混合物中的某种组分,使之与其他气体得到分离。且组分的吸附量受温度、压力影响,当温度升高时吸附量减小,温度降低时吸附量增加,而当压力升高时吸附量增加,压力降低时吸附量减少。

变压吸附法沼气提纯系统是利用脱碳吸附剂将沼气中的CH4、CO2以及N2等气体进行分离,从而达到提纯CH4的目的。因气体中某些微量组分如硫化物、氨化物、烃类氯化物在吸附剂上的吸附力都比CO2强,所以对气体的来源要求非常严格。比如要求待分离混合气体含尘质量浓度低于5mg/m3,CO2的体积分数高,约为25%以上,所以变压吸附法能耗高,成本价格偏高,设备较复杂,一般要求选择合适的吸附剂,而且需要多台吸附器并联使用,以保证整个过程的连续性,并多在高压或低压下操作对设备要求高。但其具有耐磨性能好,一般可以使用10年以上。

3 沼气中H2O的去除

厌氧消化装置中气相的沼气经常处于水饱合状态,沼气会携带大量水分,使之具有较高的湿度。沼气中的水分有下列不良影响:1、水分与沼气中的硫化氢产生硫酸,腐蚀管道和设备;2、水分凝聚在检查阀、安全阀、流量计等设备的膜片上影响其准确性;3、水分能增大管路的气流阻力;4、水分会降低沼气燃烧的热值。因此,沼气的输配系统中应采取脱水措施。根据沼气用途不同,可用三种方法将沼气中的水分去除。

3.1 冷分离法

冷分离法是利用压力能变化引起温度变化,使蒸汽从气相中冷凝的方法。常用的有2种流程方法:1、节流膨胀冷却脱水法,该法一般用于高压燃气,经过节流膨胀或低温冷凝分离,使部分水冷凝下来。这种方法简单、经济但除水效果欠佳;2、加压后冷却法,该法对于高、中温沼气为脱除部分蒸汽可进行初步冷却。冷却方式有3种,即管式间接冷却、填料塔式直接冷却和间—直接混合冷却。对于上述装置需要冷却源和热交换器。为了满足不同脱硫剂合理量的要求,对高、中温沼气需要考虑适当冷却降温,脱除沼气中的部分蒸汽。为了避免沼气在管道输送过程中所析出的凝结水对金属管路的腐蚀或堵塞阀门,常采用在管路的最低处安装凝水器的方法,并将沼气中冷凝下来的蒸汽聚积起来定期排除,以使其后的沼气内所含水分减少。

3.2 液体溶剂吸收法

液体溶剂吸收法是沼气经过吸水性极强的溶液,使水分得以分离。属于这类方法的脱水

剂有氯化钙、氯化锂及甘醇类。氯化钙价格低廉,损失少,但与油类相遇时会乳化,溶液能产生电解腐蚀;与H2S接触又会发生沉淀,为此目前该法已逐渐淘汰。氯化锂溶液吸水能力强,腐蚀性较小,不易加水分解,明显优于氯化钙,但价格昂贵。甘醇类脱水剂比其他类型脱水剂性能要优越得多,二甘醇和三甘醇吸水性能都较强,因此,三甘醇使用最多,但该方法的主要缺点是初期投资较高。

3.3 固体物理吸收法

固体物理吸收法根据表面力的性质分为化学吸附(脱水后不能再生)和物理吸附(脱水后可再生)法。能用于沼气脱水的有硅胶、氧化镁、活性氧化铝、分子筛以及复式固定干燥剂,后者综合了多种干燥剂的优点。与溶液脱水比较,固体吸附脱水性能远远超过前者,能获得露点极低的燃气;对燃气温度、压力、流量变化不敏感;设备简单,便于操作;较少出现腐蚀及起泡等现象。通常使用两套装置,当一个工作的时候,另外一个可以再生。干燥剂的再生可以通过两种途,一种是可以用一部分(3—8%)的高压干燥气体再生干燥剂,这部分气体可以重新回流至压缩机入口。另外一种是在常压下,用空气和真空泵来再生干燥剂,此法会把空气混入沼气中,一般不会用。物理吸附法中的干燥剂的吸附和再生要交替进行,影响了其连续性操作。

4关于沼气净化的过程

在沼气净化的流程中首先要脱出硫化氢,因为其对整个净化系统的输气管、仪器仪表、燃烧设备有很强腐蚀作用;此外如果脱碳方法采用适合于低含或不含H2S的气体的热钾碱法时,硫化氢含量高就会影响其脱碳效率;因此必须尽早除硫。对于脱碳与脱水的先后位置,应视脱碳与脱水的具体方法而定。

对于H2S含量小于0.3%的大中型沼气工程,可以使用使用活性炭法,因为这种方法操作简单、脱硫快、处理气量大,脱硫率可达99%以上,净化后气体的H2S含量小于10×10—6 g·m-3,如果选择合适的活性炭,还可以除去比有机硫化物;还可采用氧化铁氧化锌联合脱硫,主要是因为目前氧化锌在常温下硫容低,且价格昂贵,与之相比,氧化铁尽管比表面积小,使用空速低,但因价格便宜,而广泛应用于粗脱硫化氢,以较大幅度降低沼气粗气中的H2S浓度,而氧化锌方法适合于处理H2S浓度较低的气体,脱硫效率高,因此可应用于经氧化铁处理后的沼气的精脱硫化氢过程。所以在大中型沼气脱硫工艺中,可以考虑将氧化铁脱硫和氧化锌脱硫串连起来使用,进一步提高硫化氢的去除率;此外,Zn/Fe体系湿法催化氧化法也是不错的选择,主要是因为脱硫液再生方便,运行成本低,工艺、设备简单,操作弹性大,过程除消耗电能外不消耗任何化工原料,不会产生二次污染。

而对于H2S浓度高的小型沼气工程,可以采用谢尔—帕克工艺,主要是因为整个生物脱硫系统是封闭运行的,无环境污染,综合成本低,运用该技术保证脱硫后的天然气中H2S 含量小于4ppmv;而且操作弹性大,具有很高的灵活性,能适应H2S高峰负荷,该技术的工艺流程简单,操作维护简单方便;此外,铁盐吸收生物脱硫技术也是不错的选择。

对于脱碳方法,由于一般物理吸收法都比化学吸收的纯化度低,对于净化程度要求高的沼气工程,建议采用热钾碱吸收法、石灰水溶液吸收法或变压吸附(PSA)法,这主要是因为热钾碱法最适合于从高浓度的原料气中大量脱除CO2,且吸收剂成本相对低;石灰水溶液吸收法成本较低,净化产物是碳酸钙和水,没有造成二次污染;PSA工艺的产品纯度高且可灵活调节,产品纯度可以达到99%以上,并可根据工艺条件的变化在较大的范围内随意调节产品甲烷的纯度。同时,PSA提纯设施规模灵活,在较小规模的提纯项目上尤其有优势。而且整个工艺由计算机控制,操作方便,装置可以实现全自动操作,但需注意的是PSA 法运行成本较高。

对于脱水方法,我认为采用冷分离法即可,但需要重复进行冷分离脱水,以保证水分含量符合要求;此外,还可采用固体物理吸收法,因为其吸附脱水性能高于液体脱水,能获得露点极低的沼气,但需优化干燥剂的吸附和再生交替的流程,以保证设备的连续性操作。

沼气净化整体流程可以为脱硫、脱水、脱碳、再脱水,其中脱碳如采用热钾碱吸收法、石灰水溶液吸收法这一类湿法脱碳时,净化后的沼气中水分含量势必会有所增加,这就会给下游的脱水处理带来压力,因此,在脱硫与脱碳处理之间可增加一道脱水处理,从而降低沼气粗气中的水分含量,以保证最终得到的沼气的纯度符合相应的标准。

李伦

2011年9月11日

浅谈填埋场沼气的形成、处理方法及利用

龙源期刊网 https://www.doczj.com/doc/ec12577956.html, 浅谈填埋场沼气的形成、处理方法及利用 作者:魏忠惠刘萍萍 来源:《中小企业管理与科技·学术版》2009年第01期 摘要:综合分析垃圾卫生填埋产生沼气,沼气的主要成分是甲烷及甲烷形成的条件。通过对填埋场沼气的处理方法探讨,得出结论:在大型填埋场利用沼气发电是科学有效的。 关键词:填埋场沼气甲烷发电 0 引言 卫生填埋是目前世界上应用最广泛的垃圾处理方法,近几年国内陆续建造了一批规范的卫生填埋场,并相继投入使用。随着时间的推移,卫生填埋场数量不断增加,每一填埋场都会产生一定量的沼气。沼气是以甲烷和二氧化碳为主,此外还可能有少量的氨气和硫化氢等。 1 沼气的危害 甲烷存在填埋场的垃圾层内时,由于缺氧,不会发生什么问题。但它从填埋场内逸出时,甲烷含量达到5—15%(爆炸界限)时,就可能引起爆炸。同时,填埋场沼气中含有大量的二氧化碳,甲烷和二氧化碳从填埋坑逸出的过程中,会向填埋坑周围的土壤中扩散,使土壤中的PH值下降,使土壤中造成嫌气性气氛,从而会引起某些植物死亡。另外,填埋场沼气中的少量氨气和硫化氢,还会污染空气。 2 沼气的形成 2.1 好氧分解阶段填埋坑中的有机物在好氧微生物的作用下,经过一系列复杂的生物化学过程,最终分解成稳定的产物,这些稳定的物质,不可能提供什么能量。 2.2 厌氧分解不产生甲烷阶段当好氧分解反应将废物填埋坑中存留的氧气基本耗尽时,厌氧微生物开始活动,在此阶段,微生物利用硝酸根、硫酸根作为氧源,产生硫化物、氨气和二氧化碳,所以在此阶段迅速产生二氧化碳而不产生甲烷。 2.3 厌氧分解开始产生甲烷阶段当有机物已部分转化成为有机酸,废物层中的氧气已经耗尽,温度、湿度、PH值都比较合适时,甲烷菌便开始繁殖,将有机酸转化为甲烷,同时也放出二氧化碳,在这一阶段,甲烷产量逐渐增加,坑内温度可能上升到55℃,当产气稳定时, 表明第三阶段结束。 2.4 稳定产气阶段在此阶段中填埋层稳定地产生甲烷和二氧化碳。

沼气净化的方法

厌氧消化装置刚产出的沼气是含饱和水蒸气的混合气体,除含有气体燃料CH4和惰性气体CO2外,还含有一定比例的H2S、H2O,少量的NH3,H2、N2、O2、CO和卤化烃。沼气的净化是指沼气中CH4之外其他气体的去除。 一沼气净化机理 概括起来,目前沼气净化的机理有三大类,即化学吸收、物理提纯和生物脱除。 (1)化学吸收。一种化学吸收机理是采用胺、碱、醇等复合溶液吸收剂,利用酸碱中和反应吸收沼气中的CO2、H2S等酸性物质,同时也能吸收NH3等易溶于水、醇的气体。另一种化学吸收机理是采用干化学物质(如Fe2O3)作为吸收剂吸收杂质气体。化学吸收的吸收剂都可以通过装置的自净系统和再生系统释放出各种杂质和气体得到再生循环使用。(2)物理提纯。通过此机理净化沼气的主要是变压吸附法。利用吸附剂在不同压力条件下对不同气体吸附力不同的原理来分离沼气中的不同组份。沼气中的H2O、CO2、H2S等吸附容量较大的强吸附组分在一定压力下被吸附剂吸附停留在床层中,而较小吸附容量的弱吸附组分N2、CH4 等从床层出口输出,从而实现了对沼气的净化。 (3)生物脱除。在一定的条件下利用微生物生长繁殖需要沼气中某些杂质气体作为营养物质,从而实现对沼气的净化。 现阶段,物理化学法已被广泛地应用且积累了丰富的经验。但该方法存在运行费用高、投资大、再生困难、产生二次污染等缺点。生物法具有不需催化剂和氧化剂、不需处理化学污泥、少污染、低能耗、高效率、可回收单质硫等优点,正在成为沼气脱硫领域的发展趋势。 二沼气净化方法 沼气净化的程度取决于沼气的用途。沼气供热需要脱H2S、H2O,沼气发电需要脱H2S、H2O、有机卤化物,沼气作汽车燃料需要脱H2S、H2O、有机卤化物、CO2,沼气并入天然气网需要脱H2S、H2O、有机卤化物、CO2以及金属。沼气中不同组分脱除的具体方法见表1。 三常用的沼气净化技术 不管是什么用途,沼气中的H2O 和H2S都要脱除。本文就沼气脱H2O和脱H2S常用的技术详述如下。 (1)脱H2O 脱H2O是因为导气管中如果积累了水会溶解H2S腐蚀管道,此外当沼气被加压储存时,沼气中的水会凝结冻坏储气罐。发酵装置出来的沼气中所含的水分形式是饱和水蒸气,一般采用冷分离法将其除去。通过调整压力引起混合气体温度发生变化,使水蒸气从气态冷凝为液态的水后,将其从沼气中脱除。此法经济简单,被大多数沼气工程所采用。 沼气冷却的方式有自然降温及机械脱水两种。冷却温度还要考虑下一步脱硫过程中不同脱硫剂对水分量的要求,根据脱硫剂的水分合理量进行适当的初步冷却。 在沼气输送过程中,还有一部分水要析出。为了避免析出的水分腐蚀或堵塞管道,常在管路的最低处安装集水器,定期排除集水器中的水。 (2)脱H2S 脱H2S是为了避免H2S腐蚀设备、H2S中毒和如果沼气燃烧H2S被氧化成SO2或SO3造成更大的危害。 总结出来的8种H2S脱除方法可以分为物理提纯、化学净化和生物吸收。现就3种机理中常用的方法分析如下。 ①活性炭吸附工艺。在变压吸附系统中H2S可以通过用KI浸泡过的活性炭去除。此过程中,H2S被转化为单质S和H2O,单质S就被活性炭吸收了。在连续运行的情况下,系统要包含两个吸附装置。如果活性炭上H2S的浓度超过3ppm,需要进行再生。

沼气的利用与发展

沼气的利用和发展 The use and development of biogas 摘要沼气是可再生的清洁能源,既可替代秸秆、薪柴等传统生物质能源,也可替代煤炭等商品能源,而且能源效率明显高于秸秆、薪柴、煤炭等。 Abstract Biogas is a renewable and clean energy, can replace the straw, firewood and other traditional biomass energy sources, and can also replace coal and commodities such as energy and energy efficiency is significantly higher than the straw, firewood, coal. 关键词沼气新能源利用发展 Keywords biogas, new energy, energy use, development 1.沼气的简介 1.1沼气的概念 沼气是有机物质在厌氧条件下,经过微生物的发酵作用而生成的一种可燃气体。由于这种气体最先是在沼 泽中发现的,所以称为沼气。人畜粪便、秸秆、污水等各种有机物在密闭的沼气池内,在厌氧(没有氧气)条件下发酵,即被种类繁多的沼气发酵微生物分解转化,从而产生沼气。沼气是一种混合气体,可以燃烧。沼气是有机物经微生物厌氧消化而产生的可燃性气体。 沼气是多种气体的混合物,一般含甲烷50~70%,其余为二氧化碳和少量的氮、氢和硫化氢等。其特性与天然气相似。空气中如含有8.6~20.8%(按体积计)的沼气时,就会形成爆炸性的混合气体。沼气除直接燃烧用于炊事、烘干农副产品、供暖、照明和气焊等外,还可作内燃机的燃料以及生产甲醇、福尔马林、四氯化碳等化工原料。经沼气装置发酵后排出的料液和沉渣,含有较丰富的营养物质,可用作肥料和饲料。 沼气是一些有机物质,在一定的温度、湿度、酸度条件下,隔绝空气(如用沼气池),经微生物作用(发酵)而产生的可燃性气体。它含有少量硫化氢,所以略带臭味。发酵是复杂的生物化学变化,有许多微生物参与。反应大致分两个阶段:(1)微生物把复杂的有机物质中的糖类、脂肪、蛋白质降解成简单的物质,如低级脂肪酸、醇、醛、二氧化碳、氨、氢气和硫化氢等。(2)由甲烷菌种的作用,使一些简单的

生活污水净化沼气池

生活污水净化沼气池 生活污水净化是社会发展的必然,更是人类文明进步的标志,大中城市生活污水、目前都要求经过处理达标后才能排放,而中小城镇生活污水都只经过简单化粪之后而直接流入渠塘江河湖海。由于生活污水中含有大量的有机物质,直接排放到天然水系中的生活污水会使水体富营养化,致使病菌、微生物、澡类大量繁殖,严重时水体发黑发臭。污水严重影响生存环境,甚至威胁着人们生命安全。生活污水净化越来越引起各界人士高度重视,国家“十一五”规划明确规定城市生活污水处理要达到70%。针对集中处理投资巨大,传流工艺处理效果差的客观现实,运用生活污水净化沼气池是一种较好的办法。生活污水净化沼气池具有投资少、施工简单、管理方便、处理效果好等优点,采取分散处理办法,可实现整体排放达标无害化的效果。 一、生活污水净化沼气池的特点 生活污水净化沼气池是将生活污水在源头就近就地将其处理。一处住宅小区、一栋办公楼、一所学校等一个单独单元建一座污水净化沼气池。用这方法来处理生活污水投资少、资金分散、见效快。适用于无力集中修建污水处理厂的城镇或城镇管网外的单位、办公楼、住宅小区、宾馆、学校和公共厕所等。 无动力自流,不需要外加动力,管理方便。而且厌氧消化池2—3年才出渣清理一次,平常每半年用污泥出粪在生物过滤沉淀池抽一次沉渣。

经过厌氧发酵,上流式污泥床、生物过滤、沉淀、爆气多级处理,通过厌氧、兼性、好氧多种条件改变,处理效果好。 生活污水净化沼气池改善了居住条件,保护了生态环境,美化了城市,经处理后的污水可直接用于农田灌溉或排入江河水域中,减轻了水体富营养化,有利于保护水资源,具有好环保效果。 标准化粪池与净化沼气池处理效果比较 二、生活污水净化沼气池原理

沼气脱水、脱硫及净化

沼气脱水、脱硫及净化 沼气的净化一般应包括沼气的脱水、脱硫及脱二氧化碳。沼气中的水分与硫化氢共同作用,能加速管道及阀门、流量计的腐蚀,硫化氢还对大气造成污染,所以要脱除。 沼气如何进行脱水:从发酵装置出来的沼气含有饱和水蒸气,可用3种方法将其去除。 (1)冷分离法。是利用压力能变化引起温度变化,使水蒸气从气相中冷凝下来的方法。常用的有两种流程:A.节流膨胀冷脱水法。一般用于高压燃气,经过节流膨胀或低温分离,使部分水冷凝下来。B.加压后冷却法。如净化气在0 8MPa压力下的冷却脱水。 (2)溶剂吸收法。属于这类脱水溶剂的有氯化钙、氯化锂及甘醇类。 (3)固体物理吸水法。吸附是在固体表面力作用下产生的,根据表面力的性质分为化学吸附( 脱水后不能再生)和物理吸附(脱水后 可再生)。 沼气的脱硫:沼气中的有害物质主要是硫化氢,它危害人体健康,对管道阀门及应用设备有较强的腐蚀作用。目前,国内大部分用户均未安装脱硫器,已造成严重后果。为减轻硫化氢对灶具及配套用具的腐蚀损害,延长设备使用寿命,保证人身健康,必须安装脱硫器。脱硫原理:在常温下含有H 2S的沼气通过脱硫剂床层,沼气中H 2S与活性物质(如氧化铁)接触,生成硫化铁和亚硫化铁,然后含有硫化物的脱硫剂与空气中的氧接触,当有水存在时,铁的硫化物

又转化为氧化铁和单体硫。这种脱硫和再生过程可循环进行多次,直至氧化铁脱硫剂表面大部分被硫或其他杂质覆盖而失去活性为止。脱硫方法:脱硫的方法有湿法脱硫和干法脱硫两种。干法脱硫具有工艺简单,成熟可靠、造价低等优点,并能达到较好的交货程度。目前家用沼气脱硫基本上采用这种方法。干法脱硫剂有活性炭、氧化锌、氧化锰及氧化铁等,从运转时间、使用温度、公害、价格等综合考虑,目前采用最多的脱硫剂是氧化铁。

沼气净化:沼气脱硫罐用途

沼气净化:沼气脱硫罐用途 弘景环保—186 **** ****

?什么是沼气净化设备、为什么要对沼气进行脱 硫净化、一套设备多少钱?沼气脱硫罐如何使用,需要注意什么问题?任何沼气工程都离不开沼气 收集净化设备的使用,它能够净化沼气中的有害 气体,保证在这一过程中沼气有效安全的产出。 ?沼气进行脱硫净化的原因:在沼气产生的过程 中伴随着硫化物的产生,硫化物的存在会构成设 备及管道的腐蚀,引起化学反应催化剂的中毒失活。沼气作为燃料时,发生的排放废气的硫化物,污染环境,危害人的健康,所以必须采取措施进 行脱硫净化。 ?什么是沼气净化设备:沼气净化设备-沼气脱硫罐(塔)是一种沼气专用运转装置,硫效率98%,可以强效吸附沼气中的硫化氢,防止其对沼气燃 烧设备及管道的腐蚀,延长使用年限,同时还可 以防止排放到空气中对环境造成污染。

?沼气脱硫罐如何使用:从沼气池中出来的沼气经过初步脱水后,进入脱硫罐。硫化氢气体与脱硫剂接触,由于发生氧化还原反应而从沼气中脱除。 ?沼气脱硫罐(塔)能为脱硫反应提供优秀的温度、水气含量,脱硫剂的装填工艺亦能为脱硫过程提供优秀的气流通道和气固反应的有效接触面积,可以极大地提高脱硫剂的利用效率以及沼气的净化程度,保证 沼气在使用的过程中的安全。 ?使用沼气脱硫管需要注意什么问题:根据沼气脱硫剂使用的实际情况,一般使用3-6个月必须更换。首先关闭沼气脱硫罐的开关,打开沼气脱硫罐的进出料口,将脱硫剂掏净,关闭出料口,在进料口填装新脱硫剂,填满后封闭进料口。 ?济宁弘景环保供应沼气净化一体化设备,是用户理想的锅炉配套设备,外部采用钢制结构,解决了漏水渗透,密封性能好。设备损耗小,运行成本低,可综合利用。可用在养殖、淀粉、造纸、污水处理、酒精、化纤、制造等行业的脱硫净化系统中。

城镇生活污水净化沼气池设计规范

城镇生活污水净化沼气池设计规范 1、范围 本标准规定了城镇生活污水净化沼气池(以下简称城镇沼气池)设计的要求和方法。 本标准适用于处理城镇生活污水所修建的城镇沼气池设计。 2、引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效,所有标准都会被修订,使用本标准的各方应探讨、使用下列标准最新版本的可能性。 GBJ3 —88砌体结构设计规范 GB7636 —87农村家用沼气管路设计规范 GBJ15 —88建筑给排水设计规范 GBJ68 —84建筑结构设计统一标准 DB51/190 —93四川省污染物排放标准 DB51/136 —92城镇净化沼气池生活污水排放卫生标准 3、设计要求 3.1技术指标 设计沼气压力8KPa ± 1KPa ; 出水水质达到DB51/190中3.1.2及DB51/136中3.1的有关规定; 3.2工艺流程 3.2.1合流生活污水(或水冲式公厕污水)7前处理T后处理T下水道 分流水冲式公厕污水T前处理(1)T前处理(2)7后处理T下水道 厨房和其它污水一t 注:医院污水在进入下水道前应加消毒池处理。 3.3在不改变工艺流程的前提下,城镇沼气池的平布置可因地制宜,其形状可以采用矩形、椭圆形或其它形状,但应考虑到结构受力明确、方便施工和清运建筑垃圾并不得影响其它建筑或构筑物. 3.4城镇沼气池容积计算。 3.4.1城镇沼气池总容积设计公式: V=(V1+V2+V3)K1 ----------------------------- (1) V-------- 总容积m3 VI------- 污水容积m3 V2 -------- 污泥容积m3 V3 -------- 气室容积m3 K1 -------- 容积保护系数取 1.0?1.05 3.4.1.1污水不容积计算公式: V1 = natg -------------------------------- (2) n――使用城镇沼气池的总人数;

城镇生活污水净化沼气池技术规范(正式)

编订:__________________ 单位:__________________ 时间:__________________ 城镇生活污水净化沼气池技术规范(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9490-83 城镇生活污水净化沼气池技术规范 (正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 总则 1.1 制定规范的目的 为保证生活污水净化沼气池(以下简称净化池)的质量,使设计、工程质量验收和运行管理符合适用、经济、环保、安全等的基本要求。实现小城镇和村镇污水处理资源、无害化,特制定本规范。 1.2 适用范围 本规范适用于小城镇和村镇及排水管网覆盖不到的城市生活污水净化池的建造。 1.3 主要内容 本规范规定了净化池的设计、工程质量验收和运行管理的技术要求和方法。 1.4 规范性引用文件

下列文件中的条款通过本规范引用而构成为本规范的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GBJ14 室外排水设计规范 GBJ16 建筑设计防火规范 GBJ141 给水排水构筑物施工及验收规范 GB/T4751 户用沼气池质量检查验收标准 GB7636 农村家用沼气管路设计规范 GB7959 粪便无害化卫生标准 GB50003 砌体结构设计规范 GB50007 建筑地基基础设计规范 GB50009 建筑结构荷载规范 NYXXX-200X GB50010 混凝土结构设计规范 GB50069 给水排水工程构筑物结构设计规范

沼气脱硫

沼气脱硫 一、总述 沼气脱硫是沼气直接燃烧或沼气发电所必须的前期处理工艺。无论哪种方式,利用前都必须对沼气进行必要的脱硫、脱水、除陈等处理。 二、脱硫原理 1.干法脱硫 干法脱除沼气气体中硫化氢(H2S)的设备基本原理是以O2使H2S 氧化成硫或硫氧化物的一种方法,也可称为干式氧化法。干法设备的构成是,在一个容器内放入填料,填料层有活性炭、氧化铁等。气体以低流速从一端经过容器内填料层,硫化氢(H2S)氧化成硫或硫氧化物后,余留在填料层中,净化后气体从容器另一端排出。 2.湿法脱硫 湿法脱硫可以归纳分为物理吸收法、化学吸收法和氧化法三种。物理和化学方法存在硫化氢再处理问题,氧化法是以碱性溶液为吸收剂,并加入载氧体为催化剂,吸收H2S,并将其氧化成单质硫,湿法氧化法是把脱硫剂溶解在水中,液体进入设备,与沼气混合,沼气中的硫化氢(H2S)与液体产生氧化反应,生成单质硫吸收硫化氢的液体有氢氧化钠、氢氧化钙、碳酸钠、硫酸亚铁等。成熟的氧化脱硫法,脱硫效率可达99.5%以上。 在大型的脱硫工程中,一般采用先用湿法进行粗脱硫,之后再通过干法进行精脱硫。 3.生物脱硫 生物脱硫技术包括生物过滤法、生物吸附法和生物滴滤法,三种系统均属开放系统,其微生物种群随环境改变而变化。在生物脱硫过程中,氧化态的含硫污染物必须先经生物还原作用生成硫化物或H2S然后再经生物氧化过程生成单质硫,才能去除。在大多数生物反应器中,微生物种类以细菌为主,真菌为次,极少有酵母菌。常用的细菌是硫杆菌属的氧化亚铁硫杆菌,脱氮硫杆菌及排硫杆菌。最成功的代表是氧化亚铁硫杆菌,其生长的最佳pH值为2.0~2.2。 目前国内生物脱硫技术还未形成一定规模的工业应用。预计优化脱硫工艺,更有效地控制溶解氧,提高单位硫的产率,并与目前已得到广泛应用的湿法脱硫技术相结合,是今后生物烟气脱硫技术发展的方向。 三、干法脱硫、湿法脱硫特、生物脱硫的比较 1.干法脱硫的特点 ①结构简单,使用方便。 ②工作过程中无需人员值守,定期换料,一用一备,交替运行。 ③脱硫率新原料时较高,后期有所降低。 ④与湿式相比,需要定期换料。 ⑤运行费用偏高。 2.湿法脱硫的特点 ①设备可长期不停的运行,连续进行脱硫。

农村生活污水净化沼气池设计案例

农村生活污水净化沼气池设计案例 0引言 从上世纪80年代开始,作为中小城镇住宅和公厕的配套设施,生活污水净化沼气池在借鉴农村沼气池和传统化粪池技术的基础上首先在四川发展起来[1,2]。这种简易的生活污水处理技术以其投资分散、不耗能源、运行费用低以及节约用地等优点逐渐发展成为中国南方生活污水分散处理的主要技术,已经得到广泛应用,到2004年末[3],中国的生活污水净化沼气池已经达到137013处,总池容574万m3。 近年来生活污水厌氧消化分散处理技术在全球已经有较快的发展,印度等国将其称为DEWATS技术[4,5]。 目前随着农村经济结构的调整和发展,中国乡镇建设发展很快,面对村镇生活污水排放量不断增加的趋势,生活污水净化沼气池技术将有很好的发展应用前景。然而,应用中一些技术问题也比较突出,比如处理负荷低,出水不稳定、运行效果易受季节气候影响,出水水质尚难达标,N、P去除效果差等[6-8]。如果不及时解决生活污水净化沼气池的技术瓶颈,提升其处理能力,这项技术的发展和推广应用必然受到限制,后继乏力。 2006年以来,笔者在四川、浙江和江苏等地进行了较大规模的生活污水净化沼气池调研,走访了20多个县市的相关部门,实地考察了部分现场、收集了大量相关资料和设计图纸,本文从全国收集到的近百份生活污术分析,以期为这一技术的优化提供依据。 1代表性设计图例及其主要参数 1.1代表性设计图例 1.1.1生活污水净化沼气池通用标准图集(90SS-1)1991年四川省农村能源办公室等四家单位联合编制的《生活污水净化沼气池通用标准图集(90SS-1)》,是中国最早的一套生活污水净化沼气池设计图集,包括条型,矩型和圆型三个系列10种规格。其中8种池采用分流型进水工艺,2种规格较小的池为合流型进水工艺。图1所示为条型A100型净化沼气池,总有效容积100m3,为隧道式分隔池,采用分流型工艺。前处理区包括沉淀区和厌氧消化区。厌氧消化区又分为厌氧I区和Ⅱ区两个单元,厌氧Ⅱ区内设有软填料。 1.1.2浙江省生活污水净化沼气池通用图集 该图集于2003年9月正式在浙江省范围内实施,包括20、30、50、80和100m3等五种规格,同时适用于分流型和合流型工艺。按每人每天排放污水量150L进行设计,污水总水力停留时间为3d。图2所示是有效容积50m3装置示意图[9],为圆拱池与矩形池相联接的串联池,沉砂池底部有10%坡度,厌氧Ⅱ区预留有其他污水进水孔。厌氧Ⅱ区内装有DTL-150软填料。值得一提的是,在后处理区侧墙上设有拔风管,能够与出水区上部盖板的小孔形成空气对流。 1.1.3江苏省《生活污水净化沼气池》图集 该图集与浙江池类似,于2004年编制完成。图3所示为有效容积17m3装置示意图[10]。厌氧区为两个圆柱形池,在厌氧Ⅱ区设有一折墙。后处理区为矩形兼氧生物滤池,分成四格,池中填料选用不同级配的石灰石碎石,粒径为5~40mm,填料层厚度约500mm。结构上两个厌氧池以及矩形兼氧生物滤池都独立,通过PVC管连接,这样有助于避免地基不均匀沉降。

沼气的利用及其意义研究

沼气的利用及其意义研究 摘要沼气不仅是替代煤气、天然气的节能新能源,而且还能充分利用农村农牧业、人类日常生活中产生的粪便、垃圾等制造出高效能源,从而减少环境污染与破坏。该文从沼气生成原理、沼气使用中常见的问题及解决方法、沼气使用的意义等方面对沼气的利用及其意义进行介绍,以期促进沼气在广大农村的推广使用。 关键词沼气;利用;农村能源 随着经济的快速发展,我国成为沼气规模使用最大的国家,越来越多的人将沼气用于日常生产生活。沼气充分利用农村农牧业、人类日常生活中产生的粪便、垃圾等制造出高效能源,极大地减少了环境污染和破坏,成为替代煤气、天然气的重要节能新能源[1-2]。现就目前沼气的利用及存在的问题进行介绍,并对其意义进行综合阐述。 1 沼气生成原理 沼气是由微生物的发酵作用产生的一种可燃性气体,主要由甲烷(CH4)、二氧化碳(CO2)和少量的硫化氢(H2S)组成,即: 秸秆(粪便)微生物CH4+其他产物 H4C+2O2 点燃CO2+2H2O 2 沼气使用中常见的问题及解决方法 2.1 农户对沼气基础使用能力较低 一般用户缺少沼气池使用的基础知识,部分农民无法使沼气池产生正常、持续的沼气,同时在配套设备的使用过程中,不具备查询、保养和维修维护的能力。有的农民对沼气的利用价值没有形成认识,更不能充分地利用沼气的各种效能,因此应通过技能培训使广大使用户加强对沼气用户的专业知识、技能培训,加强沼气池的管护工作,正确引导农户使用沼气池。同时通过各种方式对沼气应用的意义进行推广宣传,并对沼气池修建提供良好的政策,促进更多的农户使用沼气[3]。 2.2 料液发酵酸碱度较难掌握 在沼气池正常使用的过程中,料液酸碱度在pH值6~8时可以产气,但是由于部分农户对料液发酵酸碱度较难掌握,因此产气质量较差。遇到这种状况农户可通过沼气池中料液的颜色进行判断,如在沼气池料液使用时泛蓝色则表明料液偏酸,可使用石灰对水稀释均匀后倒入池中调解;有的料液上泛白色则表明料

沼气净化池施工方案

**********商住楼生活污水净化池工程 施工方案 根据四川省地方标准《城镇生活污水净化沼气池设计施工、安装、验收规范》的相关规定,以及该工程所处于的施工位置和周边环境,结合生活污水净化池施工特点,现拟定如下方案,以供参考: 一、本工程概况及周边环境 1、本工程共建3座污水净化池,1#净化池容积为190m3,2#净化池容积为230m3,3#净化池为180m3,总工期为60天,现正值雨季施工。 2、各组净化池建设地点均临近主体楼,主体楼基础深度为地面以下-3.0m,各组净化池深度均超过主体楼基础深度约1000mm。 3、根据现场勘查的信息:净化池建设地点土质上层为普通粘土,中下层为连砂石,土质粘结性较差,容易垮塌。 4、根据建设单位提供的信息:自然地坪以下-2.00m即为地下水位,目前通过原建设的降水机井,可将地下水位降至-4.0m的位置,基本满足各组净化池的深度。 二、建设地点选址 1、因各组净化池均超过主体楼基础深度1000mm,根据现场实际情况,各组净化池离主体楼距离保证≥3m。 2、为保证较好的降水效果,净化池建设点尽量靠近各降水机井,并保证留有2-3m的安全距离。 3、污水未经净化池处理前流溢性较差,经处理后流溢性较好,故

净化池应尽量建设在靠近最后一个污水收集点;净化池进水管道可略提高放坡系数,净化池出水管道可略降低放坡系数,以提高整个排污系统中污水的通过性。 三、土方工程及安全措施 1、根据施工规范,土方开挖放坡系数按照0.33取值,工作面按照400取值,各净化池的开挖尺寸及深度如下表: 2、单组净化池采用机械分两次开挖完成,第一次先开挖两个圆形池的位置,待两个圆形池的主体完成后,再组织开挖余下的两个池子。分段施工的目的是为减小开挖基坑长度,以便减小对主体楼基础的影响,同时分段施工还有一个有利之处就是,便于快速处理基础,减小地下水的危害。 3、第一次开挖的土方全部转运至甲方指定地点,现场不堆放余土,主要是预留施工作业平台、材料堆放场地并可以减轻基坑周边土方负荷。 4、第二次开挖的土方用于回填已建好的池子,并可现场堆放部分回填土方,堆放点应保证离坑边不低于5m的安全距离。

沼气工程工艺及设备

集中供气沼气工程技术及配套设备 一、沼气发酵工艺类型 目前,已经开发出的厌氧沼气发酵工艺技术类型很多,但就技术成熟、投资费用管理方便等方面来看,应用较多的主要有以下四类,即完全混合式厌氧消化技术(CSTR),升流式固体消化技术(USR),升流式厌氧污泥床消化技术(UASB)和污泥床滤器(UBF)。分别介绍如下: 1、完全混合式厌氧消化技术(CSTR) 该工艺主体设施为完全混合式厌氧消化反应器(CSTR),该类型反应器对粪污中的固体浓度大小没有严格要求,可以是低浓度发酵(3%以下),也可以是高浓度发酵(8%以上),是目前沼气工程建设最常用的工艺技术之一。整套工艺以CSTR发酵罐为主体设施,配套原料收集池、酸化罐、储气罐、脱硫脱水净化装置等附属装备,组成一整套CSTR发酵工艺技术。CSTR发酵罐内采用机械搅拌和加温技术,使发酵物料均质和发酵温度稳定,这是沼气发酵工艺的一项重要的技术突破,通过搅拌和加温,可使发酵速率和产气率大大提高,提高装置利用率,保证整套工艺正常运转。另一方面,该工艺非常适合于高浓度物料发酵,传质和传热效果好,原料利用率高。因此,完全混合式厌氧消化技术(CSTR)是目前沼气工程普遍采用的主要工艺之一,其主要特点如下:不受发酵浓度限制,便于管理,启动快,运行费用低,非常适合于以产沼气能源为主,周围有使用沼渣、沼液有机肥条件的地区。该工艺已在全国多处应用,产气效果好、运行稳定,将会成为我国沼气工程建设的首选工艺。 2、升流式固体消化技术(USR) 该工艺主体设施为升流式固体反应器(USR),该类型反应器是一种结构简单、适用于高固体原料发酵的反应器。发酵原料从底部配水系统进入反应器内,依靠进料和产气的上升动力按一定的速度向上流经含有高浓度厌氧微生物的污泥床时,使原料得到快速消化产生沼气。未消化的生物质固体颗粒和沼气发酵微生物靠自然沉降滞留于反应器内,上清液从反应器上部溢出,这样可以得到比水力滞留期高得多的固体滞留期(SRT)和微生物滞留期 (MRT),从而提高了固体有机物的分解率和反应器的利用效率。该工艺优点是处理效率高,运行管理方便,缺点是对进料均布性要求高,发酵过程中需强化搅拌。但由于这种工艺适合处理高固体含量的畜禽粪污和有机废水具有其它沼气发酵工艺无法比拟的优点,现在欧洲等沼气工程发达地区广泛使用,我国目前也有很多地方采用该工艺,且运行效果良好。如北京房山区琉璃河猪粪废水沼气发酵工程、南韩继和平谷县南独乐河猪粪废水沼气工程、留民营鸡粪污水中温沼气发酵工程等。 3、升流式厌氧污泥床消化技术(UASB) 该工艺的主体设施为升流式厌氧污泥床反应器(UASB),是世界上发展最快的厌氧反应器。发酵原料从反应器底部进入,向上流过有厌氧颗粒污泥组成的污泥床,随着原料与污泥充分接触而发生沼气发酵反应,产生的沼气引起污泥床的扰动。产生的沼气一部分附着在污泥颗粒上,自由气泡和附着在污泥颗粒上的气泡上升至反应器的上部,撞击到三相分离器挡板的下部,引起附着气泡的释放。脱气的污泥颗粒沉淀回到污泥层的表面。自由状态下的沼气和由污泥颗粒释放的

沼气的利用及其意义研究

收稿日期 2014-01-23 随着经济的快速发展,我国成为沼气规模使用最大的国家,越来越多的人将沼气用于日常生产生活。沼气充分利用农村农牧业、人类日常生活中产生的粪便、垃圾等制造出高效能源,极大地减少了环境污染和破坏,成为替代煤气、天然气的重要节能新能源[1-2]。现就目前沼气的利用及存在的问题进行介绍,并对其意义进行综合阐述。 1沼气生成原理 沼气是由微生物的发酵作用产生的一种可燃性气体, 主要由甲烷(CH 4)、二氧化碳(CO 2)和少量的硫化氢(H 2S )组成,即: 秸秆(粪便)微生物CH 4+其他产物 H 4C+2O 2点燃CO 2+2H 2O 2沼气使用中常见的问题及解决方法2.1 农户对沼气基础使用能力较低 一般用户缺少沼气池使用的基础知识,部分农民无法使沼气池产生正常、持续的沼气,同时在配套设备的使用过程中,不具备查询、保养和维修维护的能力。有的农民对沼气的利用价值没有形成认识,更不能充分地利用沼气的各种效能,因此应通过技能培训使广大使用户加强对沼气用户的专业知识、技能培训,加强沼气池的管护工作,正确引导农户使用沼气池。同时通过各种方式对沼气应用的意义进行推广宣传,并对沼气池修建提供良好的政策,促进更多的农户使用沼气[3] 。 2.2料液发酵酸碱度较难掌握 在沼气池正常使用的过程中,料液酸碱度在pH 值6~8 时可以产气,但是由于部分农户对料液发酵酸碱度较难掌握,因此产气质量较差。遇到这种状况农户可通过沼气池中料液的颜色进行判断,如在沼气池料液使用时泛蓝色则表明料液偏酸,可使用石灰对水稀释均匀后倒入池中调解;有的料液上泛白色则表明料液偏碱,可使用青杂草浇上尿液堆沤2~3d ,然后与池中搅拌均匀后使用。 2.3气压过高、过低或出现漏气 有的农户在使用沼气过程中出现气压过高或燃烧时间 较短等现象,这主要是因为发酵原料的碳氮比例不合适,导致沼气点不着,可在日常入料过程中加入适量的富碳原料,如麸皮、秕壳、碎秸秆等农作物的残余物。在产气过程中会出现料液酸碱度正常、发酵正常、原料也较为充足,但是产气量不足,主要是因为发酵料液在池中形成沉淀或料液表 面形成结壳导致,可通过经常搅拌料液以促进产气量。有的沼气池气压较低或加压后降压较快出现明显的漏气现象,可通过重新粉刷增加沼气池密封性或重新封盖,避免水封圈有水或变黑以防止密封盖漏气。如果沼气池中有异味如臭鸡蛋味或硫磺味,应观察输气管路、开关漏气或净化器U 型壶的密封盖等地方是否出现破裂,可通过灌入洗衣粉水在管道中寻找漏气口,然后及时更换零部件解决;如果使用沼气时出现异味也说明脱硫剂失效,应更换净化器中的脱硫剂。因此,要定期对沼气池进行巡查,及时排除故障。 3沼气使用的意义 3.1 节约能源,提高资源利用率 沼气作为一种清洁能源,不仅可以充分利用农村废弃 资源,增加有机肥料的使用率,提高肥料质量和增加肥效,而且能节省秸秆、干草等有机物的使用,有效缓解“三料”即燃料、饲料和肥料的矛盾。在沼气产生过程中还能形成一定的沼肥,沼肥中有大量的氨基酸、B 族维生素以及各种水解酶,不仅沤制成了优质的有机肥料,扩大了有机肥料的来源,而且还提高了土地质量,降低了生产成本,对病虫害也有一定的抑制作用[4]。在田间种植过程中,施用沼肥的作物可增强抗旱防冻能力,提高秧苗成活率。因此,沼气池的使用可实现作物生产、增产、抗寒、抗病虫等效果,各级政府应把沼气建设作为重要的民生项目,并认真落实,使人民真正受益。 3.2保护资源,促进环境良性循环 沼气的使用可以减少林木砍伐、破坏和草皮乱铲焚烧 等现象,避免秸秆焚烧造成的环境污染,如雾霾,对森林保护和空气净化有一定的积极作用,同时沼气池可使人畜粪便密封发酵,减少粪便中大量的寄生虫卵,消灭血吸虫病、钩虫病等寄生虫病,极大改变了农户的卫生状况及居住环境,可变废为宝,改善环境卫生,减少和控制畜禽疫病的传播。在产业链形成方面,可促进种植业—养殖业—沼气、养殖业—渔业—种植业、养殖业—渔业—林业相结合的发展,减少了煤炭、木柴的各项投入,促进物质循环利用、生态系统形成和畜牧业的发展[5]。 3.3节约开支,增产增收 由于沼气使用成本较低,一般3口之家8m 3沼气池就 可满足使用,可节省农户日常生活开支如买柴、买煤、买农药、化肥等物品的费用;如果与其他产业相结合,如与大棚种植相结合可增产35%,增收1000~1500元;与果窖结合,增效1000元;年节约直接经济效益2000~3000元。因此, 沼气的利用及其意义研究 刘敏钦 (安徽省萧县农村能源办公室,安徽萧县235200) 摘要沼气不仅是替代煤气、天然气的节能新能源,而且还能充分利用农村农牧业、人类日常生活中产生的粪便、垃圾等制造出高效能源,从而减少环境污染与破坏。该文从沼气生成原理、沼气使用中常见的问题及解决方法、沼气使用的意义等方面对沼气的利用及其意义进行介绍,以期促进沼气在广大农村的推广使用。 关键词沼气;利用;农村能源 中图分类号S216.4;F323.21 文献标识码A 文章编号1007-5739(2014)04-0191-02农业工程学 现代农业科技2014年第4期191

城镇生活污水净化沼气池技术规范

城镇生活污水净化沼气池技术规范 1 2020年5月29日

NY/TXXX-200X 前言 依据国家环保局城市污水处理政策和中国现有技术水平及市场发展趋势,规定了生活污水净化沼气池的设计、工程质量验收及运行管理的要求,为生活污水净化沼气池的建设提供了技术依据。 附录A是规范性附录。 附录B是资料性附录 本标准由中华人民共和国农业部提出并归口。 本标准负责起草单位: 农业部沼气产品及设备质量监督检验测试中心 参加起草单位: 农业部沼气科学研究所 四川省农村能源办公室 重庆市农村能源办公室

浙江省农村能源办公室 江西省农村能源办公室 湖南省农村能源办公室 江苏省农村能源办公室 广东省农村能源办公室 福建省农村能源办公室 本标准主要起草人: 郑时选王敬堂 NYXXX-200X 1 总则 1.1 制定规范的目的 为保证生活污水净化沼气池(以下简称净化池)的质量,使设计、工程质 量验收和运行管理符合适用、经济、环保、安全等的基本要求。实现小城 3 2020年5月29日

镇和村镇污水处理资源、无害化,特制定本规范。 1.2 适用范围 本规范适用于小城镇和村镇及排水管网覆盖不到的城市生活污水净化池的建造。 1.3 主要内容 本规范规定了净化池的设计、工程质量验收和运行管理的技术要求和方法。 1.4 规范性引用文件 下列文件中的条款经过本规范引用而构成为本规范的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GBJ14 室外排水设计规范 GBJ16 建筑设计防火规范 4 2020年5月29日

沼气净化与综合利用

沼气净化技术与产品综合利用 郝伟 (成都天成碳一化工有限公司,610045,成都) 摘要介绍了沼气的性质,各种净化方法比较,产品用途及应用前景。 关键词沼气净化技术脱硫脱碳天然气CNG 正文 1沼气的性质与用途 沼气,顾名思义就是沼泽里的气体。人们经常可以看到在沼泽地、污水沟或粪池里有气泡冒出来,如果我们划着火柴,可把它点燃,这就是自然界天然产生的沼气。人造沼气是将各种有机物质在隔绝空气,并在适宜的温度、湿度条件下,经过微生物的发酵作用产生的一种可燃气体。 沼气的主要成分是甲烷(CH4),含量约50%~80%,另外还含有20%~40%的二氧化碳(CO2),0%~5%的氮气(N2),<1%的氢气(H2)、<0.4%的氧气(O2)与少量的硫化氢(H2S),以及微量的不饱和烃,通常都含有饱和水。由于沼气含有少量硫化氢,所以略带臭味。其特性与天然气相似,空气中如含有8.6%~20.8%(V%)的沼气时,就会形成爆炸性的混合气体。 沼气的主要成分甲烷是一种理想的气体燃料,它无色无味,与适量空气混合后即可燃烧。纯甲烷的发热量为34MJ/Nm3,沼气的发热量约为20~23MJ/Nm3。即1Nm3沼气完全燃烧后,能产生相当于0.7千克无烟煤提供的热量。与其它燃气相比,其抗爆性能较好,是一种很好的清洁燃料。沼气除直接燃烧用于炊事、烘干农副产品、供暖、照明和气焊等外,还可作内燃机的燃料以及生产甲醇、福尔马林、四氯化碳等化工原料。 2我国沼气的资源现状 制取沼气的主要原材料有:农作物秸秆,人畜粪便、树叶、杂草、菜叶、淀粉废渣、城市有机垃圾、生活污水、污水处理厂的污泥、工业有机废弃物等各种有机物质。通过在隔绝空气,并在适宜的温度、湿度条件下,经过微生物的发酵作用产生。主要获取途径有厌氧消化工程制取的沼气和收集城市生产垃圾填埋产生的填埋气。

国内外沼气净化提纯工艺汇总

国内外沼气净化提纯工艺汇总 沼气净化提出的程度取决于沼气的用途。沼气供热需要脱硫化氢、水,沼气发电需要脱硫化氢、水、有机卤化物;沼气作汽车燃料需要脱硫化氢、水、有机卤化物、二氧化碳;沼气并入天然气网需要脱硫化氢、水、有机卤化物、二氧化碳以及金属。本文将就沼气脱水、脱硫和脱碳的常用工艺进行汇总详述。 一、脱硫工艺 沼气脱硫是为了避免硫化氢腐蚀设备、硫化氢中毒,以及防止沼气燃烧时,硫化氢被氧化成二氧化硫或三氧化硫造成更大的危害。其脱除方法如下: 1.生物降解工艺 沼气中的硫可以通过微生物被去除。大部分的硫氧化细菌都属于硫杆菌属,且大多都是自养的,即他们可以利用沼气中的二氧化碳来满足其C营养的需要,主要生成物是单质硫,也有部分硫酸根,在溶液中形成硫酸会造成腐蚀。根据沼气中不同不同的硫化氢含量,可以往沼气中通入2%-6%的空气,以满足生物氧化硫化物的需要。 最直接和简单的方法是直接往厌氧消化罐或储气罐中通入一定量的氧或空气并保持一定时间,因为硫杆菌随处可见,所以并不需要接种。消化物的表面可以提供给他们一个微观好氧环境和必须的营养以供它们生长,并会形成菌落上面附着一层黄色的硫。适当的温度、反应时间和空气量可以使硫化氢减少至50ppm。 对于不同的甲烷含量,沼气在空气中的爆炸范围为6%-12%,所以必须采取一定的安全措施以避免给沼气中通入过量的空气。 2.生物滤床工艺 在大型厌氧消化罐生产沼气中,水洗和生物脱硫常常被联合起来用以去除硫化氢。可以使用废水或者消化罐中的上清液从滤床顶部通入,沼气从底部通入,进入滤床前的沼气中通入4%-6%的空气,滤床为水吸收硫化氢和脱硫微生物的生长都提供了一个充足的接触面。在丹麦,有几家工业污水处理厂和很多农场发酵产沼都在使用此种工艺净化沼气。 3.消化污泥中加氯化铁工艺 直接往消化污泥中加入氯化铁,氯化铁会和硫化氢反应而形成硫化铁盐颗粒。这种方法可以使硫化

沼气净化池设计规范

NYXXX-200X 2.1.2 生活污水水质生活污水水质应按实测值确定。当无实测值时,BOD5可按2.1.2.1和2.1.2.2取值。 2.1.2.1小城镇及村镇住宅生活污水BOD5可在160~600mg/l之间取值。 2.1.2.2 公共建筑生活污水水质 小城镇医院生活污水BOD5可在200~400mg/l之间取值 小城镇旅馆生活污水BOD5可在150~400mg/l之间取值。 小城镇餐饮店生活污水BOD5可在250~700mg/l之间取值。 2.2 基本设计参数 2.2.1 工艺设计参数2.2.1.1 工艺设计分类 A型:主要适用于经济落后、环境容量较大,容易发生肠道传染病的村镇。主要处理高浓度生活污水和公共厕所的粪便污水。 B型:适用于经济欠发达,有一定环境容量的城镇。主要处理居民住宅、其它公共建筑生活污水及水冲式公共厕所的粪便污水。 C型:适用于无污水处理厂的小城市及大城市未设排水管网的郊区。主要处理城市住宅及其它公共建筑物的生活污水。 2.2.1.2 出水水质。 A型工艺净化池:处理后的污水水质达到GB7959的要求。 B型工艺净化池:处理后的污水水质达到GB18918三级要求。 C型工艺净化池:处理后的污水达到GB18918一、二级。 2.2.1.3 工艺流程 A型工艺净化池:采用多级折流厌氧消化工艺,一般HRT为8-40d。采用多级串联组成。 B型工艺净化池:采用多级折流、逐段(分前处理和后处理)降解消化工艺,一般HRT 为3-8d。一般前处理段设置少量填料,后处理段设置滤料。 C型工艺净化池:一般由沉砂除渣、折流厌氧消化、厌氧滤池、兼氧过滤或接触氧化、消毒等单元过程组成。若出水需再生利用时, 工艺按GB50335 污水再生利用工程设计规范设计。 2.2.2 结构设计参数 2.2.2.1 结构可靠度 a). 净化池正常使用年限50年。 b). 钢筋混凝土结构安全等级2级,砖石结构3级。 2.2.2.2 荷载 a)地面均布活荷载标准值4.5kN/m2。 b)沼气气压荷载标准值≤6kpa。 c)地面车辆荷载按汽—10计算。 e)特殊荷载按实际出现的特殊荷载计算。 2.2.2.3 材料 a)混凝土、钢材地下构筑物混凝土强度等级不应低于C25级,钢筋采用Ⅰ、Ⅱ级。 b)砖、石砖石结构中,砖采用MU10级以上烧结普通砖。石材采用MU30级以上。 砌筑水泥砂浆不低于M10级。 c)加强型塑料等其它材料。 d)密封材料 净化池要求使用密封剂和防腐材料。 2.2.2.4 地基承载力≥120kPa。

相关主题
文本预览
相关文档 最新文档