当前位置:文档之家› 钙钛矿复合氧化物材料

钙钛矿复合氧化物材料

钙钛矿复合氧化物材料
钙钛矿复合氧化物材料

钙钛矿复合氧化物

钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。

1钙钛矿结构

钙钛矿型复合氧化物因具有天然钙钛矿(CaTiO3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,A2+和O2_离子共同构成近似立方密堆积,A离子有12个氧配位,氧离子同时有属于8个BO6八面体共享角,每个氧离子有6个阳离子(4A~2B)连接,B2+离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,A、B离子大小匹配。各离子半径间满足下列关系:

其中RA、RB、RO分别为A离子、B离子和O2-离子的半径,但也存在不遵循该式的结构,可由Goldschmidt容忍因子t来度量:

理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t1.1时以方解石或文石型存在。

2钙钛矿型氧化物材料的研究进展

标准钙钛矿中A或B位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的B位离子,是一类性能优异、用途广泛的新型功能材料。

2.1固体氧化物燃料电池(SOFC)材料

钙钛矿氧化物燃料电池SOFC有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。通过电极材料中的掺杂来提高活性,优化碱锰电池的充放电性能(参见表1)。用含锰的钙钛矿氧化物作为碱性溶液中的阴极材料,获得了好的结果。因为元素锰的d电子结构在锰的三价和四价两种氧化物之间快速传递,表现出很高的电子导电性及良好的电极可充性[5]。通过掺杂Pb、Co、Ba、Ca、Sr等元素的复合钙钛矿结构,获得掺杂后的改性电极材料,Pb的掺入会对Mn—O的成键状态和MnO2晶格内的结晶水产生影响,使Mn2p3.2能级产生化学位移,结合能增大,Mn—O离子性增加,共价性减小。经过对改性电极的充放电机理实验,纳米掺杂后电池的放电容量提高40%以上[6]。La1-xSrxFe1-yCoyO3作为一种混合导体材料,具有优良的电子导电性能和离子导电性能,与La0.9Sr0.1Ca0.8Mg0.2O3、Ce0.9Gd0.1O1.95等新一代中温固体氧化物电解质

有很好的相容性。因此,La1-XSrxFe1-yCoyO3体系材料是一种很有发展前景的中温SOFC阴极材料[7]。Mather等[8]用硝酸盐与尿素熔融燃烧法制备了金属阳极陶瓷材料NiSrCe0.9Yb0.1O3-δ,实验结果表明Co的加入可降低烧结温度,可获得高的阳极孔隙率有利于阳极和电解质的吸附,经分析阳极上的亚微孔结构微粒由镍和钙钛矿粒子组成。

然而,现有钙钛矿型复合氧化物的离子电导率低,高温下呈现电子或氧离子导电性。在燃料电池应用研究中,高温下器件可稳定运行,但器件的效率或功率较低。以钙钛矿型复合氧化物为电解质时,须在大于700℃的高温下使用。因此,离子导电性高、温度使用范围宽的固体电解质及电极材料研究是今后的主要目标。现有的基质材料MnCeO3因稳定性和机械强度的问题,实现实用化仍存在一定难度;基质材料MnZrO3虽具有较高的稳定性和机械强度,但材料离子电导率低,其燃料电池的功率很难满足要求。

2.2钙钛矿锰氧化物磁制冷材料

磁制冷是利用固体磁性材料的磁热效应来达到制冷的目的。磁卡效应(MagnetocaloricEffect,MCE)是指当分别对磁性材料等温磁化和绝热退磁时该材料相应地放热和吸热的一种现象。对于钙钛矿氧化物磁制冷材料,利用振动样品磁强计或超导量子干涉仪测量其等温磁化M_H曲线或等磁场下的M_T曲线,计算样品在Tc温度下的磁熵变(即最大磁熵变),以此判断该材料作为磁制冷工质的可行性[13]。如果A位被离子半径更小的离子或B位被离子半径更大的离子取代,那么取代的结果使容差因子减小,晶格收缩,铁磁耦合变小,从而使磁熵变减小。Szewczyk等[14]、陈伟等[15]以LaMnO3为基质材料用Ca、K、Sr、Ti为掺杂离子详尽研究了不同磁场下掺杂后LaMnO3的最大磁熵变,然而实验结果不甚理想。目前实验室合成磁制冷材料的居里温度或高于室温,或低于室温,均不适合作为室温磁制冷材料。

因此,改进稀土钙钛矿材料的合成工艺及优化掺杂等参数,将现有的稀土锰钙钛矿复合,研究NbFeB等永磁体产生的中低磁场在室温附近获得最大磁熵变,以期获得在室温附近中低磁场最大磁熵变的磁制冷材料。该系列材料在室温磁冰箱等方面有广阔的应用前景,有望推动制冷领域的技术革命。

2.3多功能导电陶瓷材料

以钙钛矿氧化物制备的导电陶瓷具有化学性能稳定、抗腐蚀、耐高温等特点,具有优良的导电性和高温PTC效应(positivetemperaturecoefficient),即在某些陶瓷材料中加入微量的稀土元素,其室温电阻率会大幅度下降而成为半导体陶瓷,当温度上升到它的居里温度Tc时其电阻率急剧上升,BaPbO3是一种新型的多功能导电陶瓷,优异的导电性可做成薄膜和复合材料;其高温PTC效应可做成各种大功率、高温发热体和电流控制元件及高温传感器等,用作Cr2O3基的陶瓷湿度传感器电极具有优良的综合性能。Chang[16]从动力学角度研究了BaPbO3的反应机理,试图降低温度来制备BaPbO3化合物,但效果不理想。Yamanaka[17]首次使用共沉淀法制得了该化合物同时降低了合成温度,获得了分布均匀的粉末。Wang[18]利用该法在700℃下制得

了BaPbO3化合物薄膜。BaPbO3是电子导电的多功能导电陶瓷,Kundaliya等[19]利用穆斯鲍尔谱中子衍射研究多晶态钙钛矿化合物的磁电阻现象,结果表明,与未掺杂Fe样品相比,La0.67Ca0.33Mn0.9Fe0.1O3具有巨磁电阻效应,在40kOe的应用磁场和50~80K下该化合物的巨磁率为98%。Xu等[13]实验合成了La0.67Ca0.33MnO3、La0.67Sr0.33MnO3、La0.67Ba0.33MnO3锰类钙钛矿的巨磁材料,从磁化数据获知在居里温度附近产生巨大的熵变,而且这些样品特殊焓变均发生在它们的相变温度附近。Hu等[20]对(La1-xCax)[(Fe0.5Nb0.5)1-yZry]O3(x=0.4,0.6;y=0.05,0.1)在微波频率下进行了微波介电性研究,Zr4+被Fe3+或Nb5+在B位取代后,对介电常数ε影响不大,但共振频率的温度系数tf近似为零(x=0.55,y=0.1),实验条件下获得介电常数ε为85.3。

目前存在主要问题是化合物合成重复性差、铅易氧化挥发,难保持材料的化学计量平衡等因素,因此,必须研究新制备工艺、优化离子掺杂和烧结温度等条件,从而合成性能稳定、导电性好的功能陶瓷材料。

2.4氧分离膜与气敏材料

钙钛矿型复合氧化物因其电子和氧离子导电性对氧有良好的吸附和脱附性能。高温下,当膜两侧存在氧浓度梯度时,无需外接电路就可以选择氧。固体电解质作为透氧膜材料时,使用具有催化活性的电极(如Pt或混合导电体)以促使氧的吸附和脱附,该反应只有在气相—电极—电解质三相界面上才能进行,而对于La1-xSrxFe1-yCoyO3材料,反应能在整个界面上进行。高温下这类材料是电子或电子空穴和氧离子的混合导体,低价金属离子Sr2+的掺杂导致空穴和氧空位的出现,其协同作用可实现对氧气的选择透过性,且随着Sr和Co含量的增加而增加。由于是通过氧空穴机理来传导氧,制备的膜对O2有100%的选择性,可以用于氧气的分离、纯化和各种涉氧反应。因此,具有混合导电性的钙钛矿型复合氧化物La1-xSrxFe1-yCoyO3可望成为一种全新的氧分离膜介质材料[21]。葛秀涛等[22]采用溶胶凝胶法在800℃下热处理2h制得钙钛矿氧化物YFeO3微粉,呈p型导电行为,用在350℃下焙烧2h和800℃焙烧3h所得超细微粉制作的元件对C2H5OH有较高的灵敏度和良好的选择性,257℃下对4.5×10-5mol.dm3C2H5OH的灵敏度是相同浓度干扰气体汽油的7倍以上,它有望成为一类新型酒敏传感器。钛酸锶(SrTiO3)是钙钛矿氧化物绝缘体,被广泛用于生长高温超导薄膜的衬底,作为高电容率材料在超晶格和下一代超大规模集成器件中具有潜在的应用价值。崔大复等[23]研究了掺杂Sb的SrTiO3透明导电薄膜,用紫外脉冲激光淀积法在SrTiO3衬底上制备了钙钛矿型氧化物SrTi1-xSbxO3(x=0.05,0.10,0.15,0.20)薄膜,结果表明,可见光波段薄膜的透过率大于90%,当Sb掺杂x=0.05时,薄膜具有良好的导电性。侯峰等[24]进行了LaNiO3纳米陶瓷薄膜的制备,并制成了氧敏传感器,实验测试了LaNiO3的响应速率,发现掺杂Ce后从还原气氛到氧化气氛和从氧化气氛到还原气氛的响应时间缩短为2s。Toan等[25]用反铁磁钙钛矿氧化物LaFeO3膜在270℃和420℃温度和不同CO、CH4和NO2浓度下进行了气敏性研究,用两种感应膜测试了不同的混合物CO和CH4,用Au和Pt作电极测量了纳米膜LaFeO3的响应时间,实验证实对CO和CH4可测到的10×10-6数量级,而对NO和NO2可达1×10-6以下的精确度,有望成为煤矿上可燃气体的气敏传感器。膜La0.7Sr0.3Ga0.6Fe0.4O3-δ的透氧率远低于商业气体分离膜,但涂上La0.6Sr0.4CoO3-δ后,透氧量明显增加,是不涂样品的2~6倍,涂层的多孔性对透氧量影响很大[26]。

钙钛矿氧化物透氧膜材料的选择应满足下述条件:(1)透氧量是决定透氧膜具有应用价值与否的关键,透氧量大于1.0mL.cm2才有应用价值;(2)透氧膜材料应具有较强的抗气体侵蚀能力,实际环境中保持结构和化学稳定性;(3)透氧膜应具有高的机械强度。目前存在的问题是,实际应用中透氧量降低和膜组件破裂致使反应器报废损坏。今后的研究应集中在开发合成新气敏材料以提高气敏性、选择性和传感器的稳定性,设计先进的合成工艺以降低其成本,同时确保其可靠性、安全性和再现性。

2.5氧化还原催化剂

钙钛矿复合氧化物由于表面纳米粒子的氧化还原协同作用及晶格缺陷,致使晶场环境和结合能与宏观颗粒相比差异很大,它们对废气净化过程中CO、碳氢化合物的完全氧化和SO2、NOx的还原反应具有高的催化活性,掺杂稀土后催化剂具有高抗毒性能和热稳定性,可望替代贵金属催化剂而成为高温稳定型氧化还原催化剂、汽车尾气净化催化剂。

制备ABO3型化合物的新方法———声空化法的物理效应和化学效应引起了人们的极大关注。利用超声波空化作用使复合氧化物的粒径细小均匀,孔容和比表面增加,更有利于晶格氧的形成。梁新义等[27]研究了LaNiO3催化剂进行NO分解和CO氧化反应,以超声波处理的催化剂活性明显提高。徐菁利等[28]以稀土复合氧化物为催化剂,模拟汽车尾气的组成含量,用连续流动反应器,研究了复合氧化物La0.5Sr0.4Ni1-xCuxO3系列(x=0~1.0)催化剂,当反应温度大于300℃和SO2的脉冲积累含量为1.22×10-2mmol时,该催化剂活性较好。徐鲁华等[29]用微乳液法制备的稀土La0.7Sr0.3MnO3钙钛矿粉末制成蜂窝状催化剂,评价了它们对富氧条件下氮氧化物还原的催化活性,结果表明用催化剂浆液浸渍法制得的样品具有较高的催化活性。Weng等[30]利用涂覆法研究了添加Ce对汽车尾气催化剂LaMO3(M=Mn,Mn_Cu)性质和结构的影响,发现添加Ce后催化剂的热稳定性有很大的提高,当Ce含量6(wt)%,温度达1150℃才有一定量γ_Al2O3转变为α_Al2O3,而不添加的样品从800℃起就发现有α_Al2O3生成,添加Ce的催化剂对碳氢化合物氧化活性下降不明显,但对CO氧化和NO还原活性有显著提高,因添加Ce的催化剂颗粒细小,粒径分布均匀,活性组分在催化剂表面有高的分散度。

钙钛矿复合氧化物因具有独特的半导体性质,利用该性质作为光催化剂进行光降解的研究同样受到研究工作者的瞩目。傅希贤等[31]用柠檬酸络合法制备了钙钛矿型LaFeO3及LaFe1-xCuxO3化合物,发现掺杂Cu达5(wt)%时,LaFe0.95Cu0.05O3的光催化活性最高,在其悬浮体系中对CO2-3进行光催化还原实验,用450W荧光汞灯作为光源,λ>410nm,光照5h,取上层清液分析,结果表明悬浮体系中CO2-3被还原为甲酸、甲醛。Omata等[32]研究了碱土金属掺杂的钙钛矿氧化物与TiO2的协同光催化反应,钙钛矿氧化物SrZr0.9Y0.1O3作为p型半导体其光催化活性很低,它吸收的波长420nm)的照射下,对甲基蓝和甲酸溶液能完全降解。Yao等[33]利用CSD方法制备了层状的钙钛矿化合物Bi4Ti3O12,用甲基橙进行了光催化降解实验,紫外灯照射4h后使摩尔浓度10×10-6的甲基橙溶液完全降解,TEM获知Bi4Ti3O12晶体微粒为球状且直径为10~90nm。Kato等[34]研究了许多碱金属和碱土金属的钽酸盐,如K3Ta3Si2O13,由于Ta具有高导带水平的5d轨道,对工业污水具有较高的光催化活性,实验发现掺杂NiO后钙钛矿NaTaO3结构产生扭曲,进一步掺杂La改进NiONaTaO3催化活性,掺杂后NiONaTaO3的量子率在270nm时可达50%。吴树新[35]掺杂了Cu、Cr、Mn等金属粒子,发现Cu掺杂改性的纳米催化剂能使甲酸、乙酸、甲醛水溶液在较短时间内

降解完全。在光催化还原反应中,使用未掺杂的催化剂进行反应,产物中仅有甲酸和甲醛,而使用掺杂后的催化剂,则检测到有深度还原产物甲醇生成。

但是,钙钛矿氧化物催化活性比贵重金属催化剂低,抗析碳、耐气蚀及耐毒性等方面还存在差距,当水蒸气等含氧气氛存在时活性降低甚至中毒,须改进工艺,研究合成新化合物提高活性;作为光催化剂时,仍存在光子利用率低和催化剂难以回收等难题。今后的研究除了从静态角度将催化剂某些参数如电子结构与催化剂活性关联外,应同时注重研究催化电子能量传递过程的微观动态分析,注重反应器设计及催化剂表面活性组分的质量热量传递途径研究。

3钙钛矿复合氧化物材料应用前景

钙钛矿结构中A或B位被其它金属离子取代或部分取代后可合成独特结构和性能的复合氧化物,从而形成阴离子缺陷或不同价态的B位离子,这种特殊结构的功能材料已发现具有上述气敏、巨磁电阻、电导性和催化活性等特性,涉及到电子、机械、化工、航天、通讯和家电等众多领域。比如,利用其独特的酒敏特性和较强的氧敏特性,可用作酒敏传感器和氧传感器等的电极材料,制成的气敏元件灵敏度高、抗干扰性强、响应速度快,具有相当好的电阻值稳定性以及与之相关的测量准确性;作为氧传感器的电极材料,可用于监控汽车尾气的排放和检测冶炼中的氧含量。优化两类钙钛矿材料的结合系数和应变条件,可制成舰艇用性能优良的声纳传感器;在催化领域,实验室规模的烟道气SO2还原催化剂已有报道[36],作为光降解催化剂和汽车尾气催化剂正在大力研究开发。

纳米材料、信息技术和生物技术是21世纪社会经济发展的三个支柱,钙钛矿型复合氧化物作为纳米研究领域中一类重要功能材料具有广阔的应用前景,进一步研究其合成、结构和特殊用途对化工、机械等工业乃至国防具有实际意义。

钙钛矿型复合氧化物材料

钙钛矿型复合氧化物材料 钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。 1钙钛矿结构 钙钛矿型复合氧化物因具有天然钙钛矿(CaTiO3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,A2+和O2_离子共同构成近似立方密堆积,A离子有12个氧配位,氧离子同时有属于8个BO6八面体共享角,每个氧离子有6个阳离子(4A~2B)连接,B2+离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,A、B离子大小匹配。各离子半径间满足下列关系: 其中RA、RB、RO分别为A离子、B离子和O2-离子的半径,但也存在不遵循该式的结构,可由Goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t<0.77,以铁钛矿存在;t>1.1时以方解石或文石型存在。 2钙钛矿型氧化物材料的研究进展 标准钙钛矿中A或B位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的B位离子,是一类性能优异、用途广泛的新型功能材料。 2.1固体氧化物燃料电池(SOFC)材料 钙钛矿氧化物燃料电池SOFC有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。通过电极材料中的掺杂来提高活性,优化碱锰电池的充放电性能(参见表1)。用含锰的钙钛矿氧化物作为碱性

钙钛矿型复合氧化物光催化研究进展

第18卷第7期2006年7月化学研究与应用 Chem ica lR esea rch and A pp licati on V o.l 18,N o .7 J u.l ,2006 收稿日期:2004-11-22;修回日期:2005-05-17基金项目:河南省自然科学基金(0424270073)项目资助 联系人简介:牛新书(1954-),男,教授,主要从事无机纳米材料研究。Te:l 0373-******* 文章编号:1004-1656(2006)07-0770-06 钙钛矿型复合氧化物光催化研究进展 牛新书,曹志民 (河南师范大学化学与环境科学学院,河南省环境污染控制重点实验室,河南 新乡 453007) 摘要:扼要叙述了钙钛矿型复合氧化物(ABO 3)作为光催化剂的研究进展。包括结构,机理,制备,改性和研究现状。强调了结构与性能之间的关系并对其研究方向提出了自己的见解。关键词:钙钛矿型复合氧化物;光催化;半导体中图分类号:O 643 3 文献标识码:A Fu ji s hi m a 和H onda [1] 在1972年的发现标志着多相光催化新时代的开始。此后T i O 2因其稳定的结构和性能,低廉的价格且无毒无害等优点吸引了人们的注意,围绕T i O 2光催化性能的大量研究取得了一定的进展,但T i O 2较宽的能隙(3 2ev)决定了其只能吸收紫外光波。长期以来,受T i O 2自身结构和合成条件限制,大量研究集中于阳离子掺杂[2] ,目前较为前沿的是阴离子掺杂[3,4,5],但此方面的研究仅见有少量的文献报导,所得到的可见光催化活性还比较低[6] 。总体来说,在提高T i O 2对太阳能的利用率方面没有取得巨大突破,因此人们仍在寻找新的高效光催化剂。钙钛矿是地球上最多的矿物,由于其全范围的电气性能,人们很早就开始了钙钛矿结构的人造晶体的合成以及对其在铁电、压电、超导等性能方面的研究与应用,另外,在气敏材料、汽车尾气净化、 催化有机合成[7,8,9,10] 等方面钙钛矿型复合氧化物也表现出了良好的性能。近年来,白树林、傅希贤[12,17] 等系统研究了钙钛矿型复合氧化物(ABO 3)在光催化方面的性能,结果显示了钙钛矿型复合氧化物在光催化方面具有潜在的应用价值。本文将对AB O 3型复合氧化物的光催化研究进展作一综述及评价。 1 A BO 3型复合氧化物的结构特征 图1 A BO 3结构示意图F i g .1 Sche m e o f ABO 3structure 理想的钙钛矿晶体为立方结构,满足空间群 Pm 3m Oh ,其中A 为较大的阳离子,与12个O 配位,位于立方体的中心。B 为较小的阳离子,与6个O 配位,位于6个O 组成的8面体中心(图1)。理想的钙钛矿结构中,R A >0 090nm,R B >0 051n m [13] ,A O 之间的距离应为20 5 a /2(a 为晶胞参数),B O 之间的距离应为0 5a ,3种离子半径应满足下列关系式: r A +r O =2 0 5 (r B +r O )实际情况下,许多ABO 3型复合氧化物不满足上述关系式时仍能保持立方结构,针对这种情况,Go l d schm idt [14]引入了允许因子,t 规定:

含镧钙钛矿型复合氧化物的制备方法评介_娄向东

!气体传感器研究! 文章编号"#$$%#%&’()$$$*$%$$’%$+收稿日期")$$$$&#$ 作者简介"娄向东(#,-.*/ 男/河南省新乡市人/河南师范大学副教授/主要从事气体传感器研究0第#.卷第%期郑州轻工业学院学报(自然科学版* 1230#.420%)$$$年#)月 567849:6;<=>4?<=67@4A B @B 7B >6;:@?=B @4C 7A B 8D (4E F G H E 3A I J K L I K *C K I M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M 0)$$$含镧钙钛矿型复合氧化物的制备方法评介 娄向东/田圣军/姜聚慧 ( 河南师范大学化学与环境科学学院/河南新乡%.+$$)* 摘要"介绍了溶胶N 凝胶法O 共沉淀法O 水热合成法O 络合法O 热解柠檬酸盐法O 喷雾热解法等几种制备含镧钙钛矿型复合氧化物的方法/讨论了不同制备方法的操作步骤及适宜的工艺条件/比较了各种方法的特点0结果说明"在实际应用时/根据不同的需要/选用合适的制备方法/才能获得满意的效果0 关键词"钙钛矿P 复合物P 氧化物P 气敏器件中图分类号"B Q )#)0)文献标识码"9 R 引言 钙钛矿型稀土复合氧化物具有特殊的光O 电O 磁性质S #T / 其中含镧钙钛矿型复合氧化物因其特殊的结构O 性能及广阔的应用前景引起了人们的普遍关注0如:E #UV 9V WL 6+(9X Y E /A H /Z E /Q [*/由于其具有特殊的电磁学性质/已在固体燃料电池O 固体电解质O 传感器和催化剂等方面得到广泛应用P 而:E V Z E #UV Y 26+系导电陶瓷可用于固体燃料电池的电极材料O 化学敏感材料O 高温加热材料O 固定电阻器以及替代贵金属等的氧化 还原催化剂S +T 等诸多方面0因此对含镧钙钛矿型复合氧化物的合成与开发/人们做了大量深入细致的研究工 作/取得了很大的进展0在早期传统陶瓷制备方法如高温固相法S %/.T O 粉末烧结法等的基础上/经过大量实验/又总结出一些更有效的合成方法/如溶胶N 凝胶法O 水热合成法等/这些新的合成方法克服了传统方法中的一些弊端/展现了更好的实用前景0 \制备方法 \0\溶胶N 凝胶法溶胶N 凝胶法在材料粉体的制备中具有产物粒径小O 均匀性好O 纯度高及反应易控制等优点0目前采用溶胶N 凝胶法制备材料的具体技术路线很多/用溶胶N 凝胶法合成镧的钙钛矿型复合氧化物非常普遍0溶胶N 凝 胶法制备粉末的过程是将所需的前驱体配制成混合溶液/经凝胶化处理/从而获得性能指标较好的粉末S -T 0 如用溶胶N 凝胶法合成镧的钙钛矿型铝酸盐:E 936+超微粉S &T 的方法是"将,,0,,]的:E ) 6+溶于=46+(98*中/然后按^:E +_‘^93+_‘^柠檬酸(98*X#‘%‘%的比例加入93(46+*+ !&=)6(98*和柠檬酸搅拌至完全溶解/得无色透明溶液/将该溶液于.$ab&$a 缓慢蒸发&c 后/ 得到具有一定黏度和流动性的淡黄色透明溶胶P 再继续蒸)c 得黄色黏滞透明的凝胶/该凝胶经#)$a 干燥)c /&.$a 灼烧#c / 即得粉色纯相的:E 936+超微细粉0又如用溶胶N 凝胶法制备含镧的复合氧化物:E Y H #UV ;K V 6+(V X$b#0$*超细粉末S ’T /其方法为/按实验所需的物质的量之比分别取定量:E (46+*+(98*/Y H (46+*(98*/;K (46*+ (98*溶液置于烧杯中混合/加入适量的水调至规定浓度/将此溶液以一定速度滴加到不断搅拌的乙醇N 氨水溶液(d =e#$*中生成溶胶/进而加热制得凝胶并将其干燥/把干凝胶置于马弗炉中加热至&$$a 保温)c 即得:E Y H #UV ;K V 6+超细粉末0

1 引言 钙钛矿型氧化物

1 引言钙钛矿型氧化物(ABO3)由于独特的电、光、磁、特性是目前国内外材料研究领域中的热点。其在超导材料、固体电介质、传感器、高温加热材料固体电阻器及替代贵金属的氧化还原催化剂[1]等方面有广阔的潜在应用前景。铁酸镧(LaFeO3,LFO)是钙钛矿型氧化物中的一员[2],是具有铁磁有序的绝缘介电材料。这类材料由于其电学特征敏感地依赖于其磁学有序,故在传感器和换能器等应用被寄予厚望。近年来,有关研究报道呈现快速增长趋势,主要集中在磁电耦合的机理性操作和具有优异性能材料与器件的制备与表征。薄膜的制备方法有很多,目前,主要采用四种方法:溶胶-凝胶法((Sol-Gel)、脉冲激光沉积法、溅射法、分子束外延法。其中,溶胶-凝胶法具有独特优点而备受人们的关注,已发展成为不可缺少的制备方法。本文简要介绍了用溶胶凝胶法(Sol-gel)制备LFO薄膜的基本原理、工艺过程及其特点。 2 溶胶-凝胶法原理溶胶凝胶法(Sol-gel)是属于化学溶液法范畴,它是将有机或无机盐溶于共同的有机溶剂中以形成均匀澄清的前驱体溶液,并将其旋转沉积于衬底上,然后经过适当的热处理,得到薄膜的过程。其制备薄膜的基本过程是原材料、溶胶、凝胶、热处理、薄膜,其中溶胶的配置和热处理是影响薄膜质量的关键。根据原材料的不同,所涉及的化学途径也不一致[3-5]。根据原材料不同,Sol-gel法主要分为两类:水溶液和醇盐法,其中,醇盐法是较为常见的制备方法。以金属醇盐为前驱体,在溶胶配置过程涉及了复杂的化学反应,主要包括有水解和聚合反应[6] 。实际的水解反应和聚合反应进行的程度和速率,取决于金属原料、溶剂、浓度、催化剂、稳定剂、温度等因素,这是一个相当复杂的反应过程。要得到稳定的前驱溶液,必须控制好醇盐的水解活性。采用So-Gel法最大优点是容易配制稳定前驱体溶液,易于控制组元成分。故选择合适的原料来配置前驱溶液十分重要。

钙钛矿型复合氧化物材料(1)

钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。1 钙钛矿结构钙钛矿型复合氧化物因具有天然钙钛矿(catio3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,a2+和o2_离子共同构成近似立方密堆积,a离子有12个氧配位,氧离子同时有属于8个bo6八面体共享角,每个氧离子有6个阳离子(4a~2b)连接,b2+离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,a、b离子大小匹配。各离子半径间满足下列关系: 其中ra、rb、ro分别为a离子、b离子和o2-离子的半径,但也存在不遵循该式的结构,可由goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t<0.77,以铁钛矿存在;t&1.1时以方解石或文石型存在。2 钙钛矿型氧化物材料的研究进展标准钙钛矿中a或b位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的b位离子,是一类性能优异、用途广泛的新型功能材料。2.1 固体氧化物燃料电池(sofc)材料钙钛矿氧化物燃料电池sofc有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。通过电极材料中的掺杂来提高活性,优化碱锰电池的充放电性能(参见表1)。用含锰的钙钛矿氧化物作为碱性溶液中的阴极材料,获得了好的结果。因为元素锰的d电子结构在锰的三价和四价两种氧化物之间快速传递,表现出很高的电子导电性及良好的电极可充性[5]。通过掺杂pb、co、ba、ca、sr等元素的复合钙钛矿结构,获得掺杂后的改性电极材料,pb的掺入会对mn—o的成键状态和mno2晶格内的结晶水产生影响,使mn2p3.2能级产生化学位移,结合能增大,mn—o离子性增加,共价性减小。经过对改性电极的充放电机理实验,纳米掺杂后电池的放电容量提高40%以上[6]。la1-xsrxfe1-ycoyo3作为一种混合导体材料,具有优良的电子导电性能和离子导电性能,与la0.9sr0.1ca0.8mg0.2o3、ce0.9gd0.1o1.95等新一代中温固体氧化物电解质有很好的相容性。因此,la1-xsrxfe1-ycoyo3体系材料是一种很有发展前景的中温sofc阴极材料[7]。mather等[8]用硝酸盐与尿素熔融燃烧法制备了金属阳极陶瓷材料nisrce0.9yb0.1o3-δ,实验结果表明co的加入可降低烧结温度,可获得高的阳极孔隙率有利于阳极和电解质的吸附,经分析阳极上的亚微孔结构微粒由镍和钙钛矿粒子组成。然而,现有钙钛矿型复合氧化物的离子电导率低,高温下呈现电子或氧离子导电性。在燃料电池应用研究中,高温下器件可稳定运行,但器件的效率或功率较低。以钙钛矿型复合氧化物为电解质时,须在大于700℃的高温下使用。因此,离子导电性高、温度使用范围宽的固体电解质及电极材料研究是今后的主要目标。现有的基质材料mnceo3因稳定性和机械强度的问题,实现实用化仍存在一定难度;基质材料mnzro3虽具有较高的稳定性和机械强度,但材料离子电导率低,其燃料电池的功率很难满足要求。2.2 钙钛矿锰氧化物磁制冷材料磁制冷是利用固体磁性材料的磁热效应来达到制冷的目的。磁卡效应(magnetocaloriceffect,mce)是指当分别对磁性材料等温磁化和绝热退磁时该材料相应地放热和吸热的一种现象。对于钙钛矿氧化物磁制冷材料,利用振动样品磁强计或超导量子干涉仪测量其等温磁化m_h曲线或等磁场下的m_t曲线,计算样品在tc温度下的磁熵变(即最大磁熵变),以此判断该材料作为磁制冷工质的可行性[13]。如果a位被离子半径更小的离子或b位被离子半径更大的离子取代,那么取代的结果使容差因子减小,晶格收缩,铁磁耦合变小,从而使磁熵变减小。szewczyk等[14]、陈伟等[15]以lamno3为基质材料用ca、k、sr、ti为掺杂离子详尽研究了不同磁场下掺杂后lamno3的最大磁熵

(完整版)钙钛矿结构示意图

一、钙钛矿结构示意图 钙钛矿型复合氧化物是结构与钙钛矿CaTiO3相同的一大类化合物,钙钛矿结构可以用ABO3表示(见上图),A位为稀土元素,阳离子呈12配位结构,位于由八面体构成的空穴内;B位为过渡金属元素,阳离子与六个氧离子形成八面体配位。钙钛矿型催化剂在中高温活性高,热稳定性好,成本低。研究发现,表面吸附氧和晶格氧同时影响钙钛矿催化活性。较低温度时,表面吸附氧起主要的氧化作用,这类吸附氧能力由B位置金属决定;温度较高时,晶格氧起作用,不仅改变A、B 位置的金属元素可以调节晶格氧数量和活性,用+2或+4价的原子部分替代晶格中+3价的A、B原子也能产生晶格缺陷或晶格氧,进而提高催化活性。 二、双钙钛矿结构示意图 近年来,双钙钛矿型氧化物得到了越来越广泛的关注,双钙钛矿的通式可表示为A2B’B’’O6,标准的A2B’B’’O6型氧化物可以看作是由不同的BO6八面体规则的相间排列而成。一般情况下B′和B″是不同的过渡金属离子,其晶体结构如图2所示。A2B’B’’O6结构双层钙钛矿型复合氧化物呈NaCl型结构相见排列。多数情况下双层钙钛矿氧化物结构也将发生畸变,它的结构一般由离子

大小、电子组态和离子间相互作用等决定,而且双钙钛矿结构中B’O6和B’’O6八面体的稳定性对整个结构的稳定性起着很重要的作用,B′位、B″位离子相应的氧化物越稳定,则钙钛矿结构越稳定。双钙钛矿型复合氧化物的制备近年已成为材料科学的重要发展方向。从理论角度上看,双钙钛矿氧化物材料可以提供更加丰富的变换组合,给研究者提供了广阔的研究空间。 Sr2FeMoO6属于典型的A2B’B’’O6结构氧化物,其理想形式为Fe3+和Mo5+分别有序地占据B′和B″位置,FeO6八面体和MoO6八面体在三维空间以共角顶的方式相间排列组成三维框架,Sr2+则填充在由8个八面体所围成的空隙的中心位置,如上图所示。实际上,由于占据A位、B′位及B″位的Sr2+、Fe3+、Mo5+并不是像标准立方双钙钛矿结构那样完全匹配,因此,在常温下其结构并非为立方对称,而是沿c轴方向有一个拉伸,畸变为四方对称结构。大量的研究表明,Sr2FeMoO6中存在Fe/Mo离子的反位缺陷(反位缺陷是指Fe离子占据Mo位而Mo离子占据Fe位),而且反位缺陷对Sr2FeMoO6的电输运性质和磁学性质有很大的影响。

钙钛矿型复合氧化物材料(1).

钙钛矿型复合氧化物材料(1) 钙钛矿复合氧化物具有独特的晶体 结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。 1 钙钛矿结构 钙钛矿型复合氧化物因具有天然钙钛矿(catio3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,a2 和o2_离子共同构成近似立方密堆积,a离子有12个氧配位,氧离子同时有属于8个bo6八面体共享角,每个氧离子有6个阳离子(4a~2b)连接,b2 离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,a、b离子大小匹配。各离子半径间满足下列关系: 其中ra、rb、ro分别为a离子、b离子和o2-离子的半径,但也存在不遵循该式的结构,可由goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t<0.77,以铁钛矿存在;t>1.1时以方解石或文石型存在。 2 钙钛矿型氧化物材料的研究进展 标准钙钛矿中a或b位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的b位离子,是一类性能优异、用途广泛的新型功能材料。 2.1 固体氧化物燃料电池(sofc)材料 钙钛矿氧化物燃料电池sofc有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本

钙钛矿复合氧化物材料

钙钛矿复合氧化物 钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。 1钙钛矿结构 钙钛矿型复合氧化物因具有天然钙钛矿(CaTiO3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,A2+和O2_离子共同构成近似立方密堆积,A离子有12个氧配位,氧离子同时有属于8个BO6八面体共享角,每个氧离子有6个阳离子(4A~2B)连接,B2+离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,A、B离子大小匹配。各离子半径间满足下列关系: 其中RA、RB、RO分别为A离子、B离子和O2-离子的半径,但也存在不遵循该式的结构,可由Goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t1.1时以方解石或文石型存在。 2钙钛矿型氧化物材料的研究进展 标准钙钛矿中A或B位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的B位离子,是一类性能优异、用途广泛的新型功能材料。 2.1固体氧化物燃料电池(SOFC)材料 钙钛矿氧化物燃料电池SOFC有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。通过电极材料中的掺杂来提高活性,优化碱锰电池的充放电性能(参见表1)。用含锰的钙钛矿氧化物作为碱性溶液中的阴极材料,获得了好的结果。因为元素锰的d电子结构在锰的三价和四价两种氧化物之间快速传递,表现出很高的电子导电性及良好的电极可充性[5]。通过掺杂Pb、Co、Ba、Ca、Sr等元素的复合钙钛矿结构,获得掺杂后的改性电极材料,Pb的掺入会对Mn—O的成键状态和MnO2晶格内的结晶水产生影响,使Mn2p3.2能级产生化学位移,结合能增大,Mn—O离子性增加,共价性减小。经过对改性电极的充放电机理实验,纳米掺杂后电池的放电容量提高40%以上[6]。La1-xSrxFe1-yCoyO3作为一种混合导体材料,具有优良的电子导电性能和离子导电性能,与La0.9Sr0.1Ca0.8Mg0.2O3、Ce0.9Gd0.1O1.95等新一代中温固体氧化物电解质

(整理)钙钛矿型复合氧化物LaBO3

钙钛矿型复合氧化物LaBO3 钙钛矿型复合氧化物ABO 3 是一种具有独特物理性质和化学性质的新型无机非金属材料。其具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点。作为一种重要的纳米功能材料,LaBO3(B=V,Cr,Mn,Fe,Co,Ni,Cu)复合氧化系列复合氧化物由于其种类繁多、结构特殊等物理化学特性,已成为当今纳米材料研究的热点之一;它作为一种新兴的热电材料,由于其独特的结构和热电性能,近年来受到了越来越多的研究工作者的关注;它作为一种重要的环境催化材料,具有钙钛矿结构的LaBO3由于其良好的热稳定性、储氧性能以及低廉的成本,一直被看作可以替代贵金属催化剂的首选的高效催化剂,其成为了研究金属氧化物的固体化学与其催化性能关系的合适的模型材料,并在机动车辆尾气催化净化、天然气催化燃烧等领域已显出十分诱人的前景,有望取代价格昂贵、资源匮乏的贵金属催化剂。 理想的ABO3钙钛矿结构是立方晶系,半径较大的稀土金属离子A被12个O 原子以立方对称性包围;B位离子是半径较小的过渡金属离子,处于6个O离子组成的八面体中央。A—O之间距离20.5a,(a为晶格常数)B—O之间距离0.5a,三种离子半径满足: 这个结构的稳定条件是:r A >0.90,r B >0.51。此外,在形成稳定的ABO3 型氧化物时,各种离子必须满足Gold- Schmidt 条件:即哥德布密特允许因子 t: 0.75

相关主题
文本预览
相关文档 最新文档