当前位置:文档之家› 酵母基因工程综述

酵母基因工程综述

酵母基因工程综述
酵母基因工程综述

酵母基因工程综述

姓名:张衡学号:060509215 班级:生工092

酵母菌是一类群体庞大的单细胞真核微生物,种类繁多,至少包括80个属,600多种,1000多菌株。它有完整的亚细胞结构和严谨的基因表达调控机制,它既能通过有丝分裂进行无性繁殖,也可以通过减数分裂实现有性繁殖。酵母菌作为单细胞真核生物,既具有细菌生长迅速、操作简单的特点,又具有真核细胞对翻译后蛋白的加工及修饰的能力,它是表达外源基因的理想宿主。因此利用酵母基因工程成功的生产了人类、动物、植物或微生物来源的异源蛋白,在医药生物技术上发挥了重要作用。

一、酵母基因工程的发展现状和发展趋势

酵母既具有原核生物生长快、遗传操作简单的特点,又有哺乳类细胞的翻译后加工和修饰功能,如二硫键的正确形成、糖基化作用等,用来生产来源于真核生物的生物活性蛋白有很多优点。目前在酵母基因工程中发展和应用的较多的酵母有酿酒酵母、乳酸克鲁维酵母、巴斯德毕赤酵母等,其应用主要体现在两个方面,一是改造酵母本身用以提高发酵性能;二是利用酵母作为宿主表达异源蛋白。1、酿酒酵母自身的改造:a、将葡萄糖淀粉酶基因导入酿酒酵母;b、将外源的蛋白水解酶基因导入酿酒酵母;c、将β—葡聚糖酶基因导入酵母;

d、将ATP硫酸化酶和腺苷酰硫酸激酶基因在酿酒酵母体内表达;

e、将人血清清蛋白(HAS)的基因转化到酿酒酵母。2、酵母表达异源蛋白:a、表达水平;b、表达质量。

对于酵母基因工程,在构建各种表达载体、建立新的表达系统方面取得了一系列进展。在未来一段时间内,酵母基因工程的研究将逐步转移到完善现有的表达系统、解决存在的缺陷、扩大应用领域等方面。对酵母自身的改造集中体现在如何通过转基因技术使酿酒酵母能利用纤维素和半纤维素等可再生物质来生产廉价的酒精,缓解能源紧张。1、解决酵母基因工程中还存在的缺陷;2、在人类基因组计划中的应用研究是一个重要的发展方向;3、利用酵母基因工程筛选更多的新药;4、改造酿酒酵母自身,降低生产酒精的成本;5、酵母的生理承受极限研究将引起人们的关注。

二、酵母表达系统

酵母菌作为单细胞真核生物,既具有细菌生长迅速、操作简单的特点,又具有真核细胞对翻译后蛋白的加工及修饰的能力,所以是表达外源基因的理想宿主。1、酵母表达载体:a、载体的基本构架典型的酵母表达载体均为大肠杆菌和酵母菌的"穿梭"质粒。它是由来自酵母的部分基因序列和细菌的部分基因序列所组成。其原核部分主要包括可以再大肠杆菌中复制的起点序列(ori)和特定的抗生素抗性基因序列。2、载体的复制形式酵母表达系统的载体主要分为附加型载体和整合型载体两种。附加型载体在酵母宿主中的拷贝数量大,但是在传代过程中易丢失,影响重组菌的稳定性和表达量:整合型载体导入酵母宿主细胞后与酵母细胞染色体基因组DNA整合,稳定性高,但是基因的拷贝数量低。2、宿主能够发展成基因表达系统的宿主应该具备一定的条件:a、安全无毒,不致病;b、遗传背景清楚,容易进行遗传操作;c、构建的载体DNA容易进入,转化频率较高;d、发酵周期短,培养条件简单,容易进行高密度发酵;e、蛋白质分泌能力好。3、酵母的DNA转化:a、原生质体法;b、离子溶液法;c、一步法;d、PEG1000法;e、电穿孔法和粒子轰击法。4酵母分泌外源蛋白的糖基化不同酵母细胞对分泌蛋白的糖基化方式和程度不同,加到分泌蛋白上的碳水化合物

的长度和结构是由酵母本身决定的。酿酒酵母分泌的多数外源蛋白均是过度糖基化的。

利用酿酒酵母和巴斯德比赤酵母现已开发出成熟的表达系统,并在科学研究和基因工程实践中扮演了重要角色。除此之外,利用乳酸克鲁维酵母、多形汉逊酵母、解脂耶氏酵母也开发出了各具特色的表达系统。酿酒酵母很早就被应用于食品和饮料工业,是发酵工业中的主要生产菌株,是人们最先建立的表达系统。长期实践证明,酿酒酵母具有较高的安全性。自人重组干扰素基因在酿酒酵母中表达成功后,酿酒酵母已被广泛地用作外源蛋白表达的宿主,并发展了许多相应的表达系统。目前已发展和建立的酿酒酵母表达载体既有整合型载体又有附加型载体。

巴斯德毕赤酵母是最近迅速发展起来的一种表达宿主,以甲醇作为唯一的能源和碳源。甲醇能够迅速诱导巴斯德毕赤酵母合成大量的乙醇氧化酶(AOX)在巴斯德毕赤酵母中有2个基因(AOX1和AOX2)编码AOX,约占全部可溶性蛋白质的30%以上,基因严格地受甲醇的诱导和调控。

酵母表面展示系统酵母展示主要应用的是酿酒酵母,主要采用与酵母匹配型有关的α—凝集素和a—凝集素作为骨架蛋白,与外源基因编码的蛋白质或多肽相融合,使外源基因编码的蛋白质或多肽表达在酵母细胞壁表面。

三、酵母基因工程的应用

利用酵母基因工程成功地生产了人类、动物、植物或微生物来源的异源蛋白,在医药生物技术上发挥了重要作用。1、利用毕赤酵母生产饲料用植酸酶:a、高产植酸酶重组酵母菌的构建;b、诱导表达;c、发酵条件的优化和后处理。2、可利用淀粉酿酒酵母的基因工程:天然的酿酒酵母由于酵母菌缺乏分解淀粉的酶类,用作发酵原料的淀粉需经液化、糖化等复杂步骤变成葡萄糖后才能被利用。构建具有较高的水解淀粉和产生酒精能力的酵母工程菌,有利于简化发酵工序,降低生产成本:(1)高产淀粉酶重组酵母菌的构建(2)性能测定。

随着现代分子生物学的发展,人们将进一步的探索各种酵母工程的强启动子元件,分泌信号肽一级对外源蛋白表达、分泌的影响因素,有理由推测酵母工程在未来的发展和应用中将占有重要的地位。

基因工程作业

1、DNA载体经HindⅢ切割后产生粘性末端,能发生载体自连,影响载体与外源DNA的连接效率,常用的防止载体自连的方法有碱性磷酸酶处理使5’磷酸基团羟基化。 2、切口平移是指在DNA聚合酶Ⅰ的作用下,使5’磷酸基团带上放射性标记。 在酶切缓冲液中,一般需加入BSA,请问加入BSA的作用是提高蛋白质浓度防止酶失活。 3、下列哪一种酶作用时需要引物(B)反转录酶在作用时需要DNA聚合酶,而后者需要引物A、末端转移酶B、反转录酶C、DNA 连接酶D、限制酶 4、下列DNA片段,最可能含有SstI 酶切位点的是(A) AGGAGAGCCTCT BGAGCACA TCT CCCCTGTGGGA DA TCCTACATG EAACCTTGGAA DNA连接酶的作用特点有哪些? 1、DNA 3’端有游离的-OH,5’端有一个磷酸基团(P) 2、需要能量、Mg2+ 3、被连接的DNA链必须是双螺旋的一部分 4、只封闭双螺旋DNA骨架上的nick 大肠杆菌DNA聚合酶I有哪些不同的酶活力特性,各有何利用价值。 1、5’—3’聚合酶活性:以DNA为模板利用四种dNTP合成DNA链 2、3’—5’外切酶活性:主要起校对作用 3、5’—3’外切酶活性:从5’端降解DNA分子 何谓Star activity?简述Star activity 的影响因素及克服方法? 限制性内切酶的识别和酶切活性一般在一定的温度、离子强度、pH等条件下才表现最佳切割能力和位点的专一性。当条件改变时,许多酶的识别位点会改变,导致识别与切割序列的非特异性,称为星号(*)活性。 (1)高甘油含量(>5%, v/v); (2)限制性内切核酸酶用量过高(>100U/ugDNA); (3)低离子浓度(<25 mmol/L); (4)高pH(8.0以上); (5)含有机溶剂,如DMSO(二甲基亚砜),乙醇等; (6)有非Mg2+的二价阳离子存在(如Mn2+,Cu2+,Co2+,Zn2+等)。 举例说明在基因工程中修饰性工具酶具有的重要用途 1、末端转移酶:同聚物加尾克隆DNA片段,再生酶切位点便于回收克隆片段,标记DNA 片段的3’末端 2、多核苷酸激酶:催化5’羟基末端磷酸化便于DNA分子连接标记DNA或RNA的5’段 3、碱性磷酸酶:去除DNA或RNA分子的5’末端磷酸基团,防止线性化的载体分子自我连接;与多核苷酸激酶共同作用,标记DNA5’末端 用 T4 phage DNA polymerase 可进行末端标记,试简述其原理? 用3’—5’外切酶活性作用于所有末端形式的3’端制造出3’隐蔽端,再利用它的5’—3’聚合酶活性补平,并加入放射性标记的32P-dNTP。标记的dNTP逐渐取代被删除掉的原有的核苷酸,因此叫做取代合成。 1、下列哪种克隆载体对外源DNA 的装载量最大(B) A、粘粒 B、酵母人工染色体(Y AC) C、质粒 D、λ噬菌体

基因工程作业综述

基因工程期末论文

动物基因工程疫苗的研究进展 摘要:原核生物分子遗传学和DNA重组技术的日新月异,不仅在动植物、农作物的高产、优质、抗逆性上的选育,而且在生产新型药物、疫苗、和基因治疗等研究上做出了贡献,促进了技术的发展和完善。动物基因工程疫苗的发展就是其中之一,本文将就基因工程亚单位疫苗、基因工程活载体疫苗、核酸疫苗、合成肽疫苗、转基因植物可食疫苗、抗独特型疫苗等技术发展方向及进展情况作以综述。 关键字:动物;基因工程;疫苗;研究进展 疫苗发展已将近有200多年的历史,在动物传染病防控中起着非常重要的作用。然而由于一些病原微生物所具有的特殊性质,导致安全疫苗研制困难重重。随着基因工程的出现,它极大地开阔了人们的视野,促进了动物疫苗类生物制品的飞速发展。基因工程疫苗是指利用分子生物学方法对病原微生物的基因组进行改造,分离出病原的保护性抗原,降低其致病性,提高免疫原性,或者将病原微生物基因组中的一个或多个对防病、治病有用的基因克隆到无毒的原核或真核表达载体上制成的疫苗。接种于动物,使其具有免疫力和对感染性疾病的抵抗力,从而达到防控疾病的目的,提高其成活率及保证健康。按照疫苗的构成和研发方法大致分为传统疫苗和基因工程疫苗或新型 疫苗。 一传统疫苗 传统疫苗, 即利用病变组织, 鸡胚或细胞增殖病毒来制备灭活 疫苗和人工驯化弱毒疫苗,用培养基培养完整的细菌制备灭活疫苗和人工驯化弱毒疫苗。在过去动物传染病的预防和控制中发挥了重要作

用,解决了生产中的许多燃眉之急,但这两种疫苗均存在一定程度的缺陷。灭活疫苗生产成本高,免疫保护期短,而且需要反复多次接种;人工驯化弱毒苗尽管诱发的免疫保护优于灭活苗,但存在毒力回复。而且传统疫苗的研制和生产主要是通过改变培养条件, 或在不同寄 主动物上传代使致病微生物毒性减弱, 或通过物理、化学方法将其灭活来完成的。随着人类知识的不断进步, 传统疫苗的局限性也日益显露出来:(l) 动物和人类的病毒需要在动物细胞中培养, 这使得疫苗生产的成本很高; (2) 疫苗中的致病物质在疫苗生产过程中有可能 没有完全杀死或充分减毒, 这会导致疫苗中含有强毒性致病物质, 进而使得疾病在更大的范围内传播; (3) 减毒菌株有可能会发生突变;(4) 有些疾病(例如艾滋病)用传统的疫苗防治收效甚微。。因此,世界各国学者都致力于研制更安全、高效、廉价的新型疫苗。随着分子遗传学、分子生物学和基因工程技术的快速发展,新一代动物传染病疫苗——基因工程疫苗也应运而生。 二基因工程疫苗 与传统疫苗相比,基因工程疫苗具有安全性好、生产成本低、可以大规模廉价生产、利用活载体可以制成多价联合疫苗、热稳定性好、易于区分免疫动物和自然感染动物等优点。因为基因工程疫苗除去病原体的无效和致病成分,只保留能引起免疫保护作用的成分;检测原始病毒中含有而基因工程疫苗中没有的病毒蛋白的抗体就可以方便地从免疫物中区分出原始毒感染者,防治尚无疫苗的疾病。目前基因工程疫苗根据其研制的技术路线和疫苗的组成不同,可分为五大

2020届高中生物一轮复习人教版 基因工程作业含答案

2020届一轮复习人教版基因工程 作业 1.(2019·长沙长郡中学模拟)下列关于基因工程的叙述中,正确的是() A.DNA连接酶和RNA聚合酶催化生成的化学键相同 B.DNA连接酶对“缝合”序列不进行特异性识别,无专一性催化特点 C.受体细菌若能表达质粒载体上抗性基因,即表明重组质粒成功导入 D.培育转基因油菜,需对受体细胞进行氯化钙处理 2.在DNA的粗提取与鉴定实验中有三次过滤 (1)过滤用蒸馏水稀释过的鸡血细胞液 (2)过滤含黏稠物的物质的量浓度为0.14 mol/L的NaCl溶液 (3)过滤溶解有DNA的物质的量浓度为2 mol/L的NaCl溶液 以上三次过滤分别为了获得() A.含核物质的滤液、纱布上的黏稠物、含DNA的滤液 B.含核物质的滤液、滤液中DNA黏稠物、含DNA的滤液 C.含核物质的滤液、滤液中DNA黏稠物、纱布上的DNA D.含较纯DNA滤液、纱布上的黏稠物、含DNA的滤液 3.金茶花是中国特有的观赏品种,但易得枯萎病。科学家在某植物中找到了抗枯萎病的基因,下图所示的方法培育出了抗枯萎病的金茶花新品种。相关叙述正确的是() A.图中①②在基因工程中依次叫做基因表达载体、目的基因 B.形成③的操作中使用的酶有限制酶、DNA聚合酶和DNA连接酶 C.由④培育至⑤的过程中,依次经历了脱分化、再分化过程 D.在⑤幼苗中检测到抗枯萎病基因标志着成功培育出新品种

4.在基因工程中利用某目的基因(图甲)和P1噬菌体载体(图乙)构建重组DNA。限制性核酸内切酶的酶切位点分别是BglⅡ、Eco RⅠ和Sau3AⅠ。下列分析错误的是() A.构建重组DNA时,可用BglⅡ和Sau3AⅠ切割目的基因所在片段和P1噬菌体载体 B.构建重组DNA时,可用Eco RⅠ和Sau3AⅠ切割目的基因所在片段和P1噬菌体载体 C.图乙中的P1噬菌体载体只用Eco RⅠ切割后,含有2个游离的磷酸基团 D.用Eco RⅠ切割目的基因所在片段和P1噬菌体载体,再用DNA连接酶连接,只能产生一种重组DNA 5.(2019·天津一中调研)chIL基因是蓝藻拟核DNA上控制叶绿素合成的基因。为研究该基因对叶绿素合成的控制,需要构建缺失chIL基因的变异株,构建过程如图所示。下列叙述不正确的是() A.chIL基因的基本组成单位是脱氧核糖核苷酸 B.①②过程应使用不同的限制性核酸内切酶 C.构建的基因表达载体中应含有起始密码子和终止密码子 D.若操作成功,可用含红霉素的培养基筛选出所需变异株 6.(2018·温州中学月考)通常禽流感病毒只能侵染鸟类,人流感病毒只能侵染哺乳类。现用高致病性禽流感病毒和低致病性人流感病毒(哺乳类感染病毒后基本无症状)的核酸完成如下实验,该实验不能说明()

基因工程作业(引物设计)

口腔鳞癌组织中肿瘤转移相关基因1(MTA1) 一、选择原因及应用 口腔鳞癌组织中肿瘤转移相关基因1(MTA1)在蛋白和mRNA的表达水平,揭示其与口腔鳞癌(OSCC)发生、发展的关系。方法采用免疫组织化学法和原位杂交技术检测46例OSCC标本、15例口腔黏膜白斑与20例正常口腔黏膜标本中MTAl 基因的表达水平,并分析其与OSCC临床病理学参数的关系。结果MTA1蛋白和MTA1mRNA在OSCC组织中的表达水平显著高于口腔黏膜白斑和正常口腔黏膜(P 〈0.05),口腔黏膜白斑中MTA1蛋白和MTA1mRNA表达水平显著高于口腔正常黏膜(P〈0.01),MTA1蛋白和MTA1mRNA表达与肿瘤浸润深度和淋巴结转移密切相关(P〈0.05)。结论MTA1基因在蛋白和mRNA的表达水平在OSCC发生、发展及浸润转移过程中起一定促进作用,有望成为判断OSCC预后及选择治疗方案的一个新肿瘤标志物。 二、2查阅NCBI得到MTA1相关信息并获得目的基因PREDICTED: Gorilla gorilla gorilla metastasis associated 1 (MTA1), mRNA NCBI Reference Sequence: XM_004055801.1 FASTA Graphics LOCUS XM_004055801 2872 bp mRNA linear PRI 03-DEC-2012 DEFINITION PREDICTED: Gorilla gorilla gorilla metastasis associated 1 (MTA1), mRNA. ACCESSION XM_004055801 VERSION XM_004055801.1 GI:426378238 KEYWORDS . SOURCE Gorilla gorilla gorilla (western lowland gorilla) ORGANISM Gorilla gorilla gorilla Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Gorilla. COMMENT MODEL REFSEQ: This record is predicted by automated computational

(完整版)2018高考生物一轮复习现代生物科技专题第36讲基因工程(包括PCR技术)夯基提能作业(选修3)

第36讲基因工程(包括PCR技术) A组基础题组 考点一基因工程 1.(2014海南单科,31,15分)下图是将某细菌的基因A导入大肠杆菌内,制备“工程菌”的示意图。 据图回答: (1)获得A有两条途径:一是以A的mRNA为模板,在酶的催化下,合成互补的单链DNA,然后在 的作用下合成双链DNA,从而获得所需基因;二是根据目标蛋白质的序列,推测出相应的mRNA序列,然后按照碱基互补配对原则,推测其DNA的序列,再通过化学方法合成所需基因。 (2)利用PCR技术扩增DNA时,需要在反应体系中添加的有机物质有、、4种脱氧核糖核苷三磷酸和耐热性的DNA聚合酶,扩增过程可以在PCR扩增仪中完成。 (3)由A和载体B拼接形成的C通常称为。 (4)在基因工程中,常用Ca2+处理D,其目的是。 2.(2014山东理综,36,12分)人组织纤溶酶原激活物(htPA)是一种重要的药用蛋白,可在转htPA基因母羊的羊乳中获得。流程如下: (1)htPA基因与载体用切割后,通过DNA连接酶连接,以构建重组表达载体。检测目的基因是否已插入受体细胞DNA,可采用技术。 (2)为获取更多的卵(母)细胞,要对供体母羊注射促性腺激素,使其。采集的精子需要经过,才具备受精能力。 (3)将重组表达载体导入受精卵常用的方法是。为了获得母羊,移植前需对已成功转入目的基因的胚胎进行。利用胚胎分割和胚胎移植技术可获得多个转基因个体,这体现了早期胚胎细胞的。 (4)若在转htPA基因母羊的羊乳中检测到,说明目的基因成功表达。

3.(2015四川理综,9,11分)将苏云金杆菌Bt蛋白的基因导入棉花细胞中,可获得抗棉铃虫的转基因棉,其过程如图所示(注:农杆菌中Ti质粒上只有T-DNA片段能转移到植物细胞中)。 质粒中“Bt”代表“Bt基因”,“Km R”代表“卡那霉素抗性基因” (1)过程①需用同种酶对含Bt基因的DNA和Ti质粒进行酶切。为将过程②获得的含重组质粒的农杆菌筛选出来,应使用培养基。 (2)过程③中将棉花细胞与农杆菌混合后共同培养,旨在让进入棉花细胞;除尽农杆菌后,还须转接到含卡那霉素的培养基上继续培养,目的是。 (3)若过程④仅获得大量的根,则应在培养基中增加以获得芽;部分接种在无激素培养基上的芽也能长根,原因是。 (4)检验转基因棉的抗虫性状,常用方法是。种植转基因抗虫棉能减少的使用,以减轻环境污染。 考点二蛋白质工程 4.(2015海南单科,31,15分)在体内,人胰岛素基因表达可合成出一条称为前胰岛素原的肽链,此肽链在内质网中经酶甲切割掉氨基端一段短肽后成为胰岛素原,进入高尔基体的胰岛素原经酶乙切割去除中间片段C后,产生A、B两条肽链,再经酶丙作用生成由51个氨基酸残基组成的胰岛素。目前,利用基因工程技术可大量生产胰岛素。回答下列问题: (1)人体内合成前胰岛素原的细胞是,合成胰高血糖素的细胞是。 (2)可根据胰岛素原的氨基酸序列,设计并合成编码胰岛素原的序列,用该序列与质粒表达载体构建胰岛素原基因重组表达载体,再经过细菌转化、筛选及鉴定,即可建立能稳定合成的基因工程菌。 (3)用胰岛素原抗体检测该工程菌的培养物时,培养液无抗原抗体反应,菌体有抗原抗体反应,则用该工程菌进行工业发酵时,应从中分离、纯化胰岛素原。胰岛素原经酶处理便可转变为胰岛素。 B组提升题组 非选择题 1.(2017云南昆明摸底调研,40)科学家将拟南芥的抗寒基因(CBFl),转入香蕉以获得抗寒的香蕉品种。下图是某质粒载体上的SacⅠ、XbaⅠ、EcoRⅠ、HindⅢ四种限制酶的切割位点示意图。

(0589)《基因工程》网上作业题及答案

(0589)《基因工程》网上作业题及答案 1:第一次作业 2:第二次作业 3:第三次作业 4:第四次作业 5:第五次作业 1:[论述题] 一、名词解释 1、限制性核酸内切酶; 2、基因文库; 3、cDNA文库; 4、RFLP; 5、核酸探针; 6、转录 二、简答题 1、试回答影响限制性内切核酸酶切割效率的因素? 2、何为载体?一个理想的载体应具备那些特点? 3、什么叫基因工程(Gene Engineering),试从理论和技术两个方面谈谈Gene Engineering 诞生的基础? 4、抗性基因是目前使用的最广泛的选择标记,常用的抗生素抗性有哪几种?并举两例说明其原理? 5、Y AC 载体具有什么样的功能性元件?为什么它在克隆大片段时具有很大的优越性? 三、论述题 1、分析比较琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳的异同点? 参考答案: 一、名词解释 1、DNA重组:是指用酶学方法将不同来源的DNA进行切割、连接,组成一个新的DNA 分子的过程。 2、克隆:原指一个亲本细胞经无性繁殖产生无数个相同细胞的子代群体的过程。 3、DNA克隆:是指将重组DNA分子导入到合适的受体细胞中,使其扩增和繁殖,以获得大量的相同的DNA分子,又称分子克隆或基因克隆。 4、目的基因:要分离和克隆的相应基因常称为目的基因。因目的基因片段需插入载体,导入宿主细胞内进行复制或表达,所以对宿主细胞DNA而言,又称它为外源性基因或外源性DNA。 5、基因载体:能够携带外源DNA进入受体细胞内进行复制或表达的DNA分子,被称为基因载体。

6、质粒:是独立于细菌染色体之外,能自主复制的共价闭合环状双链DNA。 二、简答题 1、答: (1)限制性核酸内切酶:识别并特异切割DNA碱基序列;(2)DNA polⅠ:催化缺口平移,制备高比度DNA探针;(3)Klenow片段:合成cDNA第二条链,补齐或标记双链DNA3′端;(4)TaqDNA聚合酶:DNA体外扩增(PCR);(5)逆转录酶:催化合成cDNA;(6) T4DNA 聚合酶:聚合补平或标记DNA平末端或3′凹端等;(7)DNA连接酶:催化2条DNA链之间形成磷酸二酯键;(8)大肠杆菌DNA连接酶:应用于黏端DNA或切口间连接;(9)T4DNA连接酶:应用于黏性或平末端DNA的连接;(10)末端脱氧核苷酸转移酶:给载体或cDNA加上互补的同聚尾、加标记物;(11)碱性磷酸酶:防止载体自身连接、32P标记5′端;(12)T4多核苷酸激酶:5′端磷酸化、5′端标记放射性核素。 2、答: (1)分离制备目的基因――“分”;(2)切割目的基因和载体――“切”;(3)目的基因与载体的连接――“接”;(4)将重组DNA导入宿主细胞――“转”;(5)筛选并鉴定含重组DNA分子的受体细胞克隆――“筛”;(6)克隆基因在受体细胞内进行复制或表达――“表”。 3、答: (1)制备基因组文库;(2)构建cDNA文库;(3)PCR扩增目的基因;(4)人工合成DNA技术。 4、答: ⑴黏性末端连接:将靶基因片段和载体DNA经相同的限制酶分别切割,使它们两端产生相同的黏性末端。然后经黏性末端碱基配对,再经DNA连接酶作用,共价连接成新的重组DNA分子;⑵平头末端连接:将平末端的DNA分子在T4DNA连接酶催化下,使DNA分子的3′OH和5′P进行共价结合;⑶人工接头法:是指利用人工接头加在平端DNA 片段的两端,然后用相应限制酶切割人工接头以产生黏性末端,再与带相同黏性末端的载体相连;⑷同源多聚尾连接法:在末端脱氧核苷酸转移酶催化下,在线型载体分子的两端加上单一核苷酸如dG组成的多聚尾;而在目的DNA分子的两端加上dC尾,两者混合退火,然后经DNA聚合酶Ⅰ或Klenow填补裂口处缺失的核苷酸,再通过DNA连接酶修复成环状的双链DNA。

酵母基因工程

酵母基因工程 一酵母基因工程的发展现状 1.酿酒酵母自身的改造 (1)将葡萄糖淀粉酶基因导入酿酒酵母 (2)将外源的蛋白水解酶基因导入酿酒酵母 (3)将β—葡聚糖酶基因导入酵母 (4)将ATP硫酸化酶和腺苷酰硫酸激酶基因在酿酒酵母体内表达 (5)将人血清清蛋白(HAS)的基因转化到酿酒酵母 2酵母表达异源蛋白 (1)表达水平 (2)表达质量 2酵母基因工程的发展趋势 (1)解决酵母基因工程中还存在的缺陷 (2)在人类基因组计划中的应用研究是一个重要的发展方向 (3)利用酵母基因工程筛选更多新药 (4)改造酿酒酵母自身,降低生产酒精的成本 (5)酵母的生理承受极限研究引起人们的关注 3发展历程 1.1974年rlarck—walker和Miklos发现在大多数酿酒酵母中存在质粒。 2.1978年Hmnen将来自一株酿酒酵母的leu 2基因导入另一株酿酒酵母,弥补 了后者的Leu2缺陷,标志着酵母表达系统的建立。 3.1981年Hinnen等用酵母基因表达系统表达了人干扰素。 4.我国也在1983年首次用酵母菌表达了乙型肝炎病毒表面抗原基因。 5.1996年在全世界科学家的通力合作下,完成了第一个真核生物——酿酒酵母 全基因组的测序。 二.酵母基因工程的优点 1.安全无毒,不致病; 2.有较清楚的遗传背景,容易进行遗传操作; 3.容易进行载体DNA的导入。DNA转化技术的不断发展优化,多数酵母菌可 以取得较高的转化率; 4.培养条件简单,容易进行高密度发酵; 5. 能将外源基因表达产物分泌到培养基中; 6.有类似高等真核生物的蛋白质翻译后的修饰功能 三.酵母表达系统 (1)酵母表达载体 ①载体的基本构架:大肠杆菌和酵母菌的“穿梭”质粒。 原核部分:大肠杆菌中复制的起点序列(ori)和抗生素抗性基因序列。 酵母部分: 1酵母菌中维持复制的元件:2μ质粒复制起点;自主复制序列(ARS); 整合型载体的整合介导区。 2营养缺陷型基因序列、抗生素抗性基因序列 3基因启动子和终止子序列 4信号肽序列

基因工程作业之基因工程载体

基因工程载体 ---乳酸菌表达载体pMG36e及其应用现状 目前,多数外源基因的克隆与表达,主要采用大肠杆菌。然而,由于大肠杆菌能够引起人类和动物发生不同程度的腹泻,导致机体损伤,所以其表达产物需要经过复杂的分离纯化才能达到食品医药标准。与之相比,乳酸菌作为人和动物肠道内正常菌群之一,已被证明具有诸多益生功能,而且被公认为安全无毒的(Generally regarded as safe,GRAS)。因此,采用乳酸菌表达的外源蛋白质可免去上述复杂、繁琐的后提纯工艺;同时,乳酸菌可以在肠道中存活定植,其外源基因表达用于治疗或免疫作用的活性物质可以持续地在肠道中产生,成为人和动物体内功能性生物制剂的“加工车间”,从而起到相应的保护和治疗性作用。 乳酸菌(Lacticacidbacteria,LAB)是一类能够发酵糖类产生乳酸的革兰氏阳性细菌[1],具有诸如缓解乳糖不耐症、调节消化道微生态平衡等益生作用,应用领域十分广泛。随着近二十几年来分子生物学的发展,以乳酸菌作为宿主,利用质粒表达外源基因,对乳酸菌进行改造以进一步提高其功能已成为目前的研究热点之一。乳酸菌常用质粒载体主要有pWV01衍生载体,pNZ系列载体[2]等。质粒pMG36e来源于pWV01载体,于1989年由VanDeGuchte[3]以乳酸乳球菌乳脂亚种蛋白酶基因的转录和翻译信号为基础构建而成,质粒大小约为3.6Kb,便于宿主携带,可表达被克隆的各种基因。目前已在乳球菌属(Lactotoccus),链球菌属(Streptococcus),乳杆菌属(Lactobacillus)等中成功表达如溶菌酶、苯丙氨酸氨酶[4]、枯草杆菌中性蛋白酶[5],以及超氧化物歧化酶[6]等以及其他蛋白基因,近年来也有学者[7]对其进行改造,成功构建了食品级载体。是目前应用较多的一个组成型表达载体。本文主要从载体构成,表达外源基因与构建食品级载体等三方面进行综述。 一、载体的构成 载体pMG36e由强启动子p32及其下游的部分开放阅读框、多克隆位点和来自乳酸乳菌乳脂亚种(Lactococcuslactissubsp.cremorisWg2)蛋白酶基因(prtP)[8]的转录终止子以及pWV01复制子和来自于质粒pE194[9]的红毒素抗性基因Emr构成,质粒大小为3.6Kb。质粒pMG36e的构成使其有利于表达外源基因。其中强启动子P32于1987年由VanderVossen等[10]利用鸟枪法从乳脂链球菌(S.cremoriswg2)克隆得到,p32包括开放阅读框架和一个能够被大肠杆菌(E.coli)、枯草芽孢杆菌(B.subtilis)、乳链球菌(https://www.doczj.com/doc/eb6601839.html,ctis)识别的核糖体结合位点。pWV01复制子来源于广宿主乳球菌质粒pWV01[11],能在一系列细菌中行使功能,这其中包括大肠杆菌(E.coli),枯草杆菌(B.subtilis)、乳球菌、乳杆菌、化脓性链球菌(S.pyogenes)和血链球菌(S.sanguis)等[3]。位于翻译启始信号下游的多克隆位点可使外源基因在合适的阅读框架内插入。由于大肠杆菌与枯草杆菌可作为构建重组质粒的中间宿主,这极大地提高了该质粒的表达效果和扩展了宿主应用范围。

基因工程--基因的基本操作作业

1、下列有关基因工程技术的叙述,正确的是( A.重组DNA B. C. D.只要目的基因进入受体细胞就能实现表达 正确答案:C 知识点:基因工程 分析与思考:运载体是质粒,而不是酶,A错;不同的限制酶能够识别不同的回文序列,B 错;目的基因进入受体细胞未必能够表达,D错,故选C。 2、下图表示一项重要生物技术的关键步骤,X是获得外源基因并能够表达的细胞。下列有关说法不正确的是( A.X B. C.基因与运载体的重组只需要DNA D. 正确答案:C 知识点:基因工程 分析与思考:目的基因与运载体的结合需要限制酶的切割和连接酶的连接,故选C。 3、下图是将人的生长激素基因导入细菌B细胞内制造“工程菌”的示意图。已知细菌B细胞内不含质粒A,也不含质粒A上的基因。判断下列说法正确的是(

A .将重组质粒导入细菌 B B .将完成导入过程后的细菌涂布在含有氨苄青霉素的培养基上,能生长的只是导入了重组 C .将完成导入过程后的细菌涂布在含有四环素的培养基上,能生长的就是导入了质粒A 的 D . 正确答案:C 知识点:基因工程 分析与思考:质粒导入细菌的方法是钙离子转化法,A 错;含有氨苄青霉素抗性基因的不光只有重组质粒,在质粒A 上也含有,B 错;目的基因成功表达的标志是能够合成人的生长素,D 错,故选C 。 4、下表是基因工程中有关基因操作的名词及对应的内容,正确的组合是( ) 正确答案:C 知识点:基因工程 分析与思考:基因工程的供体应该是提供目的基因的生物,剪刀是限制性核酸内切酶,针线是DNA 连接酶,运载体是质粒,受体是细胞,故选C 。 5、基因工程是在DNA 水平上进行设计和施工的,在基因操作的基本步骤中,不进行碱基互补配对的步骤是( ) A .人工合成基因 B .目的基因与运载体的结合 C .将目的基因导入受体细胞 D .目的基因的检测和表达

基因工程思考题

《基因工程》思考题 第一章绪论 1. 简述基因操作、基因重组和基因工程的关系。 2. 为什么说基因工程是生物学和遗传学发展的必然产物? 3. 简述基因的结构组成对基因操作的影响。 4. 谈谈你对gene的认识,并简要说说gene概念的演变过程. 5. 如何理解gene及其产物的共线性和非共线性? 6. 试从理论和技术两个方面谈Gene Engineering诞生的基础. 第二章基因工程的基本原理与支撑技术 1. 试比较原核基因组与真核基因组的结构和功能特点 2. 试比较原核基因和真核基因表达调控的主要方式和特点 3. 分析比较琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳的异同点? 4. 琼脂糖凝胶电泳中,简述影响DNA在凝胶中迁移速率的因素. 5. 小量制备质粒DNA,用质粒中特定的酶切发现切割不动,试分析可能原因及克服方法? 6. 在基因操作实践中有哪些检测核酸和蛋白质分子量的常规方法? 7. 印迹分子杂交有哪些种类,并说明在什么情况下需要使用这些方法。 8. 核酸分子的标记有哪些方法,各有何特点? 9. 由mRNA反转录成cDNA和DNA的PCR扩增是两个完全不同的酶催化反应过程,如何将两个过程联系在一起,实现由mRNA起始扩增出DNA? 10. Primer是PCR反应体系的四大要素之一,PCR的许多应用都是通过primer设计来实现的,请问primer设计的一般原则是什么? 11. 在PCR反应的后期,或者循环次数过多时,反应体系中就会出现一种所谓的平台效应(Plateau effect),请问什么叫Plateau effect?产生Plateau effect的原因有哪些? 12. 在对PCR产物进行电泳检测时,有时会出现拖带或非特异性扩增条带,请分析其原因?如果检测结果是看不到DNA带或DNA带很弱,那又是为什么? 13. 通过双向蛋白质电泳发现某蛋白质与某植物的一种表型密切相关,若要利用编码该蛋白质的基因来转基因植物,试问如何分离得到该基因? 14. 现有一序列已知的DNA片段和一序列未知的DNA片段,你分别如何设计测序策略? 15. 设想一下在什么情况下你希望知道一个基因或一段DNA的序列? 16. 什么叫有性PCR?有性PCR导致DNA重组的分子机制跟体内重组有何异同? 17. Explain the PCR. List the steps in carrying it out; include all the components and special conditions, explaining why each one is used. Illustrate the process with appropriate labels. Use the correct scientific terminology in your explanation. 第三章基因工程操作的基本条件 1. 试指出影响限制性内切核酸酶(Restriction endonuclease)切割效率的因素. 2. 在酶切缓冲液中,一般需加入BSA,请问加入BSA的作用是什么?并简述其原理? 3. 何谓Star activity?简述Star activity的影响因素及克服方法. 4. 某DNA序列中存在DpnI酶切位点,以此DNA为模板,在体外合成DNA序列,当用该酶进行酶切时,发现切割不动,试分析可能原因?

基因工程作业题及答案

第二章 1. 名词解释:核酸内切酶、核酸内切限制酶、同裂酶、同尾酶、核酸外切酶、末端脱氧核苷酸转移酶 答: 核酸内切酶:是一类从多核苷酸链的内部催化磷酸二酯键断裂的酶。 核酸内切限制酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列(4—8bp),并由此处切割DNA双链的核酸内切酶。 同裂酶:识别位点的序列相同的限制性内切酶。 同尾酶:识别的序列不同,但能切出相同的粘性末端。 核酸外切酶:是一类从多核苷酸链的一头开始催化降解核苷酸的酶。 末端脱氧核苷酸转移酶:可以不需要模板,在单链DNA或突出的双链DNA 3’-OH端随机 添加dNTPs的酶 2. 限制性内切核酸酶的命名原则是什么? 答:限制性内切核酸酶按属名和种名相结合的原则命名的,即:属名+种名+株名+序号; 首字母:取属名的第一个字母,且斜体大写; 第二字母:取种名的第一个字母,斜体小写; 第三字母:(1)取种名的第二个字母,斜体小写; (2)若种名有词头,且已命名过限制酶,则取词头后的第一字母代替。 第四字母:若有株名,株名则作为第四字母,是否大小写,根据原来的情况而定,但用正体。 顺序号:若在同一菌株中分离了几种限制酶,则按先后顺序冠以I、Ⅱ、Ⅲ、…等,用正体。 3.部分酶切可采取的措施有哪些? 答:1)缩短保温时间 2)降低反应温度 3)减少酶的用量 4. 在序列5'-CGAACATATGGAGT-3'中含有一个6bp 的Ⅱ类限制性内切核酸酶的识别序列,该位点的序列可能是什么? 答:回文序列是:5'-CATA TG-3, 5.什么是限制性内切核酸酶的星号活性? 受哪些因素影响? 答:Ⅱ类限制酶虽然识别和切割的序列都具有特异性,但是这种特异性受特定条件的限制,即在一定环境条件下表现出来的特异性。条件的改变,限制酶的特异性就会松 动,识别的序列和切割都有一些改变,改变后的活性通常称第二活性,而将这种因 条件的改变会出现第二活性的酶的右上角加一个星号表示,因此第二活性又称为星 活性。 概括起来,诱发星活性的因素有如下几种:(1)高甘油含量(>5%, v/v);(2)限制性 内切核酸酶用量过高(>100U/ugDNA);(3)低离子强度(<25 mmol/L);(4)高pH(8.0 以上);(5)含有有机溶剂,如DMSO,乙醇等;(6)有非Mg2+的二价阳离子存在(如 Mn2+,Cu2+,C02+,Zn2+等)。 第三章 1.如何将野生型的λ噬菌体改造成为一个理想的载体? 答:①删除λ噬菌体的非必需区,留出插入空间;并在余下的非必须区内制造限制酶切点 ②引进某些突变表型,作为选择标记 ③突变某些基因,使它成为安全载体 ④删除λDNA必须区段上常用的限制酶切点

(完整版)高中生物基因工程1.3基因工程的应用课后作业选修3解析

1.3 基因工程的应用 1.抗病毒转基因植物成功表达后,以下说法正确的是( ) A.可以抵抗所有病毒 B.对病毒的抗性具有局限性或特异性 C.可以抗害虫 D.可以稳定遗传,不会变异 解析:抗病毒转基因植物只能抵抗某些病毒,不能抵抗所有病毒,也不可以抗虫;抗病毒基因存在变异的可能性。 答案:B 2.某科学家从细菌中分离出耐高温淀粉酶(Amy)基因a,通过基因工程的方法,将基因a转到马铃薯植株中,经检测发现Amy在成熟块茎细胞中存在。下列说法正确的是( ) A.基因a只有导入马铃薯受精卵中才能表达 B.目的基因来自细菌,可以不需要载体直接导入受体细胞 C.基因a导入成功后,将抑制细胞原有的新陈代谢,开辟新的代谢途径 D.目的基因进入受体细胞后,可随着马铃薯的DNA分子的复制而复制,传给子代细胞并表达解析:培育转基因植株可以以体细胞或受精卵作为受体细胞;目的基因必须借助载体才能导入受体细胞;目的基因导入成功后,不抑制细胞原有的代谢途径。 答案:D 3.下列高科技成果中,根据基因重组原理进行的是( ) ①我国科学家袁隆平利用杂交技术培育出超级水稻②我国科学家将苏云金芽孢杆菌的某些基因移植到棉花体内,培育出抗虫棉③我国科学家通过返回式卫星搭载种子培育出太空椒④我国科学家通过体细胞克隆技术培育出克隆牛 A.① B.①② C.①②③ D.②③④ 解析:自然界的基因重组发生在减数分裂过程中,同源染色体的两条非姐妹染色单体间的互换和非同源染色体间的自由组合都可以发生基因重组;人工的基因重组就是基因工程。在题目给出的选项中:①袁隆平利用杂交技术培育出的超级水稻,其原理是自然界的基因重组。②将苏云金芽孢杆菌的某些基因移植到棉花体内,培育出的抗虫棉,属于通过基因工程进行的基因重组,该方法将目的基因移植到某种生物,整合到该生物的DNA分子中,并使目的基因得以表达,其最大优点就是克服了远缘杂交不亲和的障碍。③是利用宇宙射线,诱发种子发生基因突变,从而培育出太空椒。④克隆牛属于动物体细胞的无性生殖,不产生基因间的重新组合。 答案:B 4.切取牛的生长激素和人的生长激素基因,用显微注射技术将它们分别注入小鼠的受精卵中,从而获得了“超级鼠”,此项研究采用的技术及遵循的原理是( ) A.基因突变DNA→RNA→蛋白质 B.基因工程RNA→RNA→蛋白质 C.细胞工程DNA→RNA→蛋白质 D.基因工程DNA→RNA→蛋白质 解析:把牛的生长激素和人的生长激素基因分别导入小鼠的受精卵中,并在个体发育过程中表达,从而获得了“超级鼠”,此项研究采用的是基因工程技术,遵循的原理为基因的表达。答案:D

人与生物技术文献综述

转基因技术应用与安全的文献综述 一、前言 毫无疑问,生命科学是21世纪十分有发展前景的一门自然科学,生物技术作为高科技的核心,已经越来越多地应用于人类的生活,而转基因技术则是其中极为重要的一个组成部分。转基因技术是现在以及今后相当长时期内备受关注的研究重点,它在生物医药、农业、食品、能源、环境等各个领域都有广泛的应用。事物有利必有弊,转基因技术也是一样,它在给人类带来便利的同时,也带来了隐忧,比如转基因食品的安全性、转基因生物的安全性等,近来也引起了热切关注。本文将主要讨论转基因技术应用的各种方面和转基因技术引发的安全问题。 二、主题 (一)、转基因技术应用 转基因技术通常也称为基因工程技术,是指利用载体系统的重组DNA技术以及通过物理化学和生物学等方法,将重组DNA导入有机体的技术。它在生物医药、农业、食品上的应用是与我们的日常生活最为贴近的。 生物医药方面 1、用来生产特殊蛋白质。在体外大量生产人体中天然存在的蛋白质,高度纯化,然后再返 回人体使用,从而治疗疾病。比如利用植物作为生物反应器,用转基因烟草高水平表达治疗癌症的单克隆抗体,从而大量生产抗体供病人使用。细胞素治疗比过去的化学治疗、放射治疗等疗法有明显的优越性。 2、用来生产疫苗。DNA疫苗的制造过程和工作原理与传统疫苗完全不同,科学家们主要是 利用DNA片段的分离、筛选、插入、转染等技术。DNA疫苗注射器注入肌肉或基因枪注入皮肤黏膜,被人体细胞摄入后,疫苗中含有的已经被传染的质粒便进入人体细胞核内,诱导人体细胞以质粒中含有的病原体的抗原DNA片段为模板,合成病原体所具有的抗原蛋白分子,从而诱导机体免疫系统产生体液免疫或细胞免疫。和传统疫苗相比,优点就是,避免了病原体诱导自身免疫反应和感染机体的可能。 3、抗病转基因。目前正在研究的可分为三类,植物病毒外壳蛋白基因、人工合成抗菌肽基 因、几丁质酶和葡聚糖酶双价基因。 农业方面 抗虫植物、转基因作物。目前研究较多的有Bt杀虫蛋白基因(来自苏云金芽孢)、蛋白酶抑制剂基因、植物凝集素基因等。Bt毒蛋白通过昆虫摄食进入昆虫的消化道后,可转变成具有毒性的多肽分子,与昆虫肠道上皮表面的特异蛋白相互作用,诱导植物膜产生一些孔道,扰乱细胞的渗透平衡,引起细胞肿胀甚至裂解,最终导致昆虫死亡,如今这种抗虫转基因的研究最广泛也最有潜力。蛋白酶抑制剂杀虫的机理在于与昆虫消化道内的蛋白酶相互作用,形成复合物,阻断或减弱消化酶的蛋白水解作用,导致昆虫缺乏代谢中必须的氨基酸。植物凝集素被昆虫摄食后,在消化道中释放,与昆虫肠道膜上的糖蛋白结合,影响营养物质的正常吸收,促进细菌繁殖,诱发病灶,从而杀虫,比如常用的豌豆外源凝集素和雪花莲外源凝集素。

高考生物二轮复习 课时作业(十四)基因工程和细胞工程(含解析)

基因工程和细胞工程 1.花椰菜易受黑腐病菌的危害而患黑腐病。野生黑芥具有黑腐病的抗性基因。用一定剂量的紫外线处理黑芥原生质体可使其染色体片段化,并丧失再生能力。再利用此原生质体作为部分遗传物质的供体与完整的花椰菜原生质体融合,以获得抗黑腐病杂种植株。流程如下图。 据图回答下列问题: (1)过程①所需的酶是________。 (2)过程②后,在显微镜下观察融合的活细胞中有供体的________存在,这一特征可作为初步筛选杂种细胞的标志。 (3)原生质体培养液中需要加入适宜浓度的甘露醇以保持一定的渗透压,其作用是______________________________________________________。 原生质体经过________再生,进而分裂和脱分化形成愈伤组织。 (4)若分析再生植株的染色体变异类型,应剪取再生植株和________植株的根尖,通过________、________、染色和制片等过程制成装片,然后在显微镜下观察比较染色体的形态和数目。 (5)采用特异性引物对花椰菜和黑芥基因组DNA进行PCR扩增,得到两亲本的差异性条带,可用于杂种植株的鉴定。下图是用该引物对双亲及再生植株1-4进行PCR扩增的结果。据图判断,再生植株1-4中一定是杂种植株的有________。 (6)对杂种植株进行________接种实验,可筛选出具有高抗性的杂种植株。 答案 (1)纤维素酶和果胶酶 (2)叶绿体 (3)保持原生质体完整性细胞壁 (4)双亲(或花椰菜和黑芥) 解离漂洗 (5)1、2、4 (6)黑腐病菌 解析熟记植物体细胞杂交过程,准确解读信息是解题关键。 (1)获取植物细胞的原生质体可用纤维素酶和果胶酶处理植物细胞。 (2)根据题干信息可知,供体使用的是叶肉细胞的原生质体,所以可将融合的细胞是否含叶绿体作为初步筛选杂种细胞的标志。 (3)原生质体因没有了细胞壁,在低渗溶液中容易吸水涨破,加入甘露醇可保持一定的渗透压,

酵母基因工程综述

酵母基因工程综述 姓名:张衡学号:060509215 班级:生工092 酵母菌是一类群体庞大的单细胞真核微生物,种类繁多,至少包括80个属,600多种,1000多菌株。它有完整的亚细胞结构和严谨的基因表达调控机制,它既能通过有丝分裂进行无性繁殖,也可以通过减数分裂实现有性繁殖。酵母菌作为单细胞真核生物,既具有细菌生长迅速、操作简单的特点,又具有真核细胞对翻译后蛋白的加工及修饰的能力,它是表达外源基因的理想宿主。因此利用酵母基因工程成功的生产了人类、动物、植物或微生物来源的异源蛋白,在医药生物技术上发挥了重要作用。 一、酵母基因工程的发展现状和发展趋势 酵母既具有原核生物生长快、遗传操作简单的特点,又有哺乳类细胞的翻译后加工和修饰功能,如二硫键的正确形成、糖基化作用等,用来生产来源于真核生物的生物活性蛋白有很多优点。目前在酵母基因工程中发展和应用的较多的酵母有酿酒酵母、乳酸克鲁维酵母、巴斯德毕赤酵母等,其应用主要体现在两个方面,一是改造酵母本身用以提高发酵性能;二是利用酵母作为宿主表达异源蛋白。1、酿酒酵母自身的改造:a、将葡萄糖淀粉酶基因导入酿酒酵母;b、将外源的蛋白水解酶基因导入酿酒酵母;c、将β—葡聚糖酶基因导入酵母; d、将ATP硫酸化酶和腺苷酰硫酸激酶基因在酿酒酵母体内表达; e、将人血清清蛋白(HAS)的基因转化到酿酒酵母。2、酵母表达异源蛋白:a、表达水平;b、表达质量。 对于酵母基因工程,在构建各种表达载体、建立新的表达系统方面取得了一系列进展。在未来一段时间内,酵母基因工程的研究将逐步转移到完善现有的表达系统、解决存在的缺陷、扩大应用领域等方面。对酵母自身的改造集中体现在如何通过转基因技术使酿酒酵母能利用纤维素和半纤维素等可再生物质来生产廉价的酒精,缓解能源紧张。1、解决酵母基因工程中还存在的缺陷;2、在人类基因组计划中的应用研究是一个重要的发展方向;3、利用酵母基因工程筛选更多的新药;4、改造酿酒酵母自身,降低生产酒精的成本;5、酵母的生理承受极限研究将引起人们的关注。 二、酵母表达系统 酵母菌作为单细胞真核生物,既具有细菌生长迅速、操作简单的特点,又具有真核细胞对翻译后蛋白的加工及修饰的能力,所以是表达外源基因的理想宿主。1、酵母表达载体:a、载体的基本构架典型的酵母表达载体均为大肠杆菌和酵母菌的"穿梭"质粒。它是由来自酵母的部分基因序列和细菌的部分基因序列所组成。其原核部分主要包括可以再大肠杆菌中复制的起点序列(ori)和特定的抗生素抗性基因序列。2、载体的复制形式酵母表达系统的载体主要分为附加型载体和整合型载体两种。附加型载体在酵母宿主中的拷贝数量大,但是在传代过程中易丢失,影响重组菌的稳定性和表达量:整合型载体导入酵母宿主细胞后与酵母细胞染色体基因组DNA整合,稳定性高,但是基因的拷贝数量低。2、宿主能够发展成基因表达系统的宿主应该具备一定的条件:a、安全无毒,不致病;b、遗传背景清楚,容易进行遗传操作;c、构建的载体DNA容易进入,转化频率较高;d、发酵周期短,培养条件简单,容易进行高密度发酵;e、蛋白质分泌能力好。3、酵母的DNA转化:a、原生质体法;b、离子溶液法;c、一步法;d、PEG1000法;e、电穿孔法和粒子轰击法。4酵母分泌外源蛋白的糖基化不同酵母细胞对分泌蛋白的糖基化方式和程度不同,加到分泌蛋白上的碳水化合物

现代生物学进展期末作业--综述

水平基因转移的研究进展与展望作者:袁子昕 学号:3135403006 班级:2013级生物科学 (生物学基地班)

水平基因转移的研究进展与展望 袁子昕 生命科学学院2013级生物科学(生物学基地班) 摘要:几年来,随着真核生物基因组数据的相继公布, 在真核基因组中发现了更多的HGT, 但不如原核生物频繁。在真菌界、动物界以及两界之间也发现大量的HGT现象[1]。在测序的不断进行中,HGT得到了证实,也为研究生物进化和物种演化,以及种间关系的影响提供的新的研究方向与证据。 关键词:水平基因转移生物进化原核生物真核生物 1 引言 水平基因转移(horizontal gene transfer,HGT),又称侧向基因转移(lateral gene transfer,LGT),是指在差异生物个体之间,或单个细胞内部细胞器之间所进行的遗传物质的交流。差异生物个体可以是同种但含有不同的遗传信息的生物个体,也可以是远缘的,甚至没有亲缘关系的生物个体。单个细胞内部细胞器主要指的是叶绿体、线粒体及细胞核。水平基因转移是相对于垂直基因转移(亲代传递给子代)而提出的,它打破了亲缘关系的界限,使基因流动的可能变得更为复杂[2]。HGT是一种普遍的现象,在细菌、真菌、病毒、原生生物和真核生物基因组中都有发生。 2 水平基因转移的模式 2.1 由质粒或病毒等介导的水平基因转移 质粒和病毒是在各生物间进行遗传物质传递的重要媒介[3]。目前对于真核生物基因测序以及植物的细胞感染实验已经可以证明质粒或病毒介导的水平基因转移,例如根癌土壤杆菌中的T-DNA可转移到植物细胞核内。T-DNA还可以携带一定的外源基因,在植物基因工程中被广泛地用做基因转移载体[4]。 2.2 基因的“直接”水平转移 细菌的感受态细胞可以吸收外源DNA并且一定程度上的融合,目前已经发现大肠杆菌存在自然感受态的情况,而且枯草芽孢杆菌建立自然感受态的能力也早已得到人们的肯定[5],其基因组上有10多个基因与感受态的建立有关。随着环境中具有转化活性的DNA分子及感受态细胞的发现[6] 。 2.3 同一个体体内的基因转移 在植物中, 每个细胞中有3种不同的基因组:即细胞核基因组(nucDNA)、叶绿体基因组(ptD-NA)和线粒体基因组(mtDNA), 这些不同的DNA序列揭示了大量的细胞间基因转移现象。植物叶绿体序列转移到nucDNA的现象十分常见,据推测,细胞核与叶绿体基因组间的HGT早在真核生物叶绿体演化的内共生事件中就已经发生。此外, 叶绿体基因也能转移到mtDNA中, 它们有的仍具有功能,有的则变成了假基因。 3 水平基因转移发生的倾向性 3.1 单细胞生物比多细胞真核生物更为频繁 单细胞生物发生(这里指能够遗传至后代的转移事件)的频率可能比多细胞真核生物更为频繁。这可能是因为单细胞生物能将获得的基因立即遗传下去而无须受限于隔离的生殖细胞系(同理, 水平基因转移在进行无性生殖的多细胞真核生物中更有可能成功) 3.2有密切接触的物种之间更有机会发生. 在存在寄生或是共生等关系的生物个体之间可以明显地通过基因测序而观测到水平基因的转移。在寄生关系中, 基因大部分是从寄主向寄生植物转移, 这与营养物质的传输方向一致。 4 研究展望 水平基因转移的倾向性说明H GT的发生有一定的条件基础,这为搜寻这一现象提供了方向,但需要注意的是,这些倾向性仅是从目前已有的研究总结出来的,真实的情况

相关主题
文本预览
相关文档 最新文档