当前位置:文档之家› 高一数学函数的值域与最值问题

高一数学函数的值域与最值问题

高一数学函数的值域与最值问题
高一数学函数的值域与最值问题

函数的值域与最值

一、 知识梳理

1.函数的最大值的定义

2.函数的最小值的定义

3.几个常见函数的值域

(1)一次函数的值域

(2)二次函数的最值

(3)反比例函数的值域

(4)指对数函数的值域

(5)双钩函数在最值中的应用

4.求函数的值域与最值的常用方法

二、 例题讲解

例1. 求下列函数的最值,并求出相应的x 值

(1)2532-+-=x x y (2)2231)(x x x f -+=

(3)(]a x x x y ,0,842∈++-= (4)[]4,2,12∈++=x ax x y

(5)已知函数34)(2-+=x ax x f 在区间[]2,0上有最大值2,求实数a 的值

例2、求下列函数的最值

(1)x x y 4712--+= (2)24x x y -+=

(3))2

3)()(cos (sin >++=a a x a x y

(4)若x y x 4422=+,求①22y x u +=的最值 ②求y x +的最值

例3、求下列函数的值域

(1)2

23+-=x x y (2)1122+++-=x x x x y

(3)1

22+=x x y (4)x x x y 12++=

例4、(1)求13)(+--=x x x f 的最值

(2)求1)2(4)(22+-++=x x x f 的最小值

(3)已知)0(322≥=+y y x ,求31++=

x y m 的最值及y x b +=2的最值

(4)22060125,y x y x R y x +=-+∈,求且的最小值

(5)求函数x

x y cos 21cos +-=

的值域

例5、已知)(x f 的图象可由函数常数)为非()(0242m x x m x g +=的图象向右平移两个单位得到

(1) 写出函数)(x f 的解析式

(2) 当M x ∈时函数)(x f 的最大值为2

2m +,最小值为922

m -,试一个满足条件的集合M ,并说明理由

例6、

某单位用木料制作如图所示的框架,框架的下部是边长分别为x ,y (单

位为m )的矩形,上部是等腰直角三角形,要求框架围成的总面积为8m 2,

问x ,y 分别为多少(精确到0.001)时,用料最省。

例7、函数)(x f 是定义在R 上的奇函数,且在区间[)+∞,0上是增函数,是否存在

实数m ,使)24()24(2x f mx m f ->-对所有[]1,0∈x 都成立?若存在,求出所有

适合条件的实数m ,若不存在,请说明理由。

y

小结:

巩固练习一:

1、 已知410≤

-1的最小值 2、 求函数x x y 212-+=的最大值

3、 )10(22≤≤--=x ax x y 最大值为2a ,求实数a 的取值范围

4、 求1

323222++--=x x x x y 的值域 5、 若)(x f ,)(x g 都是奇函数,且2)()()(++=x g x f x F 在()+∞,0上有最大值8,

则在()0,∞-上有最 (填大、小 )值

6、当21≤≤x 时,)0(>+a x

a x 的最小值为a 2,则实数a 的取值范围 7、函数[]8,3,2

1062∈-+-=x x x x y ,则=max )(x f 8、已知b a b a R b a +=+∈,则且10,,22的范围是

9、已知

[])(3112)(13

12x f x x ax x f a ,,,,∈+-=≤≤最大值为)(a M ,最小值为,

)(a N )()()(a N a M a g -=。(1)求)(a g (2)求)(a g 的值域

巩固练习二:

1、求函数x

x y cos 2sin 2--=的值域 2、3>x ,求3

22

-=x x y 的最小值 3、3)2(,,22=+-∈y x R y x 则x

y 的最大值为 4、已11、设y x ,是关于m 的方程0622=++-a am m 的两个实根,则22)1()1(-+-y x 的最小值为

5、求下列函数(1)42022++=

x x y (2)4522++=x x y (3))0(122>++=a x a x y 的最小值

6、设函数的值,求实数的最小值为a x x a

x x f 22)0(1)(≥++=

7、已知函数x

a x x x f ++=2)(2[)+∞∈,1x 。 (1)当2

1=

a 时求)(x f 的最小值 (2)若对任意[)0)(,,1>+∞∈x f x 的恒成立求a 的取值范围 8、对于每个实数x 设)(x f 为x+2,4x+1,4-2x 三个函数中的最小值,求)(x f 的最大值

9、函数(]1,0,2)(∈-=x x

a x x f ,其中R a ∈ (1) 求当a 分别取1,2

1,3--时函数的最值 (2) 求函数)(x f 的最值,并求出使函数取到最值时的x 值

高中数学必修一函数难题

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

高中数学函数最值问题的常见求解方法

一、配方法 例1:当01≤≤-x 时,求函数x x y 4322 ?-=+的最大值和最小值. 解析:34)3 22(32 + --=x y ,当01≤≤-x 时,122 1≤≤x .显然由二次函数的性质可得1min =y ,3 4max = y . 二、判别式法 对于所求的最值问题,如果能将已知函数式经适当的代数变形转化为一元二次方程有无实根的问题,则常可利用判别式求得函数的最值. 例2:已知012442 2 =-++-x x xy y ,求y 的最值. 解析:由已知,变形得0)1()12(242 2 =-+--y x y x ,R x ∈,则0≥?,即有 0)1(16)12(422≥---y y 故 4 5 ≤ y . 因此 4 5 max = y ,无最小值. 例3:若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则m ax x = min y = 解析:由已知,变形得:0)()12(2 2 =++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(22≥+--x x x ,于是018≥+-x ,即 81≤ x .即 8 1max =x . 同理,0)()12(2 2 =-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(22≥--+y y y ,于是018≥+y ,即 81-≥y .即 8 1 min -=y . 注意:关于x 、y 的有交叉项的二元二次方程,通常用此法 例4:已知函数1 1 34522+++=x x x y ,求y 的最值. 解析:函数式变形为:0)1(34)5(2 =-+--y y x y ,R x ∈,由已知得05≠-y , 0)1)(5(4)34(2≥----=?∴y y ,即:0762≤--y y ,即:71≤≤-y . 因此 7max =y ,1min -=y .

高一函数经典难题讲解

高一经典难题讲解 1.已知函数f(x)=(x+1-a)/(a-x),x∈R且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值 解:由题知,已知函数f(x)=(x+1-a)/(a-x), 所以,f(x)= -1+1/(a-x), 当f(x)的定义域为[a-1,a-1/2]时 x∈[a-1,a-1/2] (a-x)∈[1/2,1] 1/(a-x)∈[1,2] f(x)=-1+1/(a-x)∈[0,1] 2.设a为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间 (2)讨论函数y=f(x)的零点个数 解析:(1)∵函数f(x)=x|x-2|-2 当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1 当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0时x=0,零点个数为1; a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2; 04时,②无实根,零点个数为1。 a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a土√(a^2+4a)]/2; x4时零点个数为1; a=土4时,零点个数为2; -4

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高中数学函数最值问题的常见求解方法

高中数学函数最值问题的常见求解方法 一、配方法 例1.当01≤≤-x 时,求函数x x y 4322?-=+的最大值和最小值. 解析:3 4)322(32 + - -=x y ,当01≤≤-x 时, 12 2 1≤≤x .可得1min =y ,3 4max = y . 二、判别式法:若能将问题转化为一元二次方程有无实根的问题,则常利用判别式求得函数的最值. 例2.若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则max x = , min y = . 解析:由已知,变形得:0)()12(22=++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(2 2≥+--x x x ,于是018≥+-x ,即 8 1≤ x .即 8 1max = x . 同理,0)()12(22=-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(2 2 ≥--+y y y ,于是018≥+y ,即 8 1- ≥y .即 8 1min - =y . 例3.在2 0π ≤ ≤x 条件下,求2 ) sin 1()sin 1(sin x x x y +-= 的最大值. 解:设x t sin =,因0(∈x ,)2 π,故 10≤≤t ,则2 ) 1()1(t t t y +-= ,即 0)12()1(2 =+-++y t y t y 因为 10≤≤t ,故01≠+y ,于是0)1(4)12(2 ≥+--=?y y y 即 8 1≤ y 。 将8 1= y 代入方程得 0[3 1∈= t ,]1,所以8 1max = y . 注意:因0≥?仅为方程0)12()1(2 =+-++y t y t y 有实根0[∈t ,]1的必要条件,因此,必须 将8 1= y 代入方程中检验,看等号是否可取. 练习:已知函数)(1 2 R x x b ax y ∈++=的值域为]4,1[-,求常数b a ,.(答案: 3=b ,4±=a ) 三、换元法 (一)局部换元法 例4.求函数x x y 21-+=的最值. 解析:设x t 21-= (0≥t ),则由原式得11)1(2 12 ≤+-- =t y 当且仅当1=t 即0=x 时取 等号.故1max =y ,无最小值. 例5.已知20≤ ≤a ,求函数))(cos (sin a x a x y ++=的最值. 解析:2)cos (sin cos sin a x x a x x y +++= 令t x x =+cos sin 则 22≤ ≤- t 且2 1cos sin 2 -= t x x ,于是]1)[(2 12 2-++= a a t y 当2= t 时,21 22 max + + =a a y ;当a t -=时,)1(2 1 2 min -= a y . 注意:若函数含有x x cos sin 和x x cos sin +,可考虑用换元法解. (二)三角代换法(有时也称参数方程法) 例6.已知x 、y R ∈,4122≤+≤y x .求22y xy x u ++=的最值. 解析:设θcos t x =,θsin t y =,(t 为参数),因 4122≤+≤y x ,故 412≤≤t )2sin 2 11()sin sin cos (cos 2 2 2 2 θθθθθ+ =++=∴t t u 故当42=t 且12sin =θ时,6max =u ;当12=t 且12sin -=θ时,2 1max =u . 练习1:实数x 、y 适合:545422=+-y xy x ,设22y x S +=,则 max 1S +min 1S =____。 练习2:已知x 、y R ∈且x y x 6232 2=+,求y x +的最值. 解析:化x y x 6232 2=+为123)1(2 2 =+-y x ,得参数方程为?? ? ??=+=θθsin 26 cos 1y x )sin(2 101sin 26cos 1?θθθ++ =+ +=+∴y x , 故 2 101)(max +=+y x ,2 101)(min - =+y x . (三)均值换元法 例7.已知1=+b a ,求证:4 4b a +的最小值为 8 1. 解析:由于本题中a 、b 的取值范围为一切实数,故不能用三角换元,但根据其和为1,我们可

高一数学函数经典难题讲解

- 1 - 高一函数经典难题讲解 1.已知函数f(x)=(x+1-a)/(a-x),x∈R 且x≠a,当f(x)的定义域为 [a-1,a-1/2]时,求f(x)值 解:由题知,已知函数f(x)=(x+1-a)/(a-x), 所以,f(x)= -1+1/(a-x), 当f(x)的定义域为[a-1,a-1/2]时 x∈[a -1,a-1/2] (a-x)∈[1/2,1] 1/(a-x)∈[1,2] f(x)=-1+1/(a-x)∈[0,1] 2.设a 为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间 (2)讨论函数y=f(x)的零点个数 解析:(1)∵函数f(x)=x|x-2|-2 当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1 当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0时x=0,零点个数为1; a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2; 04时,②无实根,零点个数为1。 a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a 土√(a^2+4a)]/2; x4时零点个数为1; a=土4时,零点个数为2; -4

高一数学二次函数在闭区间上的最值练习题

第1课 二次函数在闭区间上的最值 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。 一般分为:对称轴在区间的左边,中间,右边三种情况. 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 分析:将)(x f 配方,得顶点为???? ? ?--a b ac a b 4422,、对称轴为a b x 2-= 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: (1)当[]n m a b ,∈-2时,)(x f 的最小值是 a b ac a b f 4422 -= ?? ? ??-, )(x f 的最大值是)()(n f m f 、中的较大者。 (2)当),(2m a b -∞∈- 时,)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f (3)当),(2+∞∈-n a b 时,)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

高一数学函数经典题目及答案

1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

高一数学求函数的定义域与值域的常用方法教案

一. 教学内容: 求函数的定义域与值域的常用方法 求函数的解析式,求函数的定义域,求函数的值域,求函数的最值 二. 学习目标 1、进一步理解函数的定义域与值域的概念; 2、会应用代换、方程思想求简单的函数解析式; 3、会求基本初等函数、简单的复合函数及含参变量函数的定义域、值域和最值; 4、会将求函数值域问题化归为求函数的最值问题,重视函数单调性在确定函数最值中的作用; 5、会求实际问题中的函数解析式、定义域、值域和最值问题; 6、会用集合、区间或不等式表示函数的定义域和值域。 三. 知识要点 (一)求函数的解析式 1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有: (1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g (x),以换元法解之; (4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式; (5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。 (二)求函数定义域 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;

高一数学函数的最值

第八课时 函数的最值 【学习导航】 知识网络 学习要求 1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域. 自学评价 1.函数最值的定义: 一般地,设函数()y f x =的定义域为A . 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =; 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =; 2.单调性与最值: 设函数()y f x =的定义域为[],a b , 若()y f x =是增函数,则max y = ()f a ,min y = ()f b ; 若()y f x =是减函数,则max y = ()f b ,min y = ()f a . 【精典范例】 一.根据函数图像写单调区间和最值: 例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.

【解】 由图可以知道: 当 1.5x =-时,该函数取得最小值2-; 当3x =时,函数取得最大值为3; 函数的单调递增区间有2个:( 1.5,3)-和(5,6); 该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7) 二.求函数最值: 例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x = ,[]1,3x ∈. 【解】 (1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; []1,3x ∈上是单调减函数,所以当3x =时函数1()f x x =取得1. 函数()4(0)f x x mx m =-+>在(,0]-∞上的最小值(A ) ()A 4 ()B 4- ()C 与m 的取值有关 ()D 不存在 2. 函数()f x =的最小值是 0 ,最大值是 32 . 3. 求下列函数的最值:

(完整)高一函数经典难题讲解.docx

1.已知函数 f(x)=(x+1-a)/(a-x),x ∈ R 且 x≠a,当 f(x) 的定义域为 [a-1,a-1/2] 时,求 f(x) 值解:由题知,已知函数 f(x)=(x+1-a)/(a-x), 所以, f(x)= -1+1/(a-x), 当f(x) 的定义域为 [a-1,a-1/2] 时 x∈ [a-1,a-1/2] (a-x) ∈ [1/2,1] 1/(a-x) ∈ [1,2] f(x)=-1+1/(a-x) ∈ [0,1] 2.设 a 为非负数 ,函数 f(x)=x|x-a|-a. (1) 当 a=2 时,求函数的单调区间 (2)讨论函数 y=f(x) 的零点个数 解析: (1)∵函数 f(x)=x|x-2|-2 当 x<2 时, f(x)=-x^2+2x-2 ,为开口向下抛物线,对称轴为x=1 当 x>=2 时, f(x)=x^2-2x-2 ,为开口向上抛物线,对称轴为x=1 ∴当 x∈ (-∞,1)时, f(x) 单调增;当x∈ [1,2] 时, f(x) 单调减;当x∈ (2,+ ∞)时, f(x) 单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0 时 x=0,零点个数为1; a>0 时 x>0,由①, x>=a,x^2-ax- a=0,x1=[a+ √ (a^2+4a)]/2; 04 时,②无实根,零点个数为1。 a<0 时, x<0,由①, x>=a>-4,x^2-ax-a=0 ③ ,x1,2=[a 土√ (a^2+4a)]/2; x4 时零点个数为1; a=土 4 时,零点个数为2; -41, 6/(x-3)>6 所以t(x)=1+[6/(x-3)]>7 那么 ,原函数在( 3,4)上值域是( log3 (7) ,正无穷) 3、先求函数定义域 (x+3)/(x-3)>0 且 x≠ 3解得x>3 或 x<-3 (1)当 x>3 时, 因为 t(x)=(x+3)/(x-3)=1+[6/(x-3)]单调递减,所以函数f(x)=log3 t(x)单调递减。 (2)当 x<-3 时,因为t(x)=(x+3)/(x-3)=1+[6/(x-3)]单调递减,所以函数f(x)=log3 t(x) 4.已知函数 f ( x ) =log4 ( 4^x+1 ) +kx 是偶函数 . (1) 求 k 的值 (2) 设 f ( x ) =log4(a2^x-4/3a)有且只有一个实数根,求实数的取值范围. 解:( 1)f(x)=log4 ( 4^x+1)+kx ( K ∈ R)是偶函数, ∴f(-x)=f(x), 即log<4>[4^(-x)+1]+k(-x)=log<4>(4^x+1)+kx, ∴l og<4>{[4^(-x)+1]/(4^x+1)}=2kx, -x=2kx, k=-1/2.

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题 一、选择题(4分×9=36分) 1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( ) A .f (x )→y =12x B .f (x )→y =13x C .f (x )→y =23 x D .f (x )→y =x 2.函数y =1-x 2+x 2-1的定义域是( ) A .[-1,1] B .(-∞,-1]∪[1,+∞) C .[0,1] D .{-1,1} 3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( ) A .[-1,3] B .[0,3] C .[-3,3] D .[-4,4] 4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( ) A .[1,3] B .[2,4] C .[2,8] D .[3,9] 5.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上 6.函数f (x )=1ax 2+4ax +3 的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R } B .{a |0≤a ≤34} C .{a |a >34} D .{a |0≤a <34} 7.某汽车运输公司购买了一批豪华大客车投入运营.据市 场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数 关系(如图),则客车有营运利润的时间不超过( )年. A .4 B .5 C .6 D .7 8.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ????12等于( ) A .15 B .1 C .3 D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( ) A .[0,+∞) B .[1,+∞) C .{1,3,5} D .R 二、填空题

初中数学二次函数的最值问题专题复习

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值2 44ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值.

高一数学函数经典题目及答案

精选 1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

精选 2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?I ,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

高一数学必修一函数的最值问题试题(1)

函数的最值问题(高一) 一.填空题: 1. ()35,[3,6]f x x x =+∈的最大值是 。1 ()f x x =,[]1,3x ∈的最小值是 。 2. 函数y =的最小值是 ,最大值是 3.函数21 2810y x x =-+的最大值是 ,此时x = 4.函数[]23 ,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3 ,2,1y x x x =-∈--的最小值是 ,最大值是 6.函数y=2-x -21 +x 的最小值是 。y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 . 8.函数()2 1f x x =-在[2,6]上的最大值是 最小值是 。 9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值 11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。 12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值 13.函数f (x )=)1(11x x --的最大值是 22225 1x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是 15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是 16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是 17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为: 18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是 19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。 二、解答题 20.已知二次函数 在 上有最大值4,求实数 a 的值。 21.已知二次函数 在 上有最大值2,求a 的值。 []2,3-∈x 12)(2++=ax x a x f []1,0∈x a ax x x f -++-=12)(2

(完整word版)高一数学必修一函数的最值问题试题(1).doc

函数的最值问题(高一 ) 一.填空题: 1. f ( x) 3x 5, x [3,6] 的最大值是 。 f ( x) 1 1,3 的最小值是 。 , x x 2.函数 y 12 4x x 2 的最小值是 ,最大值是 3.函数 y 1 的最大值是 ,此时 x 2 x 2 8x 10 4.函数 y 2x 3 3, 2 的最小值是 ,最大值是 x , x 1 5.函数 y 3 2, 1 的最小值是 ,最大值是 x , x x 1 6.函数 y= x 2 - 的最小值是 。 y x 1 2x 的最大值是 x 2 7.函数 y=|x+1| –|2-x| 的最大值是 最小值是 . 8.函数 f x 2 在 [2,6] 上的最大值是 最小值是 。 x 1 9.函数 y= 3 x ( x ≥ 0)的值域是 ______________. 1 2x 10.二次函数 y=-x 2+4x 的最大值 11. 函数 y=2x 2-3x+5 在[-2 ,2] 上的最大值和最小值 。 12.函数 y= -x 2 -4x+1 在 [-1 , 3] 上的最大值和最小值 13.函数 f ( x ) = 1 的最大值是 y 2x 2 2x 5 的最大值是 1 x(1 x) x 2 x 1 14. 已知 f ( x ) =x 2- 6x+8, x ∈[ 1,a ]并且 f ( x )的最小值为 f ( a ),则 a 的取值范围是 15.函数 y= –x 2–2ax(0 x 1)的最大值是 a 2,那么实数 a 的取值范围是 16.已知 f ( x )=x 2-2x+3 ,在闭区间[ 0, m ]上有最大值 3,最小值 2,则 m 的取值范围是 17. 若 f(x)= x 2 +ax+3 在区间 [1,4] 有最大值 10,则 a 的值为: 18.若函数 y=x 2 3x 4 的定义域为 [0,m], 值域为 [ 25/4, 4],则 m 的取值范围是 19. 已知 f ( x ) =-x 2+2x+3 , x ∈[ 0, 4] ,若 f ( x ) m 恒成立, m 范围是 。 二、解答题 20.已知二次函数 f ( x) a x 2 2ax 1 在 x 3,2 上有最大值 4,求实数 a 的值。 21.已知二次函数 f ( x) x 2 2ax 1 a 在 x 0,1 上有最大值 2,求 a 的值。

高一函数经典难题讲解.

1.已知函数f(x)=(x+1-a)/(a-x),x∈R且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值 解:由题知,已知函数f(x)=(x+1-a)/(a-x), 所以,f(x)= -1+1/(a-x), 当f(x)的定义域为[a-1,a-1/2]时 x∈[a-1,a-1/2] (a-x)∈[1/2,1] 1/(a-x)∈[1,2] f(x)=-1+1/(a-x)∈[0,1] 2.设a为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间(2)讨论函数y=f(x)的零点个数 解析:(1)∵函数f(x)=x|x-2|-2 当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1 当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0时x=0,零点个数为1; a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2; 04时,②无实根,零点个数为1。 a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a土√(a^2+4a)]/2; x4时零点个数为1; a=土4时,零点个数为2; -4

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种) 在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。 一、观察法: 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例:求函数()x 323y -+=的值域。 点拨:根据算术平方根的性质,先求出 ()x 3-2的值域。 解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。 点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。 练习:求函数()5x 0x y ≤≤=的值域。(答案:{}5,4,3,2,1,0) 二、反函数法: 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例:求函数2 x 1x y ++=的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数2 x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数x -x -x x 10101010y ++=的值域。(答案:{}1y 1-y |y 或)。 三、配方法: 当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。 例:求函数() 2x x -y 2++=的值域。 点拨:将被开方数配方成平方数,利用二次函数的值求。 解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。此时2x x -2++=

相关主题
文本预览
相关文档 最新文档