当前位置:文档之家› 滑动轴承实验台使用说明书 指导书

滑动轴承实验台使用说明书 指导书

滑动轴承实验台使用说明书 指导书
滑动轴承实验台使用说明书 指导书

滑动轴承实验台使用说明书

本实验台用于液体动压滑动轴承实验,主要利用它来观察滑动轴承的结构及油膜形成的过程,测量其径向油膜压力分布,通过测定可以绘制出摩擦特性曲线、径向油膜压力分布曲线和测定其承载量。

一、实验台结构简介与工作原理

l. 本实验台主要结构图1所示:

图1 滑动轴承实验台结构简图

1. 操纵面板

2. 电机

3. V带

4. 轴向压力传感器(1只)

5.负载传感器

6. 螺旋加载杆

7. 摩擦力传感器

8. 径向压力传感器(7只)

9. 主轴瓦10.机体11. 主轴箱

2. 结构特点

该实验台主轴9由两个高精度的深沟球轴承支承。

直流电机2通过V 带3驱动主轴9,主轴顺时针旋转,主轴上装有精密加工制造的主轴瓦10,由装在底座里的无级调速器实现主轴的无级变速,轴的转速由装在面板1上的左数码管直接读出。

主轴瓦外圆处被加载装置(未画)压住,旋转加载杆5即可对轴瓦加载,加载大小由负载传感器测出,由面板上右数码管显示。

主轴瓦上装有测力杆,通过摩擦力传感器6可得出摩擦力值。

主轴瓦前端装有1号—7号七只测径向压力传感器7,传感器的进油口在轴

瓦的2

1

处。

在轴瓦全长的4

1

处装有一个测轴向油压的压力传感器。即第8号压力传感

器,传感器的进油口在轴瓦的4

1

处。

此外,还设置有转速传感器和油温传感器,共12个传感器。 二、主要技术参数

试验轴瓦 内径 d =60mm 长度 B =120mm

表面粗糙度 ?7)

材料 ZCuSn5Pb5Zn5(即旧牌号ZQSn6-6-3)

加载范围0—1000N(0~100kg ?f) 负载传感器精度0.01 量程0~10mm 压力传感器精度2.5% 量程0~0.6MPa 测力杆上测力点与轴承中心距离 L =120mm 测力计标定值 K =0.098N/格 电机功率 355W 调速范围:2~400r/nim 试验台重量:52kg

该实验台的操作面板如图2所示。

图2 实验台面板布置图

三、电气装置技术性能

l. 直流电动机功率:355W

2. 测速部份:

a. 测速范围:2 r/nim~400 r/nim

b. 测速精度:±1 r/nim

3. 加载部份:

a. 调整范围:O~1000N(0~100kg)

b. 传感器精度: ±0.2%(读数)

4. 工作条件:

a. 环境温度:-10℃~+50℃

b. 相对湿度:≤80%

c. 电源:~200V土10%50Hz

d. 工作场所:无强烈电磁干扰和腐蚀气体

四、使用步骤

1. 开机前的准备:

a. 用汽油将油箱清理干净,加入N68(40#)机油至圆形油标中线。

b. 面板上调速旋钮逆时针旋到底(转速最低),加载螺旋杆旋至与负载传感

器脱离接触。

2. 通电后,面板上两组数码管亮(左—转速,右—负载),调节调零旋钮使负

载数码管清零。

3. 旋转调速旋钮,使电机在100~200 r/nim运行,此时油膜指示灯应熄灭。

稳定运行3~4分钟。

4. 即可按实验指导书的要求操作。

五、注意事项

l. 使用的机油必须通过过滤才能使用,使用过程中严禁灰尘及金属屑混入油内。

2. 由于主轴和轴瓦加工精度高,配合间隙小,润滑油进入轴和轴瓦间隙后,不易流失,在做摩擦系数测定时,负载传感器的压力不易回零,为了使其迅速回零。需人为把轴瓦抬起,使油流出。

3. 所加负载不允许超过1200N(即120kg),以免损坏负载传感器元件。

4. 机油牌号的选择可根据具体环境温度,在20#~40#内选择。

5. 为防止主轴瓦在无油膜运行时烧坏,在面板上装有油膜报警指示灯,正常工作时指示灯熄灭,严禁在指示灯亮时主轴高速运转。

6. 实验台应在卸载下启动或停止。

滑动轴承实验指导书

一、实验目的

1. 观察径向滑动轴承液体动压润滑油膜的形成过程和现象。

2. 观察载荷和转速改变时径向油膜压力的变化情况。

3. 观察径向滑动轴承油膜的轴向压力分布情况。

4. 测定和绘制径向滑动轴承径向油膜压力曲线,求轴承的承载能力。

5. 了解径向滑动轴承的摩擦系数f的测量方法和摩擦特性曲线λ的绘制方法。

二、实验台的构造与工作原理

实验台的构造如图1所示。

1. 实验台的传动装置

由直流电动机1通过V带2驱动主轴9沿顺时针(面对实验台面板)方向转动,由无级调速器实现无级调速。本实验台主轴的转速范围为2~400 r/nim,主轴的转速由数码管直接读出。

图1 滑动轴承实验台构造示意图

1. 直流电动机

2. V带

3. 负载传感器

4. 螺旋加载杆

5. 弹簧片

6. 摩擦力传感器

7. 压力传感器(径向7只,轴向一只)

8. 主轴瓦9—主轴10—主轴箱

2. 轴与轴瓦间的油膜压力测量装置

轴的材料为45号钢,经表现淬火、磨光,由滚动轴承支承在箱体10上,轴的下半部浸泡在润滑油中,本实验台采用的润滑油的牌号为N68(即旧牌号的40号机械油),该油在20℃时的动力粘度为0.34Pa·S。主轴瓦8的材料为铸锡铅

青铜。牌号为ZCuSnPb5Zn5(即旧牌号ZQSn6-6-3)。在轴瓦的一个径向平面内沿圆周钻有7个小孔,每个小孔沿圆周相隔20°,每个小孔联接一个压力传感器7,用来测量该径向平面内相应点的油膜压力,由此可绘制出径向油膜压力分布曲线。沿轴瓦的一个轴向剖面装有两个压力传感器(即4号和8号压力传感器)。用来观察有限长滑动轴承沿轴向的油膜压力情况。 3. 加载装置

油膜的径向压力分布曲线是在一定的载荷和一定的转速下绘制的。当载荷改变或轴的转速改变时所测出的压力值是不同的,所绘出的压力分布曲线的形状也是不同的。转速的改变方法如前所述。本实验台采用螺旋加载,转动螺杆即可改变载荷的大小,所加载荷之值通过传感器数字显示,直接在实验台的操纵板上读出。

4. 摩擦系数f 测量装置

径向滑动轴承的摩擦系数f 随轴承的特性系数λ=p

n

η值的改变而改变 (μ─油

的动力粘度,n ─轴的转速,p —压力,p =

Bd

W

,W ─轴上的载荷,W =轴瓦自重+外加载荷。本机轴瓦自重为40N ,B ─轴瓦的宽度,d ─轴的直径。本实验台

B =120mm ,d =60mm),如图2所示。

图2 f — λ线图

在边界摩擦时,f 随λ的增大而变化很小,进入混合摩擦后,λ的改变引起f 的急剧变化,在刚形成液体摩擦时f 达到最小值,此后,随λ的增大油膜厚度亦随之增大,因而f 亦有所增大。

摩擦系数f 之值可通过公式得到。

f =

20.5530n

p

πηψξψ?+

ψ -相对间隙

ξ -随轴承长径比而变化的系数,对于l /d <1的轴承,ξ =5

.1???

??l d ;

l /d >=1时,ξ =1。 5. 摩擦状态指示装置

指示装置的原理如图3所示。当轴不转动时,可看到灯泡很亮;当轴在很低的转速下转动时,轴将润滑油带入轴和轴瓦之间收敛性间隙内,但由于此时的油膜很薄,轴与轴瓦之间部分微观不平度的凸峰处仍在接触,故灯忽亮忽暗;当轴的转速达到一定值时,轴与轴瓦之间形成的压力油膜厚度完全遮盖两表面之间微观不平度的凸峰高度,油膜完全将轴与轴瓦隔开,灯泡就不亮了。

图3 滑膜显示装置电路图

三、实验方法与步骤

l. 准备工作

在弹簧片5的端部安装摩擦力传感器6,使其触头具有一定的压力值 (见图1)。

2. 测取绘制径向油膜压力分布曲线与承载曲线图。

1)启动电机,将轴的转速逐渐调整到一定值(可取300~350 r/nim 左右),注意观察从轴开始运转至300 r/nim 时灯泡亮度的变化情况,待灯泡完全熄灭,此时已处于完全液体润滑状态;

2)用加载装置分几次加载(但不超过1000N 即100kg ?f ,出厂是700N)。

3)待各压力传感器的压力值稳定 后,由左至右依次记录各压力传感器

的压力值(在操控面板上依次按【测点选择】按钮,在面板上【序号】窗口中依次显示各压力传感器的序号,在【轴瓦】窗口中、【外加负荷】窗口中依次显示

图4

油压分布曲线(上图) 油膜承载曲线(下图)

相对应的值);

4)卸载、关机;

5)根据测出的各压力传感器的压力值按一定比例绘制出油压分布曲线,如图4的上图所示。此图的具体画法是:沿着圆周表面从左到右画出角度分别为30°、50°、70°、90°、110°、130°、150°分别得出油孔点l、2、3、4、5、6、7的位置。通过这些点与圆心O连线,在各连线的延长线上,据压力传感器测出的压力值(比例:0.1MP=5mm)画出压力线l-l' 、2-2' 、3-3' ……7-7' 。将1'、2' ……7'各点连成光滑曲线,此曲线就是所测轴承的一个径向截面的油膜径向压力分布曲线。

为了确定轴承的承载量,用P i sinφi(i=1,2……7)求得向量1—1'、2—2'、3—3'……7—7'在载荷方向(即y轴)的投影值。角度φi与sinφi的数值见下表:

然后将P i sinφi这些平行于y轴的向量移到直径0—8上。为清楚起见,将直径0—8平移到图4的下部,在直径0″—8″上先画出轴承表面上的油孔位置的投影点1″、″……8″,然后通过这些点画出上述相应的各点压力在载荷方向的分量,即1″′、2″′……7″′等点,将各点平滑连接起来,所形成的曲线即为在载荷方向的压力分布。

用数格法计算曲线所围的面积,以0"—8"为底边做一个矩形,使其面积与曲线所包围的面积相等,那么,矩形的高P

平均

乘以轴瓦宽度B再乘以轴的直径d 便是该轴承油膜的承载量。但考虑端部泄漏造成的压力损失,故油膜承载量为:

q=P平均·B ·d ·δ

式中,P

平均

:径向单位平均压力

B:轴瓦宽度120mm

d:轴的直径60mm

δ:湍泄系数,取0.7。

3. 测量摩擦系数f与绘制摩擦特性曲线

1)启动电机,逐渐使电机升速,在转速达到250-350转时,旋动螺杆,逐渐加载到700N(70kg?f),稳定转速后减速。

2)依次记录转速350-2转/分(350、250、150、80、20、2),负载为70kg?f 时的摩擦力,也可适当增加测量点。

3)卸载,减速,停机。

4)根据记录的转速和摩擦力的值计算整理f与

n

p

η

值,按一定比例绘制摩擦

特性曲线如图2所示。

液压实验台使用说明书

兖州煤业股份有限公司济三煤矿液压试验台使用说明书 山东科技大学仪器仪表研究所 2010年8月

目录 1 产品概述 (1) 2 结构特点与工作原理 (1) 2.1 总体结构及其工作原理 (1) 2.2 泵组 (2) 2.3 立柱缸架 (2) 2.4 试验台 (3) 3 技术参数 (4) 4 操作说明 (4) 4.1 被试阀的强度、密封试验 (5) 4.2 被试缸的试验 (5) 5 软件使用说明 (6) 5.1 属性设置 (7) 5.2 用户管理 (8) 5.3 测试数据 (10) 5.4 查看历史记录 (11) 5.5 查看访问记录 (13) 6 常见故障及排除方法 (14) 7 安全保护措施 (15) 8 维护保养 (15) 8.1 日常检查项目和内容 (16) 8.2 定期维护项目和内容 (16) 9 运输、贮存 (16) 9.1 吊装、运输注意事项 (16) 9.2 贮存条件、贮存期限及注意事项 (17) 10 易损件明细表 (17)

1 产品概述 本设备是根据≤液压试验台技术协议≥的要求研制的,适用于液压支架缸和液压阀的强度密封检测试验。 本设备采用手动操作控制,面板上有压力表显示数据,可以适时地观察被试缸及被试阀的工作压力及工作情况。 本设备主要由“泵组、试验台和立柱缸架”组成,采用固定式结构,以方便测试工作。元件、管路和接头等采用不锈钢制造,操作台采用喷塑处理,缸架采用喷漆处理。本设备具有外形美观、操作简单方便、使用寿命长等特点。 本设备工作环境温度:0℃~40℃; 相对湿度:≤98%; 大气压力:86KPa~106KPa。 2 结构特点与工作原理 2.1 总体结构及其工作原理 液压试验台由“泵组、试验台和立柱缸架”组成,液压试验台原理如图1。 ①泵站组合②二位三通换向球阀③压力表 ④手动换向阀⑤液控单向阀⑥节流阀 ⑦增压缸⑧被试缸⑨被试阀

液体动压滑动轴承实验汇总

CQH-A液体动压滑动轴承实验台 使用说明书 本实验台用于液体动压滑动轴承实验,主要用它来观察滑动轴承的结构,测量其径向油膜压力分布和轴向油膜压力分布,测定其摩擦特征曲线和承载量。 该实验台结构简单、重量轻、体积小、外形美观大方,测量直观准确,运行稳定可靠。 一、实验台结构简介 1. 该实验台主要结构见图1所示: 图1 滑动轴承试验台结构图 1. 操纵面板 2. 电机 3. V带 4. 轴油压表接头 5. 螺旋加载杆 6. 百分表测力计装置 7. 径向油压表(7只) 8. 传感器支承板 9. 主轴10. 主轴瓦11. 主轴箱 2. 结构特点 该实验台主轴9由两个高精度的单列向心球轴承支承。 直流电机2通过V带3驱动主轴9,主轴顺时针旋转,主轴上装有精密加工制造的主轴瓦10,由装在底座里的无级调速器实现主轴的无级变速,轴的转速由装在面板1上的左数码管直接读出。 主轴瓦外圆处被加载装置(未画)压住,旋转加载杆5即可对轴瓦加载,加

载大小由负载传感器传出,由面板上右数码管显示。 主轴瓦上装有测力杆,通过测力计装置可由百分表6读出摩擦力值。 主轴瓦前端装有7只测径向压力的油压表7,油的进口在轴瓦长度的1/2处。 在轴瓦全长的1/4处装有一个轴向油压表的接头,需要时可用内六角扳手将堵油塞旋出,再装上备用的轴向油压表。 3. 实验中如需拆下主轴瓦观察,需按下列步骤进行: a. 旋出外加载传感器插头。 b. 用内六角扳手将传感器支承板8上的两个内六角螺钉卸下,拿出传感器支承板即可将主轴瓦卸下。 二、主要技术参数 实验轴瓦:内直径d=60mm 有效长度B=125mm 表面粗糙度?7) 材料ZCuSn5Pb5Zn5(即旧牌号ZQSn6-6-3)加载范围0~1000N(0~100kg?f) 百分表精度0.01 量程0—10mm 油压表精度 2.5% 量程0~0.6Mpa 测力杆上测力点与轴承中心距离L=120mm 测力计标定值k=0.098N/格 电机功率:355W 调速范围:2~400rpm 实验台总量:52kg 三、电气工作原理 5 4 3 图二 1—主轴转速数码管:主轴转速传感器采集的实时数据。

轴承座课程设计说明书

目录 第一部分工艺设计 1 设计任务 2 零件工艺性分析 3 毛坯的选择 4 工艺过程设计 5 确定毛坯尺寸、机械加工余量及工艺尺寸第二部分夹具设计 1 设计任务 2 确定定位方案、选择定位元件 3 夹紧机构的选择和设计 4 定位误差的计算 5 对刀装置的选择 6 夹具在机床上的定位和夹紧 小结 参考书目

第一部分工艺设计 1.设计任务 本次所要加工的零件为轴承座,以下为轴承座示意图: 材料:45号钢 零件生产纲领:中等批量 2.零件工艺性分析 零件材料为45号钢,优质碳素结构用钢 ,硬度不高易切削加工,模具中常用来做模板、梢子、导柱等,但须热处理。调质处理后零件

具有良好的综合机械性能,广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。但表面硬度较低,不耐磨。可用调质+表面淬火提高零件表面硬度。 一般用于表面耐磨、芯部耐冲击的重载零件,其耐磨性比调质+表面淬火高。其表面含碳量0.8--1.2%,芯部一般在0.1--0.25%(特殊情况下采用0.35%)。经热处理后,表面可以获得很高的硬度(HRC58--62),芯部硬度低,耐冲击。 以下是轴承座需要加工的表面以及加工表面之间的位置要求: (1).考虑到轴承孔的平行度公差,Φ47K6003 .0013 .0+-mm 轴承孔可以 用铣镗床镗孔; (2).轴承孔的侧面和和其他端面都可以考虑用铣床进行加工; (3).工件底面的平面度公差和底面的粗糙度要求,底面需要进行精加工铣削。 (4).两个Φ8的定位销由于有较高的粗糙度要求,有需要进行精加工。 3.毛坯的选择 由于零件的材料为45钢,零件的形状规则,同时由于零件属于中批生产,零件的轮廓尺寸不大,为了便于生产故选用模锻毛坯。 模锻加工工艺的几点优势:①由于有模膛引导金属的流动,锻件的形状可以比较复杂;②锻件内部的锻造流线比较完整,从而提高了零件的机械性能和使用寿命。③锻件表面光洁,尺寸精度高,节约

换热器综合台试验台使用说明

换热器综合台试验台使用说明 换热器性能测试试验主要对应用较广的间壁式换热器中的三种换热器—套管式换热器、螺旋板式换热器和列管式换热器进行其性能的测试。其中,对套管式换热器和螺旋板式换热器可以进行顺流和逆流两种流动方式的性能测试,而列管式换热器只作一种流动方式的性能测试。 换热器性能试验的内容主要为测试换热器的总传热系数,对数传热温差和热平衡误差等,并就不同的换热器、不同两种流动方式、不同工况的传热情况和性能进行比较和分析。 一、实验目的 1.熟悉换热器性能的测试方法; 2.了解套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能的差别; 3.加深对顺流和逆流两种换热器换热能力差别的认识。 二、实验内容及步骤 换热器性能试验的内容主要是测定换热器的总传热系数、对数传热温差和热平衡误差等,并就不通换热器、补贴两种流动方式、不同工况的传热情况和性能进行比较和分析。 1.实验前的准备工作 1)熟悉实验装置及使用仪表的工作原理和性能; 2)更换并安装好需要测试的换热器; 3)按顺流(或逆流)方式调整冷流换向阀门组各阀门的开或闭。 4)冷、热水箱充水。 2.进行试验 1)接通电源,启动冷水泵和热水泵(为提高热水温升速度,可先不启动冷水泵),并调节好合适的流量。 2)调整控温仪,使其能使加热水温控制在80摄氏度以下的某一指定温度。 3)将热水箱的手动和自动加热器均送电投入使用。 4)待自动电加热器第一次动作之后,切断手动电加热器开关。此后,加热系统进入自动控温状态。 5)利用温度测点选择琴健开关和温度数显示仪,观测和检查换热器冷热流体的进出口温度。 6)待冷热流体的温度基本稳定后,即可测出这些测温点的温度数值,同时在流量计上测读冷、热流体的流量读数,并将上述测试数据录入实验记录表中。 7)如需改变流动方向(顺逆流)的试验,或需绘制换热器传热性能曲线而要求改变工况(如改变冷热水流速或流量)进行试验,或需要重复进行试验时,都要重新安排试验方法与上述基本相同。记录下这些试验的测试数据。 8)实验结束后,首先关闭电加热器,5分钟后切断全部电源。 注意事项: 1.热流体在热水箱中加热温度不得超过80℃; 2.实验台使用前应加接地线,以保安全。

实验三 动压滑动轴承实验

实验三动压滑动轴承实验 一、实验目的 1.验证动压滑动轴承油膜压力分布规律,了解影响油膜压力分布规律的因素,并根据油膜压力分布曲线确定端泄影响系数K b; 2.测定动压滑动轴承的摩擦特征曲线,并考察影响摩擦系数的因素。 二、实验设备及仪器 1.HZS-1型动压滑动轴承试验台 图1 HZS-1型动压滑动轴承实验台 图1为试验台总体布置,图中件号1为试验的轴承箱,通过联轴器与变速箱7相联,6为液压箱,装于底座9的内部,12为调速电动机,通过三角带与变速箱输入轴相联,8为调速电机控制旋钮,5为加载油腔压力表,由減压阀4控制油腔压力,2为轴承供油压力表,由减压阀控制其压力,油泵电机开关为10,主电机开关为11,试验台的总开关在其正面下方。 图2为试验轴承箱,件号31为主轴,由一对D级滚动轴承支承,32为试验轴承,空套在主轴上,轴承内径d=60mm,有效宽度=60mm。在轴承中间横剖面上,沿周向开7个测压孔,在120°范围内的均匀分布,测压表21~27通过管路分别与测压孔相联。距轴承中间剖面L/4(15mm)处,轴承上端有一个测压孔,表头28与其相联,件号33为加载盖板,固定在箱体上,加载油腔在水平面上的投影面积为60cm2在轴承外圆左侧装有测杆35,环34装在测杆上以供测量摩擦力矩用,环34与轴承中心的距离为150mm,轴承外圆上装有两个平衡锤36,用以在轴承安装前做静平衡。

图2 实验轴承箱 箱体左侧装有一个重锤式拉力计如图3所示,测量摩擦力矩时,将拉力计上的吊钩与环34联接,即可测得摩擦力矩。测杆通过环34作用在拉力计上的力F,由重锤予以平衡,其 数值可由 α sin 1 R WL F= 求得。式中R为圆盘半径,W为重锤之重量,L1为重锤重心到轴 心之距离,α为圆盘之转角,圆盘转角α通过齿轮放大,可使表头指针转角放大10倍,表头刻度即为F的实际值,单位为克。 JZT型调速电动机的可靠调速范围为120~1200转/分,为了扩大调速范围,试验台传动系统中有一个两级变速箱,当手柄向右倾斜,主轴与电机转速相同;当手柄向右倾斜,主轴为电机转速的1/6。因此主轴的可靠调速范围为20~1200转/分。 图3 重锤式拉力计工作原理图 2.测速仪表及温度计 三、实验步骤 1. 测定动压滑动轴承的油膜压力分布,确定轴承端泄影响系数K b

滑动轴承概述

轴承支承轴及轴上零件,保证轴的旋转精度。根据轴承工作的摩擦性质,可分为滑动轴承和滚动轴承。滑动轴承具有工作平稳、无噪音、径向尺寸小、耐冲击和承载能力大等优点。而谈动轴承是标准零件,成批量生产成本低,安装方便,广泛应用。对于初学者来讲,谈动轴承的类型选择;寿命计算;组合设计是比较难掌握。因此,滚动轴承的寿命计算和组合设计是本章讨论的重点。 §11-1 滑动轴承概述 一、滑动轴承的类型 滑动轴承按其承受载荷的方向分为: (1)径向滑动轴承,它主要承受径向载荷。 (2)止推滑动轴承,它只承受轴向载荷。 滑动轴承按摩擦(润滑)状态可分为液体摩擦(润滑)轴承和非液体摩擦(润滑)轴承。 (1)液体摩擦轴承(完全液体润滑轴承)液体摩擦轴承的原理是在轴颈与轴瓦的 摩擦面间有充足的润滑油,润滑油的厚度较大,将轴颈和轴瓦表面完全隔开。因而摩擦系数很小,一般摩擦系数=0.001-0.008。由于始终能保持稳定的液体润滑状态。这种轴承适用于高速、高精度和重载等场合。 (2)非液体摩擦轴承(不完全液体润滑轴承) 非液体摩擦轴承依靠吸附于轴和轴承孔表面的极薄油膜,单不能完全将两摩擦表面隔开, 有一部分表面直接接触。因而摩擦系数大,=0.05?0.5。如果润滑油完全流失,将会出现干摩擦。剧烈摩擦、磨损,甚至发生胶合破坏。 二、潸动轴承的特点 优点:(1)承载能力高;(2)工作平稳可靠、噪声低;(3)径向尺寸小;(4)精度高;(5)流体涧滑时,摩擦、磨损较小;(6)油膜有一定的吸振能力 缺点:(1)非流体摩擦滑动轴承、摩擦较大,磨损严重。(2)流体摩擦滑动轴承在起动、行车、载荷、转速比较大的情况下难于实现流体摩擦;(3)流体摩擦、滑动轴承设计、制造、维护费用较高。 §11-2 滑动轴承的结构和材料 一、径向滑动轴承 1.整体式滑动轴承 整体式滑动轴承结构如图所示,由轴承座1和轴承衬套2组成,轴承座上部有油孔,整体衬套有油沟,分别用以加油和引油,进行润滑。这种轴承结构简单,价格低廉,但轴的装拆不方便,磨损后轴承的径向间隙无法调整。使用于轻载低速或间歇工作的场合。 2.对开式滑动轴承

轴承座说明书Word版

目录 前言 (2) 课程设计任务书 (3) 一、零件的分析 (4) 1.1 零件的作用 (4) 1.2 零件图样分析 (4) 1.3 零件的工艺分析 (5) 二、确定毛坯 (5) 2.1 确定毛坯种类: (5) 2.2 确定铸件加工余量: (6) 三、工艺规程设计 (7) 3.1 选择定位基准: (7) 3.2 制定工艺路线 (7) 3.3 机械加工余量、工序尺寸及公差的确定 (8) 四、各工序的加工参数计算 (9) 4.1 铣底平面 (10) 4.2 钻Ф9孔及锪Ф13的沉头孔 (11) 4.3 铣两直角边 (13) 4.4 刨退刀槽 (14) 4.5 铣四侧面 (15) 4.6 钻(铰)Ф8销孔 (15) 4.7 钻Ф6油孔 (18) 4.8 钻Ф4油孔至尺寸 (19) 4.10 钻Ф15的孔 (20) 4.11 扩孔至Ф28 (21) 4.12 车Ф35孔至尺寸保证孔的位置 (22) 4.13 扩钻至Φ29.7 (22) 4.14 加工Φ31孔至要求尺寸 (23) 4.15 确定时间定额及负荷率: (24) 五、夹具设计 (26) 5.1 确定定位方案,选择定位元件 (27) 5.2确定定位方案,选择定位元件 (29) 六、课程设计小结 (31) 参考文献 (32)

前言 这个学期我们进行了《机械制造技术基础》课程的学习,并且也发动机厂里进行了工艺实习。为了让我们对理论知识和实际应用之间建立密切联系,在课程结束时我们开始了机械制造技术课程设计。课设开始之前我们对所学的各相关课程进行了一次深入的综合性的回忆与温习,这次温习我们对课设的内容也有了一定的认识,大家一致认为本次课程设计对我们非常重要,是我们对自己实际能力的一次历练。 通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己分析问题、解决问题的能力,同时,在课程设计过程中,我们认真查阅资料,切实地锻炼了我们自我学习的能力。在课设中我们分组进行设计,在团队的实际操作过程中也发生过一些摩擦,不过在大家的责任心驱使下结果还是团结一致去分工完成任务,结果也让大家锻炼了团队协作的意识,相信在以后的学习生活中我们也会受益。另外,在设计过程中,经过老师的指导和同学们的热心帮助,我们顺利完成了本次设计任务。 在课设的过程中,由于理论知识不够完善,实践能力尚不成熟,以及一些疏忽和大意的存在,设计尚有许多不足之处,恳请各位老师给予批评指正。

车桥试验台使用说明书

QQX5.0汽车驱动桥振动综合性能实验系统 用户操作说明书 杭州浙大奔月科技有限公司 2011年03月

杭州浙大奔月科技有限公司 汽车驱动桥振动综合性能实验系统 QQX5.0 用户手册 ____________________________________

1.1 QQX5.0简介 QQX5.0汽车驱动桥振动综合性能试验机是杭州浙大奔月科技有限公司研制的能够对各型号车桥进行检测的试验机。检测项目主要包括:制动时间、制动距离、制动减速度、制动扭矩、制动跑偏、制动热衰退特性曲线、车桥内阻力矩、 “发卡”、差速器差速工况、噪音等级、振动等级、振动的频谱分析、异响的频谱分析、主减速器油温检测、密封性测试、预留ABS 检测软件接口。 1.2 试验机原理及系统配置 1.2.1试验机原理: 车桥由人工吊入试验机;装夹系统对车桥进行人工装夹夹紧;装车桥桥壳气管和液压制动油;按控制面板上相应键,开始启动电机进行所需试验检测;试验过程中由工业控制计算机对电机转速、加载器、传感器等进行自动控制、自动模拟车桥的各种运行工况,如正反转、升降速、低中高速稳定运行、不同的两侧阻力矩、制动等等,同时获取各个传感信号到计算机进行分析计算,给出检测数据、曲线、结论;参照标准得出合格或不合格的结果。 在车桥的输入端由电机代替发动机变速箱输入动力,电机由交流变频控制,转速无级可调,电机实际发出的转速、转距、功率由传感器检测;在车桥的输出端连接惯性飞轮,模拟车桥装到车辆上以后的平动惯量,作为制动器检测试验的储能元件;在车桥的两侧输出端安装阻力矩加载器,可对两侧独立地施加阻扭矩,模拟车轮地滚动阻力矩,阻力矩可以无级控制;对于实际达到地阻力矩用传感器加以检测。通过这些过程可以检测得车桥的传动效率、内阻力矩、制动特性、差速特性等等。 同时通过噪声、振动传感器测取车桥的运转噪声、异响等;通过温度传感器间接地测取车桥主减速器油液的温升;同时通过压力传感器检测车桥的密封性,如在检测到存在漏气情况后,采用人工涂抹皂液,观察气泡情况的方法确定漏气部位。 1.2.2试验机系统组成: 动力与加载系统:采用日本三菱交流变频器控制的电机提供动力源。 电机经转矩转速传

3动压滑动轴承实验

实验三 动压滑动轴承实验 实验仪器:HS-B 型液体动压轴承试验台、计算机、绘图工具等 一、实验目的: 1、观察滑动轴承的结构; 2、测量及仿真其径向油膜压力分布和轴向压力分布; 3、测定及仿真其摩擦特性曲线 二、实验内容: 1、 测出某工况下的流体动压油膜压力分布和不同工况下的摩擦系数。 2、 整理计算实验数据,按比例绘制出油膜压力P 周向和轴向的分布曲线和轴承摩擦特性曲线。 三. 液体动压润滑径向滑动轴承的工作原理 当轴颈旋转将润滑油带入轴承摩擦表面时,由于油的粘性作用,当达到足够高的旋转速度时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层中产生压力。当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于完全液体摩擦润滑状态。因此这种轴承摩擦小,寿命长,具有一定吸震能力。 液体动压润滑油膜形成过程及油膜压力分布形状如图3-1所示。 滑动轴承的摩擦系数f 是重要的设计参数之一,它的大小与润滑油的粘度 (Pa s)、轴的转速n (r/min)和轴承压力p (MPa)有关,令 (1) 式中:λ — 轴承特性数 观察滑动轴承形成液体动压润滑的过程,摩擦系数f 随轴承特性数 λ 的变化如图8-2所示。图中相应于f 值最低点的轴承特性数 λc 称为临界特性数,且 λc 以右为液体摩擦润滑区,λc 以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。因此f 值随 λ 减小而急剧增加。不同的轴颈和轴瓦材料,加工情况、轴承相对间隙等,f —λ曲线不同,λc 也随之不同。 λη=n p (b) 启动时 F F (a) 静止时(n=0) h min F φ e (c) 形成动压油膜 图 3-1 液体动压润滑油膜形成过程及油膜压力分布 0 λc λ f 非液体摩擦润滑区 液体摩擦润滑区 图 3-2 f —λ 特性曲线

轴承座零件课程设计说明书

机械制造工艺学 课程设计 设计题目:设计轴承座零件的机械加工工艺规程 华侨大学 2011年 07 月 06 日

1 零件的分析.............................................. 1.1零件的作用 ......................................... 1.2零件的工艺分析...................................... 2 零件的生产类型.......................................... 2.1生产类型及工艺特征.................................. 3 毛坯的确定.............................................. 3.1确定毛坯类型及其制造方法............................ 3.2估算毛坯的机械加工余量.............................. 3.2绘制毛坯简图,如图1 ................................ 4 定位基准选择............................................ 4.1选择精基准 ......................................... 4.2选择粗基准 ......................................... 5 拟定机械加工工艺路线.................................... 5.1选择加工方法........................................ 5.2拟定机械加工工艺路线,如表3 ........................... 6 加工余量及工序尺寸的确定............................... 6.1确定轴承座底平面的加工余量及工序尺寸................ 6.2确定轴承座上平面的加工余量及工序尺寸................ 6.3 确定轴承座左右两侧面的加工余量及工序尺寸 ........... 6.4确定轴承座前后两端面的加工余量及工序尺寸............ 6.5确定轴承座轴承孔两侧面的加工余量及工序尺寸.......... 6.6 确定轴承座槽的加工余量及工序尺寸 .........................................

座式球面滑动轴承使用说明书

座式球面滑动轴承使用说明书 共 8 页第 1 页 座式球面滑动轴承 使用说明书 代号:0AP.466.004@ 南阳防爆集团有限公司 二 O O 二年三月 0AP.466.004 共 8 页第 2 页 目录 1 概述 (3) 2 产品结构说明 (3) 3 轴承润滑 (4) 4 轴承温度 (5) 5 安装和首次起动 (5) 6 轴瓦更换 (6) 7 故障排除 (7) 编写人:陈建军靳芝阎传宇程满仓王少景 编制陈建军 校对 会签 提出部门审定标记处数更改文件号签字日期批准文号批准0AP.466.004 共 8 页第 3 页

1 概述 座式球面滑动轴承是引进国外技术,参考标准DIN31690生产制造的。主要规格见表1。 表1 轴承号9111418 轴径D(mm)8090100100110125125140160160180200 轴承号222835 轴径D(mm)200225250250280300300315335 轴承的轴瓦与轴承座采用球面配合,具有自动调心性。轴瓦的内径尺寸公差由精加工保证,首次使用不须刮研,结构紧凑,安装维修十分方便。 2 产品结构说明 2.1 座式滑动轴承结构见附图 2.2 轴承结构整体从水平位置分开,关键部件有轴承座、轴瓦、甩油环、浮动密封圈、测温元件等。 2.3 座式球面轴承的两侧密封结构均采用浮动密封。轴承外盖座内装有浮动密封圈,浮动密封圈由两半组成,通过弹簧固定在轴上,运行时随着轴的位置的变化而自由浮动,材料为可熔性聚酰亚胺,模塑成形。 2.4 油环由冷拉黄铜制成。在轴瓦内部开有油环槽,油环挂在轴上,下部浸入油中通过轴带动油环旋转,油环将油带到轴上,经导油槽将油较均匀地分配至整个轴瓦承载面。 2.5 为了防止轴电流对轴瓦巴氏合金产生电腐蚀,在滑动轴承与底座之间加有2层绝缘垫板,联接滑动轴承和底座的螺栓采取了可靠的绝缘措施。电机出厂时,两端轴承与底座之间均带有钢制锥销,电机与整个机组安装调度完毕后,将一端轴承的两钢制锥销取出,换上尼龙锥销,以防止灰尘进入销孔。

轴承座课程设计说明书

课程设计说明书题目:轴承座车孔专用夹具及工艺设计 姓名:Xxx 学号:Xxx 年级:三年级 专业:Xxx 学生类别:四年本科 指导教师:Xxx 教学单位:农业大学工学院 2012 年5月29 日 轴承座工艺设计

【摘要】轴承座是用来支撑轴承的,固定轴承的外圈,仅仅让圈转动,外圈保持不动,始终与传动的方向保持一致(比如电机运转方向),并且保持平衡;,轴承座的概念就是轴承和箱体的集合体,以便于应用,这样的好处是可以有更好的配合,更方便的使用,减少了使用厂家的 成本.至于形状,多种多样,通常是一个箱体,轴承可以安装在其中。随着科学技术的不断进步,它在国民经济中占有越来越重要的地位,发展前景十分广阔,尤其是在汽车和电子电器等高速发展的领域。本次课程设计设计的课题就是轴承座的设计,是在学完汽车制造工艺学后进行的一项教学环节;在老师的指导下,要求在设计中能初步学会综合运用以前所学过的全部课程,并且独立完成的一项工程基本训练。【关键词】轴承座工艺规格设计夹具设计工序工艺性 目录 前沿…………………………………………………… 课程设计说明书正文………………………………………

一、设计任务 (1) 二、工艺性分析 (2) 2.1零件的作用 (2) 2.2零件的工艺性分析 (2) 三、工艺规程设计 3.1零件材料 (3) 3.2毛坯选择 (3) 3.3基准的选择 (7) 3.4制订工艺路线 (8) 3.5机械加工余量、工序尺寸及公差 (10) 四、夹具设计 (12) 4.1提出问题 (12) 4.2夹具设计 (12) 五、设计心得 (17) 六、参考文献 (18) 前言 机械制造工艺学课程是在学完了机

大众01M自动变速器实验台使用说明书(参考Word)

一、公司简介 广州欧骏机电教学设备有限公司是德国车拉夫汽车设备(香港)有限公司(GERMANY CHE-RAFE AUTOMOBI-LE EQUIPMENT COMPANY LIMITED)在中国大陆全资成立的现代化汽车维修保养设备制造工厂,生产基地位于广州,企业员工90名,基地面积5500平方米。德国车拉夫集团成立于1992年,总部位于中国香港,主要从事汽车电子科技及汽车维修设备研发制造等领域,利用其完善有效的技术支持和具备专业水准的汽车服务意识,目前在世界各地已拥有超过30000名终端客户,同时我们通过引入德国车拉夫集团先进的汽车设备研发及制造工艺经验,我们致力于提供最优质最具性价比的产品给中国地区庞大的汽车售后服务市场及终端客户。 目前根据中国市场的实际需要,我们主要生产制造如下系列产品: 一:现代汽车职业教育实训设备 二:智能化高压冷热水清洗机 三:全自动轮胎充氮机 四:电控柴油喷射系统综合检测试验台 五:汽油车喷油嘴清洗机 六:汽车外型修复及焊接设备

二、安全警告和注意事项 一:在使用本仪器前,请详细阅读使用说明书; 二:操作本仪器需有一定汽车检测维修基础,对汽车电控知识有一定认识。同时在汽车专业指导老师的规范带领下统一操作; 三:在良好的通风条件下进行检测,并且周围有足够的通风; 四:严禁在检测过程中抽烟或产生明火; 五:在进行实训操作时不要带手表、戒指,也不要穿宽大的衣服,避免产生不必要的伤害; 六:请严格遵守汽车实训场地中各安全规章制度; 七:在启动实验台前,请先检查电源是否连接可靠,发动机(示教板)展示部件是否存在破损,在有一项不符合要求的情况下,请勿启动实验台架。 八:实验台运行时,请勿靠近旋转部位,以免发生意外。

THHE-1THHE-1型高性能电工电子实验台使用说明书

THHE-1型高性能 电工电子实验台使用说明书 天煌教仪 浙江天煌科技实业有限公司

一、概述 THHE-1型高性能电工电子实验台是根据目前“电工技术”、“电工学”、“电子技术”教学大纲和实验大纲的要求,广泛吸收各高等院校从事该课程教学和实验教学教师的建议,并综合了国内各类实验装置的特点而设计的最新产品。全套设备能满足各类学校“电工学”、“电工技术”和“电子技术”课程的实验要求。 本装置是由实验屏、实验桌和若干实验组件挂箱等组成。 二、实验屏操作、使用说明 实验屏为铁质喷塑结构,铝质面板。屏上固定有交流电源的起动控制装置、三相电源电压指示切换装置、低压直流稳压电源、恒流源、功率函数信号发生器、定时器兼报警记录仪和数模双显直流电压表、电流表以及交流电压表、电流表和功率表等。 1、交流电源的启动 (1)实验屏的左后侧有一根接有三相四芯插头的电源线.先在电源线下方的接线柱上接好机壳的接地线,然后将三相四芯插头接通三相四芯380V 交流市电。这时,屏左侧的三相四芯插座即可输出三相380V交流电。本装置适用于三相四线制和三相五线制电源。 (2)将实验屏左侧面的三相自耦调压器的手柄按逆时针方向旋转至零位。将“电压指示切换”开关置于“三相电网输入”侧,将断路器拨至ON。此时,实验屏左侧面的三相四芯电源插座即有380V交流电压输出。此插座可用来串接另一实验台的电源插头;但要注意:最多只能依次串接三台实验台。

(3)开启钥匙式三相电源总开关,“停止”按钮灯亮(红色),三只电压表(0~450V)指示出输入三相电源线电压之值,此时,实验屏左侧面单相三芯220V电源插座和右侧面的单相三芯220V处均有相应的交流电压输出。 (4)按下“启动”按钮(绿色),红色按钮灯灭,绿色按钮灯亮,同时可听到屏内交流接触器的瞬间吸合声,面板上与U1 、V1 和W1相对应的黄、绿、红三个LED指示灯亮。至此,实验屏启动完毕。 2、三相可调交流电源输出电压的调节 将“电压指示切换”开关置于“三相调压输出”侧,三只电压表指针回到零位。按顺时针方向缓缓旋转三相自耦调压器的旋转手柄,三只电压表的指针将随之偏转,即指示出屏上三相可调电压输出端U、V、W两两之间的线电压之值,直至调节到某实验内容所需的电压值。实验完毕,将旋柄调回零位,并将“电压指示切换”开关拨至“三相电网输入”侧。 3、实验日光灯的使用 本实验屏上有一个30W日光灯管,日光灯管的四个引脚已独立引至屏上,以供学生做日光灯实验时用。 4、实验台的右侧面装有一个串行通信接口9芯插座(RS232接口)和一个电话线插座(RS485接口),分别供局域网和多机通信使用。将它们分别与局域网微机的串口或多机通信的教师服务器相连,当定时器兼报警记录仪“通信请求”功能开通时,即可实现局域网或多机通信功能。注意:局域网和多机通信功能只能选用一种。屏内左(从屏后看)边第一块PCB板的右侧有一拨动开关,将其拨向多机侧即为多机通信方式;拨向单机侧即为局域网方式。 5、定时器兼报警记录仪 (1) 定时器与报警记录仪是专门为教师对学生的实验考核而设置。可以调整考核时间;到达设定时间,可自动断开电源。可累计操作过程中各种报

滑动轴承实验指导书(更新并附实验报告)

滑动轴承实验 一、概述 滑动轴承用于支承转动零件,是一种在机械中被广泛应用的重要零部件。根据轴承的工作原理,滑动轴承属于滑动摩擦类型。滑动轴承中的润滑油若能形成一定的油膜厚度而将作相对转动的轴承与轴颈表面分开,则运动副表面就不发生接触,从而降低摩擦、减少磨损,延长轴承的使用寿命。 根据流体润滑形成原理的不同,润滑油膜分为流体静压润滑(外部供压式)及流体动压润滑(内部自生式),本章讨论流体动压轴承实验。 流体动压润滑轴承其工作原理是通过韧颈旋转,借助流体粘性将润滑油带人轴颈与轴瓦配合表面的收敛楔形间隙内,由于润滑油由大端人口至小端出口的流动过程中必须满足流体流动连续性条件,从而润滑油在间隙内就自然形成周向油膜压力(见图1),在油膜压力作用下,轴颈由图l(a)所示的位置被推向图1(b)所示的位置。 图1 动压油膜的形成 当动压油膜的压力p 在载荷F 方向分力的合力与载荷F 平衡时,轴颈中心处于某一相应稳定的平衡位置O 1,O 1位置的坐标为O 1(e ,Φ)。其中e =OO 1,称为偏心距;Φ为偏位角(轴承中心O 与轴颈中心O 1连线与外载荷F 作用线间的夹角)。 随着轴承载荷、转速、润滑油种类等参数的变化以及轴承几何参数(如宽径比、相对间隙)的不同.轴颈中心的位置也随之发生变化。对处于工况参数随时间变化下工作的非稳态滑动轴承,轴心的轨迹将形成一条轴心轨迹图。 为了保证形成完全的液体摩擦状态,对于实际的工程表面,最小油膜厚度必须满足下列条件: ()21min Z z R R S h += (1) 式中,S 为安全系数,通常取S ≥2;R z1,R Z2分别为轴颈和铀瓦孔表面粗糙度的十点高度。 滑动轴承实验是分析滑动轴承承载机理的基本实验,它是分析与研究轴承的润滑特性以及进行滑动轴承创新性设计的重要实践基础。 根据要求不同,滑动轴承实验分为基本型、综合设计型和研究创新型三种类型。

轴承座

机械制造工艺学 课程设计 设计题目:设计轴承座零件的机械加工工艺规程 班级:07机制 学号:20070882 姓名:鲁尚飞 云南农业大学 2010年11 月29 日

目录 机械制造工艺学课程设计任务书 ............................................................ I 轴承座零件图............................................................................................ I I 设计要求................................................................................................... I II 课程设计说明书 1 零件的分析 (1) 1.1零件的作用 (1) 1.2零件的工艺分析 (1) 2 零件的生产类型 (1) 2.1生产纲领 (1) 2.2生产类型及工艺特征 (1) 3 毛坯的确定 (2) 3.1确定毛坯类型及其制造方法 (2) 3.2估算毛坯的机械加工余量 (2) 3.2绘制毛坯简图,如图1 (2) 4 定位基准选择 (3) 4.1选择精基准 (3) 4.2选择粗基准 (3) 5 拟定机械加工工艺路线 (3) 5.1选择加工方法 (3) 5.2拟定机械加工工艺路线,如表3 (4) 6 加工余量及工序尺寸的确定 (5)

6.1确定轴承座底平面的加工余量及工序尺寸 (5) 6.2确定轴承座上平面的加工余量及工序尺寸 (6) 6.3 确定轴承座左右两侧面的加工余量及工序尺寸 (7) 6.4确定轴承座前后两端面的加工余量及工序尺寸 (8) 6.5确定轴承座轴承孔两侧面的加工余量及工序尺寸 (9) 6.6 确定轴承座槽的加工余量及工序尺寸 (10) 6.7 确定轴承座沉孔的加工余量及工序尺寸 (11) 6.8 确定轴承座气孔φ6和φ4的加工余量及工序尺寸 (12) 6.10确定轴承孔Φ30和Φ35的加工余量及工序尺寸 (14) 7、设计总结 (15) 机械加工工艺卡片 (16) 参考文献 (28)

滑动轴承实验报告

液体动压滑动轴承实验报告 一、实验目的 1、测量轴承的径向和轴向油膜压力分布曲线。 2、观察径向滑动轴承液体动压润滑油膜的形成过程和现象。 3、观察载荷和转速改变时的油膜压力的变化情况。 4、观察径向滑动轴承油膜的轴向压力分布情况。 5、测定和绘制径向滑动轴承径向油膜压力曲线,求轴承的承载能力。 6、了解径向滑动轴承的摩擦系数f 的测量方法和摩擦特性曲线λ的绘制方法。 二、实验设备及工具滑动轴承实验台 三、实验原理 1、油膜压力的测量 轴承实验台结构如图1所示,它主要包括:调速电动机、传动系统、液压系统和实验轴承箱等部分组成。 在轴承承载区的中央平面上,沿径向钻有8个直径为1mm 的小孔。各孔间隔为 22.50,每个小孔分别联接一个压力表。在承载区内的径向压力可通过相应的压力表直接读出。 将轴径直径(d=60mm )按比例绘在纸上,将1~8个压力表读数按比例相应标出。(建议压力以1cm 代表5kgf/cm 2)将压力向量连成一条光滑曲线,即得到轴承中央剖面油膜压力分布曲线)。 同理,读出第4和第8个压力表示数,由于轴向两端端泄影响,两端压力为零。光滑连结0‘,8’,4‘,8’和0‘各点,即得到轴向油膜压力分布曲线。 图1 轴承实验台结构图 1、操纵面板 2、电机 3、三角带 4、轴向油压传感器接头 5、外加载荷传感器 6、螺旋加载杆 7、摩擦力传感器测力装置 8、径向油压传感器(8只) 9、传感器 支撑板 10、主轴 11、主轴瓦 12、主轴箱 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆、电气课件中调试资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到

动平衡实验台使用说明书

动平衡实验台 使 用 说 明 书

转子动平衡实验 一、实验目的 1. 加深对转子动平衡概念的理解。 2. 掌握刚性转子动平衡试验的原理及基本方法。 二、实验设备 1. PH-I 型动平衡试验台 2. 转子试件 3. 平衡块 4. 百分表0~10mm 三、PH-I 型动平衡试验台的工作原理与结构 1. 动平衡试机的结构 动平衡机的简图如图1、图2、所示。待平衡的试件3安放在框形摆架子的支承滚轮上,摆架的左端固结在工字形板簧2中,右端呈悬臂。电动机9通过皮带10带动试件旋转;当试件有不平衡质量存在时,则产生离心惯性力使摆架绕工字形板簧上下周期性地振动,通过百分表5可观察振幅的大小。 通过转子的旋转和摆架的振动,可测出试件的不平衡量(或平衡量)的大小和方位。这个测量系统由差速器4和补偿盘6组成。差速器安装在摆架的右端,它的左端为转动输入端(n 1)通过柔性联轴器与试件3联接;右端为输出端(n 3)与补偿盘相联接。 差速器是由齿数和模数相同的三个圆锥齿轮和一个外壳为蜗轮的转臂H 组成的周转轮系。 (1)当差速器的转臂蜗轮不转动时n H =0,则差速器为定轴轮系,其传动比为: 13 11331-=-== Z Z n n i ,13n n -= (1) 1、 摆架 2、工字形板簧座 3、转子试件 4、差速器 5、百分表 6、补偿盘 7、蜗杆 8、弹簧 9、电机 10、皮带 图1 3 2 1 (1) (2) 4 5 6 7 8 9 10 1 2 3 N 1 N 3

这时补偿盘的转速n 3与试件的转速n 1大小相等转向相反。 (2)当n 1和n H 都转动则为差动轮系,传动比周转轮系公式计算: 13 11331-=-=--= Z Z n n n n i H H H ;132n n n H -= (2) 蜗轮的转速n H 是通过手柄摇动蜗杆7,经蜗杆蜗轮副在大速比的减速后得到。因此蜗轮的 转速n H <

机械制造技术基础课程设计说明书轴承座课程设计说明书

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。机电及自动化学院 机械制造技术基础 课程设计说明书 2011年7月5日

前言 轴承座的工艺规程设计是根据轴承座的加工过程中所需要的工序和所使用的机床编写的,主要包括毛坯分析、方案制定、机床选择等内容。 制造技术基础课程设计是在学完机械制图、制造技术基础、机械设计、现代制造装备及自动化、CAD/CAM等专业基础课和主要专业课,又经过了机械设计课程设计之后,进行的又一次实践性环节,是对所学理论知识的又一次更系统更全面的应用、巩固与深化。对于机械制造方向的学生,为了更好的接触真正的生产加工,步入社会,这次设计是个很好的锻炼机会。 目录 1零件的分析 ...................... 错误!未定义书签。 1.1零件的作用 .................... 错误!未定义书签。 1.2零件的工艺分析 ................ 错误!未定义书签。 2工艺规程设计 .................... 错误!未定义书签。 2.1、确定轴承座毛坯的制造形式..... 错误!未定义书签。 2.2选择精基准 .................... 错误!未定义书签。 2.3选择粗基准 .................... 错误!未定义书签。 2.4选择加工方法 .................. 错误!未定义书签。 2.5拟定机械加工工艺路线........... 错误!未定义书签。 3. 加工余量及工序尺寸的确定....... 错误!未定义书签。 4.毛坯尺寸的确定及毛坯图.......... 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档