当前位置:文档之家› 六年级奥数举一反三第26讲 乘法和加法原理含答案

六年级奥数举一反三第26讲 乘法和加法原理含答案

六年级奥数举一反三第26讲 乘法和加法原理含答案
六年级奥数举一反三第26讲 乘法和加法原理含答案

第26讲乘法和加法原理

一、知识要点

在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。

二、精讲精练

【例题1】由数字0,1,2,3组成三位数,问:

①可组成多少个不相等的三位数?

②可组成多少个没有重复数字的三位数?

在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。

①要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成3×4×4=48个不相等的三位数。

②要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成3×3×2=18个没有重复数字的三位数。

练习1:

1、有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数?

2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式?

3、由数字1,2,3,4,5,6,7,8,可组成多少个:

①三位数;

②三位偶数;

③没有重复数字的三位偶数;

④百位是8的没有重复数字的三位数;

⑤百位是8的没有重复数字的三位偶数。

【例题2】有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形?

要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑:

两个正方体向上一面同为奇数的共有3×3=9(种)不同的情形;

两个正方体向上一面同为偶数的共有3×3=9(种)不同的情形;

两个正方体向上一面同为偶数的共有3×3+3×3=18(种)不同的情形。

练习2:

1、在1—1000的自然数中,一共有多少个数字1?

2、在1—500的自然数中,不含数字0和1的数有多少个?

3、十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问最多试开多少次,就能把锁和钥匙配起来?

4、由数字0,1,2,3,4可以组成多少个没有重复数字的三位偶数?

【例题3】书架上层有6本不同的数学书,下层有5本不同的语文书,若任意从书架上取一本数学书和一本语文书,有多少种不同的取法?

从书架上任取一本数学书和一本语文书,可分两个步骤完成,第一步先取数学书,有6种不同的方法,而这6种的每一种取出后,第二步再取语文书,又有5种不同的取法,这样共有6个5种取法,应用乘法计算6×5=30(种),有30种不同的取法。

练习3:

1、商店里有5种不同的儿童上衣,4种不同的裙子,妈妈准备为女儿买上衣一件和裙子一条组成一套,共有多少种不同的选法?

2、小明家到学校共有5条路可走,从学校到少年宫共有3条路可走。小明从家出发,经过学校然后到少年宫,共有多少种不同的走法?

3、张师傅到食堂吃饭,主食有2种,副食有6种,主、副食各选一种,他有几种不同的选法?

【例题4】在2,3,5,7,9这五个数字中,选出四个数字,组成被3除余2的四位数,这样的四位数有多少个?

从五个数字中选出四个数字,即五个数字中要去掉一个数字,由于原来五个数字相加的和除以3余2,所以去掉的数字只能是3或9。

去掉的数字为3时,即选2,5,7,9四个数字,能排出4×3×2×1=24(个)符合要求的数,去掉的数字为9时也能排出24个符合要求得数,因此这样的四位数一共有24+24=48(个)

练习4:

1、在1,2,3,4,5这五个数字中,选出四个数字组成被3除余2的四位数,这样的四位数有多少个?

2、在1,2,3,4,5这五个数字中,选出四个数字组成能被3整除的四位数,这样的四位数有多少个?

3、在1,4,5,6,7这五个数字中,选出四个数字组成被3除余1的四位数,这样的四位数有多少个?

【例题5】从学校到少年宫有4条东西的马路和3条南北的马路相通(如图),小明从学校出发到少年宫(只许向东或向南行进),最后有多少种走法?

为了方便解答,把图中各点用字母表示如图。根据小明步行规则,显然可知由A到T通过AC边上的各点和AN边上的各点只有一条路线,通过E点有两条路线(即从B点、D点来各一条路线),通过H点有3条路线(即从E点来有二条路线,从G点来有一条路线),这样推断可知通过任何一个交叉点的路线总数等于通过该点左边、上方的两邻接交叉点的路线的总和,因此,可求得通过S点有4条路线,通过F点有3条路线……由此可见,由A点通过T点有10条不同的路线,所以小明从学校到少年宫最多有10种走法。

练习5:

1、从学校到图书馆有5条东西的马路和5条南北的马路相通(如图)。李菊从学校出发步行到图书馆(只许向东或向南行进),最多有多少种走法?

2、某区的街道非常整齐(如图),从西南角A处走到东北角B处,要求走最近的路,一共有多少种不同的走法?

3、如图有6个点,9条线段,一只小虫从A点出发,要沿着某几条线段爬到F点。行进中,同一个点或同一条线段只能经过一次,这只小虫最多有多少种不同的走法?

第26周乘法和加法原理

一、知识要点

在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。

二、精讲精练

【例题1】由数字0,1,2,3组成三位数,问:

①可组成多少个不相等的三位数?

②可组成多少个没有重复数字的三位数?

在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。

①要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成3×4×4=48个不相等的三位数。

②要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成3×3×2=18个没有重复数字的三位数。

练习1:

1、有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数?

2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式?

3、由数字1,2,3,4,5,6,7,8,可组成多少个:

①三位数;

②三位偶数;

③没有重复数字的三位偶数;

④百位是8的没有重复数字的三位数;

⑤百位是8的没有重复数字的三位偶数。

【例题2】有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形?

要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑:

两个正方体向上一面同为奇数的共有3×3=9(种)不同的情形;

两个正方体向上一面同为偶数的共有3×3=9(种)不同的情形;

两个正方体向上一面同为偶数的共有3×3+3×3=18(种)不同的情形。

练习2:

1、在1—1000的自然数中,一共有多少个数字1?

2、在1—500的自然数中,不含数字0和1的数有多少个?

3、十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问最多试开多少次,就能把锁和钥匙配起来?

4、由数字0,1,2,3,4可以组成多少个没有重复数字的三位偶数?

【例题3】书架上层有6本不同的数学书,下层有5本不同的语文书,若任意从书架上取一本数学书和一本语文书,有多少种不同的取法?

从书架上任取一本数学书和一本语文书,可分两个步骤完成,第一步先取数学书,有6种不同的方法,而这6种的每一种取出后,第二步再取语文书,又有5种不同的取法,这样共有6个5种取法,应用乘法计算6×5=30(种),有30种不同的取法。

练习3:

1、商店里有5种不同的儿童上衣,4种不同的裙子,妈妈准备为女儿买上衣一件和裙子一条组成一套,共有多少种不同的选法?

2、小明家到学校共有5条路可走,从学校到少年宫共有3条路可走。小明从家出发,经过学校然后到少年宫,共有多少种不同的走法?

3、张师傅到食堂吃饭,主食有2种,副食有6种,主、副食各选一种,他有几种不同的选法?

【例题4】在2,3,5,7,9这五个数字中,选出四个数字,组成被3除余2的四位数,这样的四位数有多少个?

从五个数字中选出四个数字,即五个数字中要去掉一个数字,由于原来五个数字相加的和除以3余2,所以去掉的数字只能是3或9。

去掉的数字为3时,即选2,5,7,9四个数字,能排出4×3×2×1=24(个)符合要求的数,去掉的数字为9时也能排出24个符合要求得数,因此这样的四位数一共有24+24=48(个)

练习4:

1、在1,2,3,4,5这五个数字中,选出四个数字组成被3除余2的四位数,这样的四位数有多少个?

2、在1,2,3,4,5这五个数字中,选出四个数字组成能被3整除的四位数,这样的四

位数有多少个?

3、在1,4,5,6,7这五个数字中,选出四个数字组成被3除余1的四位数,这样的四位数有多少个?

【例题5】从学校到少年宫有4条东西的马路和3条南北的马路相通(如图),小明从学校出发到少年宫(只许向东或向南行进),最后有多少种走法?

为了方便解答,把图中各点用字母表示如图。根据小明步行规则,显然可知由A到T通过AC边上的各点和AN边上的各点只有一条路线,通过E点有两条路线(即从B点、D点来各一条路线),通过H点有3条路线(即从E点来有二条路线,从G点来有一条路线),这样推断可知通过任何一个交叉点的路线总数等于通过该点左边、上方的两邻接交叉点的路线的总和,因此,可求得通过S点有4条路线,通过F点有3条路线……由此可见,由A点通过T点有10条不同的路线,所以小明从学校到少年宫最多有10种走法。

练习5:

1、从学校到图书馆有5条东西的马路和5条南北的马路相通(如图)。李菊从学校出发步行到图书馆(只许向东或向南行进),最多有多少种走法?

2、某区的街道非常整齐(如图),从西南角A处走到东北角B处,要求走最近的路,一共有多少种不同的走法?

3、如图有6个点,9条线段,一只小虫从A点出发,要沿着某几条线段爬到F点。行进中,同一个点或同一条线段只能经过一次,这只小虫最多有多少种不同的走法?

答案:

练1

1、3×5×4×3=180个

2、90×9=810个

3、8×8×8=512个 4×8×8=256个

4×7×6=168个 1×7×6=42个 1×3×6=18个

练2

1、9180+3=192个

2、8+8×8+3×8×8=264个

3、9+8+7+6+5+4+3+2+1=45次

练3

1、24个

2、42个

3、48个 48个

练4

1、48个

2、24个

3、72个

练5

1、12个

2、18个

3、30个 12个

加法原理和乘法原理

教师姓名 学科 数学 上课时间 年 月 日 --- 学生姓名 年级 课题名称 加法原理和乘法原理 教学目标 1、理解加法原理和乘法原理;2、解决具体的加乘原理的题目 教学重点 加法原理和乘法原理 教学过程 加法原理和乘法原理 知识要点一:加法原理——分类计数原理 【知识导入1】 我们先来看这样一些问题: 问题1:从西安到北京,每天有3个航班的飞机,有4个班次的火车,有两个班次的汽车.那么,乘坐以上工具从西安到北京,在一天中一共有多少种选择呢? 问题2:用一个大写英文字母或一个阿拉伯数字给教室里的座位编号,总共能编出多少种不同的号码? 问题3:一个学生从3本不同的物理资料、4本不同的英语资料、6本不同的课外书中任取一本来学习,不同的选法有多少种? 【提炼特点】 (1)完成一件事有若干种方法,这些方法可以分成n 类; (2)每一类中的每一种方法都可以完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数。 【抽象概况】 分类加法计数原理:完成一件事情,可以有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有 2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有 n m m m N +???++=21 种不同的方法. 注意:○ 1 这个原理也称为“加法原理”; ○ 2 分类加法计数原理针对的是“分类”问题,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.

【例1】用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法? 【解析】运用加法原理,把组成方法分成三大类: ①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。 ②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。 ③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的。 所以共有组成方法:3+5+2=10(种)。 举一反三 1、书架上有10本故事书,3本历史书,12本科普读物。志远任意从书架上取一本书,有多少种不同的取法? 2、一列火车从上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票? 3、已知往返于甲、乙两地的火车中途要停靠四个站,问:要有多少种不同车票票价(来回票价一样)?需准备多少种车票? 4、各数位的数字之和是24的三位数共有多少个?

六年级举一反三奥数

第讲浓度 点击例题1 在浓度为35%的10千克的盐水中加入4千克的水,这时盐水浓度是多少? 举一反三 1.一只桶里装满了纯酒精,倒出其中的后加满水,使它与纯酒精混合成酒精溶液,再倒出其中的2后又加满水,这时桶中的酒精溶液浓度是多少? 2.一只杯子里装满了100克糖,倒出其中的50克糖后,加入同样重量的水,充分混合后,再倒出其中的40克糖水,再加入40克水。问这时杯中糖水的浓度是多少? 3.有浓度为30%的硫酸溶液若干,加了一定量的水后,稀释成浓度为24%的硫酸溶液,再加入同样多的水后,浓度将变成百分之几? 安鸿: 点击例题2 有含糖量为7%的糖水600克,要使其含糖量加大10%,需要再加多少克糖? 举一反三 1.有300克浓度为10%的盐水,现在要将这盐水的浓度变为8%,问应加入多少 克水?

2.现有浓度为20%的糖水200千克,要得到浓度为10%的糖水,需加水多少千克? 3.现有浓度为20%的盐水100克和浓度为12.5%的盐水200克,混合后所得的盐水的浓度为多少? 点击例题3 容器内有浓度为15%的盐水,若再加入20千克的水,则盐水的浓度变为10%,问这个容器内原来含盐多少千克? 举一反三 1.一容器内有浓度为25%的糖水,若再加入20千克水,则糖水的浓度变为20%,问这个容器中原来含糖多少千克? 2.海水中盐的含量为5%,在40千克海水中,需加多少千克水才能使海水中盐的含量为2%? 3.在含盐20%的盐水中,加入10千克水就变成含盐16%的盐水,原来的盐水有多少千克?

现有浓度为10%的盐水20千克。再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水? 举一反三 1.在100千克浓度为50%的硫酸溶液中,再加入多少千克浓度为5%的硫酸溶液就可以配制成25%的硫酸溶液? 2.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后所得到的酒精溶液的浓度是多少? 3.在20%的盐水中加入10千克水,浓度为15%。再加入多少千克盐,浓度为25%? 点击例题5 甲、乙、丙三个试管中各盛有10克、20克、30克水。把某种浓度的盐水10克倒入甲试管中,混合后取10克倒入乙试管中,再混合后从乙试管中取出10克倒入丙试管中。现在丙试管中的盐水浓度为0.5%。最早倒入甲试管中的盐水的浓度是多少? 举一反三 1.从装满100克80%的盐水中倒出40克盐水后,再用清水将杯加满,搅拌后再

(完整)六年级奥数乘法和加法原理答案

第二十六周乘法和加法原理 例题1: 由数字0,1,2,3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数? 在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。 ①要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成3×4×4=48个不相等的三位数。 ②要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成3×3×2=18个没有重复数字的三位数。 练习1: 1、有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数? 2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式? 3、由数字1,2,3,4,5,6,7,8,可组成多少个: ①三位数; ②三位偶数; ③没有重复数字的三位偶数; ④百位是8的没有重复数字的三位数; ⑤百位是8的没有重复数字的三位偶数。 例题2: 有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形? 要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑: 两个正方体向上一面同为奇数的共有3×3=9(种)不同的情形; 两个正方体向上一面同为偶数的共有3×3=9(种)不同的情形; 两个正方体向上一面同为偶数的共有3×3+3×3=18(种)不同的情形。 练习2: 1、在1—1000的自然数中,一共有多少个数字1?

【教育资料】二年级下册数学专项练习举一反三奥数题 全国通用学习专用

间隔趣谈 1、把一根长30厘米的铁丝剪成6段,每剪一次要用2分钟,一共需要几分钟? 2、一根木料长10米,要把它锯成一些2米长的小段,每锯一次要用4分钟,一共要用多少分钟? 3、时钟3点敲3下,用4秒钟,敲9下用几秒? 4、时钟10秒敲6下,敲10下需要几秒? 5、一根木料,锯成3段要用10分钟,如果要锯成5段需要多少分钟? 6、张师傅18分钟把一根木头锯成了7段,如果他锯了36分钟,那么这根木头被锯成了几段? 7、12米长的钢管锯成3米长的几段,一共要用18分钟,每锯一次用几分钟? 8、李师傅把一根水管锯成三段,每锯一次用3分钟,他一口气锯了五根水管,一共用了多少分钟? 9、时钟5点敲5下需要8秒,那么12点敲12下需要几秒钟? 10、一根水管,12分钟把它锯成了4段,另外有同样的一根水管以同样的速度锯成12段,需要多少分钟? 11、一根木料锯成3段用了4分钟,另外有同样的一根木料以同样的速度锯,12分钟可锯成多少段? 12、李老师家住在六楼,他从底楼到三楼要用2分钟,那么从底楼到六楼要用多少分钟? 13、一条河堤40米,每隔4米栽一棵树,从头到尾一共要栽多少棵? 14、小明把9粒棋子横着摆放在桌上,每两粒间的距离是5厘米,从第一粒到第九粒之间的距离是多少厘米? 15、小新把7粒纽扣放在桌上,每两粒之间的距离是5厘米,从第一粒到第七粒的距离是多少厘米? 16、在两根柱子间每隔1米系一个汽球,共系了20个汽球,两根柱子间距离是多少? 17、两幢房之间相距50米,每隔1米站一个小朋友,一共可以站几个小朋友?18、一根绳子长1米,每隔10厘米打一个结,一共要打几个结? 19、绿化小组在学校的过道两边摆放月季花,每隔1米摆1盆,一共摆了42盆,这条过道长多少米? 20、一条路长100米,工人叔叔要在路两旁每隔10米竖一根电线杆,从头到尾一共要竖多少根电线杆? 21、一条路每隔2米有1根电线杆,连两端共有81根,这条路长多少米? 22、一座桥长25米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有多少盏灯? 23、在两幢房之间每隔2米放置宣传广告,一共放了10个,两幢楼之间相距多少米? 24、两棵树之间相距20米,每隔2米插一面彩旗,一共可以插几面彩旗?

《排列组合问题之—加法原理和乘法原理》

排列组合问题之—加法原理和乘法原理 华图教育梁维维 加法原理和乘法原理是排列组合问题的基本思想,绝大多数的排列组合问题都会应用到这两个原理,所以对加法、乘法原理广大考生要充分的了解和掌握。 1.加法原理 加法原理:做一件事情,完成它有N类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第N类方式有M(N)种方法,那么完成这件事情共有M1+M2+……+M(N)种方法。 例如:从长春到济南有乘火车、飞机、轮船3种交通方式可供选择,而火车、飞机、轮船分别有k1,k2,k3个班次,那么从武汉到上海共有N=k1+k2+k3种方式可以到达。加法原理指的是如果一件事情是分类完成的,那么总的情况数等于每类情况数的总和,比如如下的题目:【例1】利用数字1,2,3,4,5共可组成 ⑴多少个数字不重复的三位数? ⑵多少个数字不重复的三位偶数? 【解析】⑴百位数有5种选择;十位数不同于百位数有4种选择;个位数不同于百位数和十位数有3种选择.所以共有5×4×3=60个数字不重复的三位数。 【解析】⑵先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数。 在公务员考试当中,排列组合也是考察比较多的一个问题,国考和联考当中也对加法原理做了考察。例如如下的两道题: 【例2】某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?( ) A.7种 B.12种 C.15种 D.21种 【解析】不同的订报方式对于同学可以选择订一种、两种、三种、四种这样四类,第一类,选择一种有4种订报方式,第二类选订两种有6种订报方式,第三类选定三种有4种订报方式,第四类四种都订有1种订报方式。所以每个同学有4+6+4+1=15种订报方式。

小学奥数教材举一反三六年级课程40讲全整理

修改整理加入目录,方便查用,六年级奥数举一反三 目录 第1讲定义新运算 (3) 第2讲简便运算(一) (6) 第3讲简便运算(二) (9) 第4讲简便运算(三) (11) 第5讲简便运算(四) (14) 第6讲转化单位“1”(一) (17) 第7讲转化单位“1”(二) (19) 第8讲转化单位“1”(三) (22) 第9讲设数法解题 (25) 第10讲假设法解题(一) (28) 第11讲假设法解题(二) (31) 第12讲倒推法解题 (34) 第13讲代数法解题 (37) 第14讲比的应用(一) (40) 第15讲比的应用(二) (43) 第16讲用“组合法”解工程问题 (47) 第17讲浓度问题 (50) 第18讲面积计算(一) (54) 第19讲面积计算(二) (59) 第20讲面积计算 (64)

第二十一周抓“不变量”解题 (69) 第二十二周特殊工程问题 (71) 第二十三周周期工程问题 (75) 第二十四周比较大小 (83) 第二十五周最大最小问题 (87) 第26周加法、乘法原理 (90) 第27周表面积与体积(一) (92) 第28周表面积与体积(二) (101) 第二十九周抽屉原理(一) (104) 第三十周抽屉原理(二) (109) 第三十一周逻辑推理(一) (114) 第三十二周逻辑推理(二) (121) 第三十三周行程问题(一) (127) 第三十四周行程问题(二) (135) 第三十五周行程问题(三) (144) 第三十六周流水行船问题 (151) 第三十七周对策问题 (154) 第三十八周应用同余问题 (156) 第三十九周“牛吃草”问题 (158) 第四十周不定方程 (161)

小升初数学加法乘法原理知识点总结

小升初数学加法乘法原理知识点总结 临考前我们更要以几倍于他人的努力去复习,去认真对待。保证会的不失分,尽可能避免太多的遗憾。下面是为大家收集的小升初数学加法乘法原理知识点,供大家参考。 加法乘法原理和几何计数 加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。 关键问题:确定工作的分类方法。 基本特征:每一种方法都可完成任务。 乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn 种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。 关键问题:确定工作的完成步骤。 基本特征:每一步只能完成任务的一部分。 直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。 直线特点:没有端点,没有长度。 线段:直线上任意两点间的距离。这两点叫端点。

线段特点:有两个端点,有长度。 射线:把直线的一端无限延长。 射线特点:只有一个端点;没有长度。 ①数线段规律:总数=1+2+3+…+(点数一1); ②数角规律=1+2+3+…+(射线数一1); ③数长方形规律:个数=长的线段数×宽的线段数: 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。④数长方形规律:个数 =1×1+2×2+3×3+…+行数×列数 “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接

20小学奥数举一反三(六年级)A版

小学奥数举一反三A版 第10讲假设法解题(一) 一、知识要点 假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。有些题目用假设法思考,能找到巧妙的解答思路。 运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。 二、精讲精练 【例题1】 甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少? 【思路导航】假设将题中“甲数的 1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。 解:乙:(185-42×4)÷(1-1/5×4)=85 答:甲数是100,乙数是85。 练习1: 1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱? 2.甲、乙两个消防队共有338人。抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人? 3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨? 【例题2】 彩色电视机和黑白电视机共250台。如果彩色电视机卖出1/9,则比黑白电视机多5台。问:两种电视机原来各有多少台? 【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出 1/9后剩下的一样多。 黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。 (250+5)÷(1+1-1/9)=135(台) 250-125=115(台) 答:彩色电视机原有135台,黑白电视机原有115台。 练习2: 1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔? 2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个? 3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只? 【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的 4/7相差的个数。这样就可以求出师傅加工

四年级奥数第六讲——乘法原理与加法原理(学生用)

远辉教育奥数班第六讲 ——乘法原理与加法原理 主讲人:杨老师学生:四年级电话:62379828 一、学习要点: Ⅰ乘法原理 在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法? 分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即: 第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法: 注意到3×1=3. 如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法: 共有六种走法,注意到3×2=6. 在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的. 在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数. 一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,那么,完成这件事一共有 N=m1×m2×…×mn种不同的方法. 这就是乘法原理. Ⅱ加法原理 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法? 分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5

第一讲 加法原理和乘法原理 (练习题)

第一讲加法原理和乘法原理(练习题) 1. 从武汉到上海,可以乘飞机·火车·轮船和汽车。一天中飞机有两班,火车有4班,轮船有2班,汽车有3班。那么一天从武汉到上海,一共有多少种不同的走法? 2. 商店有铅笔5种,钢笔6种,圆珠笔3种。小红要从中任选一种,一共有多少种不同的选法? 3. 4个好朋友在旅游景点拍照留念(不考虑站的顺序),共有多少种不同的照法? 4. 有0、2、3三个不同的数字组成不同的三位数,一共可以组成多少种不同的三位数? 5. 一列火车从甲地到乙地中途要经过5个站,这列火车从甲地到乙地共要准备多少种不同的车票? 6. 五个人进行下棋比赛,每两个人之间都要赛一场,一共要赛多少场? 7. 在5×5的方格中(如右图),共有多少个正方形?

8. 书架上有8本故事书和6本童话书,王刚要从书架上去一本故事书和一本童话书,一共有多少种不同的取法? 9. 服装店里有5件不同的儿童上衣、4条不同的裙子。妈妈为小红买了一件上衣和一条裙子配成一套,一共有多少种不同的选法? 10. 从1、3、5、7这四个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数? 11.用1、2、3、4这四个数字可以组成多少个不同的三位数? 12.(如图所示):A、B、C、D四个区域分别用红、黄、蓝、绿四种颜色中的某一种涂色。如果要求相邻的区域涂不同的颜色,共有多少种不同的涂色方法? 13. 从4名男生和2名女生中选出班干部3名,其中至少要有一名女生,一共有多少种不同的选法? 14. 有红、黄、蓝、白四种颜色的旗各一面,从中选一面、两面、三面或者四面旗从上到下挂在旗杆上表示不同的信号(顺序不同时,表示的信号也不同),一共可以表示多少种不同的信号?

小学奥数举一反三六年级(全)

第一周 定义新运算 专题简析: 定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。 解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。 定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“?、#、*、·”不同的。 新定义的算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。 例题1。 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。 13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=10 13*(5*4)=13*10=(13+10)+(13-10)=26 练习1 1..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。 2.设a*b=a 2 +2b ,那么求10*6和5*(2*8)。 3.设a*b=3a -1 2 ×b ,求(25*12)*(10*5)。 例题2。 设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。求3△(4△6). 3△(4△6). =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =65 练习2 1. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。 2. 设p 、q 是两个数,规定p △q =p 2 +(p -q )×2。求30△(5△3)。 3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14 。 例题3。 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。那么7*4=?,210*2=? 7*4=7+77+777+7777=8638 210*2=210+210210=210420

奥数:加法、乘法原理(小学4-6年级专用)

小学奥数:加法原理 在日常生活与实践中,我们经常会遇到分组、计数的问题。解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。 什么叫做加法原理呢?我们先来看这样一个问题: 从到上海,可以乘火车,也可以乘汽车、轮船或者飞机。假如一天中到上海有4班火车、6班汽车,3班轮船、2班飞机。那么一天中乘做这些交通工具从到上海共有多少种不同的走法? 我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。因为每一种走法都可以从到上海,因此,一天中从到上海共有4+6+3+2 = 15 (种)不同的走法。 我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和。即N = m1 + m2 + …+ m n (N代表完成一件工作的方法的总和,m1,m2, …m n 表示每一类完成工作的方法的种数)。这个规律就乘做加法原理。 例题与方法: 例1书架上有10本故事书,3本历史书,12本科普读物。志远

任意从书架上取一本书,有多少种不同的取法? 例2一列火车从上上海到,中途要经过6个站,这列火车要准备多少中不同的车票? 例3、4 x 4的方格图中(如下图),共有多少个形? 例4、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法? 练习与思考: 1.从甲城到乙城,可乘汽车,火车或飞机。已知一天中汽车有2班,火车有4班,甲城到乙城共有()种不同的走法。

2021年二年级举一反三奥数题

间隔趣谈 欧阳光明(2021.03.07) 1、把一根长30厘米的铁丝剪成6段,每剪一次要用2分钟,一共需要几分钟? 2、一根木料长10米,要把它锯成一些2米长的小段,每锯一次要用4分钟,一共要用多少分钟? 3、时钟3点敲3下,用4秒钟,敲9下用几秒? 4、时钟10秒敲6下,敲10下需要几秒? 5、一根木料,锯成3段要用10分钟,如果要锯成5段需要多少分钟? 6、张师傅18分钟把一根木头锯成了7段,如果他锯了36分钟,那么这根木头被锯成了几段? 7、12米长的钢管锯成3米长的几段,一共要用18分钟,每锯一次用几分钟?8、李师傅把一根水管锯成三段,每锯一次用3分钟,他一口气锯了五根水管,一共用了多少分钟? 9、时钟5点敲5下需要8秒,那么12点敲12下需要几秒钟? 10、一根水管,12分钟把它锯成了4段,另外有同样的一根水管以同样的速度锯成12段,需要多少分钟? 11、一根木料锯成3段用了4分钟,另外有同样的一根木料以同样的速度锯,12分钟可锯成多少段? 12、李老师家住在六楼,他从底楼到三楼要用2分钟,那么从底楼到六楼要用多少分钟? 13、一条河堤40米,每隔4米栽一棵树,从头到尾一共要栽多少棵? 14、小明把9粒棋子横着摆放在桌上,每两粒间的距离是5厘米,从第一粒到第九粒之间的距离是多

少厘米? 15、小新把7粒纽扣放在桌上,每两粒之间的距离是5厘米,从第一粒到第七粒的距离是多少厘米? 16、在两根柱子间每隔1米系一个汽球,共系了20个汽球,两根柱子间距离是多少? 17、两幢房之间相距50米,每隔1米站一个小朋友,一共可以站几个小朋友? 18、一根绳子长1米,每隔10厘米打一个结,一共要打几个结? 19、绿化小组在学校的过道两边摆放月季花,每隔1米摆1盆,一共摆了42盆,这条过道长多少米? 20、一条路长100米,工人叔叔要在路两旁每隔10米竖一根电线杆,从头到尾一共要竖多少根电线杆? 21、一条路每隔2米有1根电线杆,连两端共有81根,这条路长多少米? 22、一座桥长25米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有多少盏灯? 23、在两幢房之间每隔2米放置宣传广告,一共放了10个,两幢楼之间相距多少米? 24、两棵树之间相距20米,每隔2米插一面彩旗,一共可以插几面彩旗? 1、小宇在A点,他怎样走到公路L,才能使他所走的路程最近? A· ───────────── L 2、城南新村与光明新村同在虹桥路的北侧,现要在虹桥路上,修建一个大型超市以方便附近居民购物,请问超市应设在公路的什么地方,才能使两个

小学奥数六年级举一反三36-40

第三十六周 流水行船问题 专题简析: 当你逆风骑自行车时有什么感觉?是的,逆风时需用很大力气,因为面对的是迎面吹来的风。当顺风时,借着风力,相对而言用里较少。在你的生活中是否也遇到过类似的如流水行船问题。 解答这类题的要素有下列几点:水速、流速、划速、距离,解答这类题与和差问题相似。划速相当于和差问题中的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。 划速=(顺流船速+逆流船速)÷2; 水速=(顺流船速—逆流船速)÷2; 顺流船速=划速+水速; 逆流船速=划速—水速; 顺流船速=逆流船速+水速×2; 逆流船速=逆流船速—水速×2。 例题1: 一条轮船往返于A 、B 两地之间,由A 地到B 地是顺水航行,由B 地到A 地是逆水航行。已知船在静水中的速度是每小时20千米,由A 地到B 地用了6小时,由B 地到A 地所用的时间是由A 地到B 地所用时间的1.5倍,求水流速度。 在这个问题中,不论船是逆水航行,还是顺水航行,其行驶的路程相等,都等于A 、B 两地之间的路程;而船顺水航行时,其形式的速度为船在静水中的速度加上水流速度,而船在怒水航行时的行驶速度是船在静水中的速度与水流速度的差。 解:设水流速度为每小时x 千米,则船由A 地到B 地行驶的路程为[(20+x )×6]千米,船由B 地到A 地行驶的路程为[(20—x )×6×1.5]千米。列方程为 (20+x )×6=(20—x )×6×1.5 x=4 答:水流速度为每小时4千米。 练习1: 1、水流速度是每小时15千米。现在有船顺水而行,8小时行320千米。若逆水行320千米需几小时? 2、水流速度每小时5千米。现在有一船逆水在120千米的河中航行需6小时,顺水航行需几小时? 3、一船从A 地顺流到B 地,航行速度是每小时32千米,水流速度是每小时4千米,212 天可以到达。次船从B 地返回到A 地需多少小时? 例题2: 有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。 这题条件中有行驶的路程和行驶的时间,这样可分别算出船在逆流时的行驶速度和顺流时的行驶速度,再根据和差问题就可以算出船速和水速。列式为 逆流速:120÷10=12(千米/时) 顺流速:120÷6=12(千米/时) 船速:(20+12)÷2=16(千米/时) 水速:(20—12)÷2=4(千米/时)

六年级奥数第25讲:加法原理和乘法原理

乘法原理与加法原理解题 乘法原理:如果完成一件事需要n个步骤,做第一步有m1种方法,做第二步有m2种方法…做第n步有mn种方法,那么完成这件事共有m1×m2×…×mn种方法。 由于上述的各个步骤彼此互不影响,因此各个步骤安排的先后顺序不同并不影响结果。这就使我们可以选择适当顺序来研究它们,以使问题简便地得到解决。 加法原理:如果所要计数的对象有n类,第一类有m1种,第二类有m2种…第n类有mn种,那么这些对象总计有m1+m2+…+mn种。 应用加法原理的关键是将所有计数的对象依据同一标准,分为不重、不漏的若干类。 例1、王芳、小华、小花三人约好每人报名参加学校运动的跳远、跳高、100米跑、200米跑四项比赛中的一项,问报名的结果会出现多少种不同情形? 做一做:有5件不同的上衣,3条不同的裤子,4顶不同的帽子,从中取出一顶帽子、一件上衣、一条裤子配成一套装束,最多有多少种不同的装束? 例2、从3名男生、2名女生中选出优秀学生干部3人,要求其中至少有一名学生,一共有多少种不同选法?

做一做:3名男生、2名女生排成一行照相,女生不站两头,且女生站在一起,问有多少种不同站法。 例3、用0,1,2,3,4这五个数字可以组成多少没有重复数字的三位数? 做一做:有五张卡片,分别写着数字1,2,4,5,8。现从中取出3张卡片,并排放在一起,组成一个三位数,如1 2 3 。问:可以组成多少个不同的偶数? 例4、地图上有A ,B ,C ,D 四个国家,如右图所示。现用红、蓝、黄、绿四种颜料给地图染色,使相邻国家的颜色不同。问:有多少种不同的染色方法? 做一做:如右图所示的地区内有六个国家,A ,B ,C ,D ,E ,F ,现对每个国家用红、黄、蓝、绿、紫这五种颜色中的一种进行着色,并使得相邻国家必须着不同颜色,那么一共有多少种不同的着色方法? A C B D

四年级奥数专题 加法原理和乘法原理

二讲加法与乘法原理 知识导航 加法原理:做一件事情,完成 ..它有n类办法,在第一类办法中有M1种不 同的方法,在第二类办法中有m 2种不同的方法,……,在第n类办法中有m n 种不同的方法,那么完成这件事情共有m 1+m 2 +……+m n 种不同的方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m 1 种方法,完 成第二个步骤有m 2种方法,…,完成第N个步骤有m n 种方法,那么,完成这件 工作共有m 1×m 2 ×…×m n 种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 精典例题 例1:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。问: ①从两个口袋内任取一个小球,有多少种不同的取法? ②从两个口袋内各取一个小球,有多少种不同的取法?

思路点拨 ①:从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法。所以是加法原理的问题。 ②:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题。 模仿练习 孙老师的一个口袋内装有60个小球,另一个口袋内装有80个小球,所有这些小球颜色各不相同。问: (1)从两个口袋内任取一个小球,有多少种不同的取法? (2)从两个口袋内各取一个小球,有多少种不同的取法? 例2:一把钥匙只能开一把锁,淘气有7把钥匙和7把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙? 思路点拨 要求“最多”多少次配好锁和钥匙,就要从最糟糕的情况开始考虑:第1把钥匙要配到锁,最多要试6次(如果6次配对失败,第7把锁就一定是这把钥匙,不用再试);同理,第2把钥匙最多要试5次;……第6把锁最多试1次,最好一把锁不用试。

六年级数学奥数举一反三6-10

第六周 转化单位“1”(一) 专题简析: 把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。 如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的b a ;如 果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =ad bc 。 例题1。 乙数是甲数的23 ,丙数是乙数的4 5 ,丙数是甲数的几分之几? 23 ×45 =8 15 练习1 1. 乙数是甲数的34 ,丙数是乙数的3 5 ,丙数是甲数的几分之几? 2. 一根管子,第一次截去全长的14 ,第二次截去余下的1 2 ,两次共截去全长的几分之几? 3. 一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。他醒来时,发现剩 下的路程是他睡着前所行路程的1 4 。想一想,剩下的路程是全程的几分之几?他睡着时 火车行了全程的几分之几? 练1 1、 =920 2、 =58 3、 =18 =3 8 例题2。 修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的4 5 ,第二周 修了多少米? 解一:8000×14 ×4 5 =1600(米) 解二:8000×(14 ×4 5 )=1600(米) 答:第二周修了1600米。 练习2 用两种方法解答下面各题: 1. 一堆黄沙30吨,第一次用去总数的15 ,第二次用去的是第一次的11 4 倍,第二次用去 黄沙多少吨? 2. 大象可活80年,马的寿命是大象的12 ,长颈鹿的寿命是马的7 8 ,长颈鹿可活多少年?

3. 仓库里有化肥30吨,第一次取出总数的15 ,第二次取出余下的1 3 ,第二次取出多少吨? 练2 1、 =7.5(吨) 2、 =35(年) 3、 =8吨 例题3。 晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的2 5 ,第二天比第一天多 看了15页,这本书共有多少页? 解: 15÷【(1-14 )×25 - 1 4 】=300(页) 答:这本书有300页。 练习3 1. 有一批货物,第一天运了这批货物的14 ,第二天运的是第一天的3 5 ,还剩90吨没有运。 这批货物有多少吨? 2. 修路队在一条公路上施工。第一天修了这条公路的14 ,第二天修了余下的2 3 ,已知这两 天共修路1200米,这条公路全长多少米? 3. 加工一批零件,甲先加工了这批零件的25 ,接着乙加工了余下的4 9 。已知乙加工的个数 比甲少200个,这批零件共有多少个? 练3 1、 =150吨 2、 =1600米 3、 =1500个 例题4。 男生人数是女生人数的4 5 ,女生人数是男生人数的几分之几? 解:把女生人数看作单位“1”。 1÷45 =5 4 把男生人数看作单位“1”。 5÷4=5 4 练习4 1. 停车场里有小汽车的辆数是大汽车的3 4 ,大汽车的辆数是小汽车的几分之几? 2. 如果山羊的只数是绵羊的6 7 ,那么绵羊的只数是山羊的几分之几? 3. 如果花布的单价是白布的13 5 倍,则白布的单价是花布的几分之几? 练4 1、 =113 2、=116 3、 =5 8 例题5。 甲数的13 等于乙数的1 4 ,甲数是乙数的几分之几,乙数是甲数的几倍?

(完整)六年级上3(加法、乘法原理)

第三讲加法、乘法原理 一、知识要点 在做一件事情时,如果有几类不同的方法,而每一类方法中又有几种可能的情况,要求一共有多少种不同的方法,就用加法原理来解决;而做一件事情时,如果要分几步完成,完成每一步时又有几种不同的方法,要求一共有多少种不同的方法,就用乘法原理解决。 二、精讲精练 【例题1】小红、小丽和小敏三个人到世纪公园游玩拍照留恋(不考虑站的顺序),共有多少种不同的拍照方法? 练习1:4个好朋友在旅游景点拍照留念(不考虑站的顺序),共有多少种不同的拍照方法? 练习2:用0,2,3三个数字组成不同的三位数,一共可以组成多少种不同的三位数? 【例题2】从北京到天津的列车中途要经过4个站点,这列列车从北京到天津要准备多少种不同的车票?

练习1:一列列车从甲地到乙地要经过5个站点,这列列车从甲地到乙地要准备多少种不同的车票? 练习2:5个人进行下棋比赛,每两个人之间都要赛一场,一共要赛多少场? 【例题3】在4×4的方格图中(如右图),共有多少个正方形? 练习1:在3×3的方格图中,共有多少个正方形? 练习2:在5×5的方格图中,共有多少个正方形? 【例题4】从3,5,7,11,13这五个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数?

练习1:从1,3,5,7这四个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数? 练习2:从5,7,11,13这四个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数? 【例题5】用0,1,2,3,4这五个数字可以组成多少个不同的三位数? 练习1:用1,2,3,4这四个数字可以组成多少个不同的三位数? 练习2:如右图所示:A、B、C、D四个区域分别用红、黄、蓝、绿四种颜色中的某一种染色。如果要求相邻的区域染不同的颜色,共有多少种不同的染色方法?

二年级举一反三奥数题60133教学文案

二年级举一反三奥数 题60133

间隔趣谈 1、把一根长30厘米的铁丝剪成6段,每剪一次要用2分钟,一共需要几分钟? 2、一根木料长10米,要把它锯成一些2米长的小段,每锯一次要用4分钟,一共要用多少分钟? 3、时钟3点敲3下,用4秒钟,敲9下用几秒? 4、时钟10秒敲6下,敲10下需要几秒? 5、一根木料,锯成3段要用10分钟,如果要锯成5段需要多少分钟? 6、张师傅18分钟把一根木头锯成了7段,如果他锯了36分钟,那么这根木头被锯成了几段? 7、12米长的钢管锯成3米长的几段,一共要用18分钟,每锯一次用几分钟? 8、李师傅把一根水管锯成三段,每锯一次用3分钟,他一口气锯了五根水管,一共用了多少分钟? 收集于网络,如有侵权请联系管理员删除

9、时钟5点敲5下需要8秒,那么12点敲12下需要几秒钟? 10、一根水管,12分钟把它锯成了4段,另外有同样的一根水管以同样的速度锯成12段,需要多少分钟? 11、一根木料锯成3段用了4分钟,另外有同样的一根木料以同样的速度锯,12分钟可锯成多少段? 12、李老师家住在六楼,他从底楼到三楼要用2分钟,那么从底楼到六楼要用多少分钟?13、一条河堤40米,每隔4米栽一棵树,从头到尾一共要栽多少棵? 14、小明把9粒棋子横着摆放在桌上,每两粒间的距离是5厘米,从第一粒到第九粒之间的距离是多少厘米? 15、小新把7粒纽扣放在桌上,每两粒之间的距离是5厘米,从第一粒到第七粒的距离是多少厘米? 16、在两根柱子间每隔1米系一个汽球,共系了20个汽球,两根柱子间距离是多少? 收集于网络,如有侵权请联系管理员删除

17、两幢房之间相距50米,每隔1米站一个小朋友,一共可以站几个小朋友? 18、一根绳子长1米,每隔10厘米打一个结,一共要打几个结? 19、绿化小组在学校的过道两边摆放月季花,每隔1米摆1盆,一共摆了42盆,这条过道长多少米? 20、一条路长100米,工人叔叔要在路两旁每隔10米竖一根电线杆,从头到尾一共要竖多少根电线杆?21、一条路每隔2米有1根电线杆,连两端共有81根,这条路长多少米? 22、一座桥长25米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有多少盏灯? 23、在两幢房之间每隔2米放置宣传广告,一共放了10个,两幢楼之间相距多少米? 24、两棵树之间相距20米,每隔2米插一面彩旗,一共可以插几面彩旗? 收集于网络,如有侵权请联系管理员删除

小学六年级奥数题:举一反三

第一周定义新运算 专题简析: 定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。 解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。 定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“?、#、*、·”不同的。 新定义的算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。 例题1。 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。 13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=10 13*(5*4)=13*10=(13+10)+(13-10)=26 练习1 1..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。 2.设a*b=a2+2b,那么求10*6和5*(2*8)。 3.设a*b=3a-1 2 ×b,求(25*12)*(10*5)。 例题2。 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。求3△(4△6). 3△(4△6). =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =65 练习2 1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。 2.设p、q是两个数,规定p△q=p2+(p-q)×2。求30△(5△3)。 3.设M、N是两个数,规定M*N=M N + N M ,求10*20- 1 4 。 例题3。 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。那么7*4=?,210*2=? 7*4=7+77+777+7777=8638

相关主题
文本预览
相关文档 最新文档