当前位置:文档之家› 分块矩阵行列式计算的若干方法(本科毕业原创论文)

分块矩阵行列式计算的若干方法(本科毕业原创论文)

分块矩阵行列式计算的若干方法(本科毕业原创论文)
分块矩阵行列式计算的若干方法(本科毕业原创论文)

分块矩阵行列式计算的若干方法

摘要:矩阵是线性代数中研究的重要对象,也是数字计算中的一个重要工

具,矩阵运算具有整体性和简洁性的特点。我们应该充分注意矩阵运算的一些特殊规律。为了研究问题的需要,适当的对矩阵进行分块,把一个大矩阵看成是由一些小矩阵块为元素组成的,这样可使矩阵的结构看的更清楚,表达和运算更简便的特点。矩阵分块的思想在线性代数证明以及应用中是十分有用的。运用矩阵分块的思想,可使解题更简洁,思路更开阔。本文就将分块矩阵的思想运用到行列式的计算当中来,利用分块矩阵来计算行列式,并且得出一些简便的方法。借助准三角形分块矩阵的行列式值的结果简化高阶行列式的计算。例如,本文讨论了利用分块矩阵计算行列式的︱H ︱=

B

C D

A 方法,即(1)当矩阵A 或

B 可逆时;

(2)当矩阵A=B,C=D 时;(3)当A 与C 或者B 与C 可交换时;(4)当矩阵H 被分成

两个特殊矩阵的和时等一些方法去探究分块矩阵行列式计算求值的若干方法。

关键词:分块矩阵;准三角形分块矩阵;可逆矩阵;行列式;计算;单位

矩阵

Several Measures Of Block Matrix In Computing

Determinant

Zhouxu

(Hunan Normal University Mathematics and Applied Mathematics Grade 2004)

Abstract :Matrix is the important object which in the linear algebra studies, is

also a important tool in the digital computation . The matrix operation with integrity and simplicity of the characteristics. We should pay attention to some special rules of the matrix operation fully.In order to study the issue of the need, we carries on the piecemeal suitably to the matrix,regard a big matrix as some small ones,which integrate it, This will enable the matrix structure more clearly,with the characteristics of expression and computing easier.The thought of dividing matrix into blocks is very important in proving and applying the linear https://www.doczj.com/doc/eb482839.html,e the thought of dividing matrix to blocks can help us to solve problems more pithily and think methods more widely.This thesis uses the blocking matrix method into the calculation of determinant,tries to solve the linear equations . Severa1 more general results are proved through the way aided by the result of the determinants for quasi-triangle piece matrices ,which does not change the nature of the determinnts ,For example, this article discussed the methods of computing ︱H ︱=

B

C D

A with using block matrix. That is:(1)A and

B are invertible matrixes;(2)A=B and C=D;(3)AC=CA or BC=CB;(4)matrix H is divided into two particular matrix , And some other ways to explore block matrix determinant for Calculating its value

Key words :block matrix; quasi —triangle piece matrices ;inverse matrices ;

determinants ; computation ;unit matrix

1.引言

1.1矩阵分块的意义

在理论研究及一些实际问题中,经常遇到阶数很高或结构特殊的矩阵。对于这些矩阵,在运算时常常采用分块法,使大矩阵的运算化成小矩阵的运算。我们将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,以子块为元素的形式上的矩阵称为分块矩阵。

矩阵的分块是处理矩阵问题的一种重要方法,把一个高阶矩阵分成若干个低阶矩阵,在运算中把低阶矩阵当做数一样处理,这样高阶矩阵就化为低阶矩阵,常能使我们迅速接近问题的本质,从而达到解决问题的目的。分快矩阵在求行列式的值中起着重要的作用。对矩阵进行分块是处理高阶矩阵或具有特殊结构的矩阵时常用的方法。同样,对高阶行列式或具有特殊结构的矩阵进行分块也往往是计算行列式和证明行列式等式的有效手段。分块矩阵可以使矩阵的表示简单明了,使矩阵的运算得以简化。而且还可以利用分块矩阵解决某些行列式的计算问题。而事实上,利用分块矩阵方法计算行列式,时常会使行列式的计算变得简单,并能收到意想不到的效果。在查阅了大量资料后,通过参考了文献[2],[3],[4],[5]的定理后,我感觉所给出的定理还不能很广泛的应用到更多的问题当中去,于是我便提出想法,看能不能在这些定理的基础之上,将其推广或者将其进行变型在遇到类似的问题时能更快更简洁的给出解答。另外我还给出了一些其

他的定理,能更好的利用矩阵分块计算行列式的值。本文由此在几个参考文献的基础之上将其几个定理进行推广或变型,将几中方法进行归纳,并本文推出一些适用于其他特殊行列式的定理,给出利用分块矩阵计算行列式的若干方法。

本文介绍了将矩阵进行分块的意义,将文章主要分成了三个部分,第二部分给出了与分块矩阵相关的一些东西及引理,第二部分在引理的基础上并利用本文所引用的几篇文献给出的几个定理,再从这几个定理基础上,我对它进行推导得出了几个结论,并且还给出怎么样将这些定理应用在实际问题中的方法,这也是本文的重点,主要就是要将矩阵分块这种方法运用到计算行列式当中来。在第二部分中本文研究的矩阵分块中的子块的要求是方阵,而在第三部分本文便将这个要求放的更宽,将矩阵分块后所得的子块放大为m×n矩阵,为了体现本文的定理能灵活运用的特点,本文还给出了几道例题分别运用了本文所给的不同定理来解题的方法。

1.2矩阵的引理及符号、性质

1.2.1矩阵的一些符号

A表示矩阵,︱A︱表示矩阵A的行列式,A-1表示矩阵A的逆,A T表示矩阵A的转臵,A n表示n阶方阵。

1.2.2关于矩阵的引理

引理1 设A 是准三角形分块矩阵,即

A=?

?

????

??????SS S S A A A A A A

2

1

2221

11000或A=?

?

???????

???SS S S A A A A A A

00

222

11211其中A ii (i=1,2,…,s)是n i 阶方阵,则︱A ︱=︱A 11︱〃︱A 22︱…︱A ss ︱。

引理2 设A,B 都是n 阶方阵,则︱AB ︱=︱A ︱〃︱B ︱=︱BA ︱。[1]

1.2.3 矩阵的分块和分块矩阵的定义 设A 是数域K 上的矩阵,B 是K 上

矩阵,将A 的行分割r 段,每段

分别包含

个行,又将A 的列分割为s 段,每段包含

个列。于是A 可用小块矩阵表示如下:

其中

矩阵。对B 做类似的分割,只是要求它的行的分割法和

A 的列的分割法一样。于是

B 可以表示为

其中

的矩阵。这种分割法称为矩阵的分块。

1.2.4分块矩阵的性质

性质1[2] 设矩阵A 是由如下分块矩阵组成 A=????

?

?????32

1

321

321

C C C B B B A A A 其中321321321,,,,,,,,C C C B B B A A A 都是s ×t 矩阵,又M 是任一s 阶方阵。对

于矩阵

D=?????

?????+++32

1

3213

21

C C C MC B MC

B MC

B A A A

则︱A ︱=︱D ︱

证明:由??????????S S S

E E E 0

00

00〃??????

????32

132

1

321

C C C B B B A A A =?????

?????+++32

1

321

3

21

C C C MC B MC

B M

C B A A A 其中S E 是s 阶单位矩阵,对上式两边同时取行列式得: ︱A ︱=︱

D ︱。

性质2[3] 设方阵A 是由如下分块矩阵组成 A=????

?

?????32

1

321

321

C C C B B B A A A 其中321321321,,,,,,,,C C C B B B A A A 都是s ×t 矩阵,又M 是任一s 阶方阵。对于矩阵

B=????

??????32

1

32

1

321

C C C MB MB MB A A A 则︱B ︱=︱M ︱〃︱A ︱ 证明:设S E 为s 阶单位矩阵,则

B=??????????S S

E M

E 0

0000〃??????????32

1321321

C C C B B B A A A =????

??????S S

E M

E 0

0000〃A 于是︱B ︱=S

S

E M E 0

00

0〃︱A ︱=︱S E ︱〃︱M ︱〃︱S E ︱〃︱A ︱ 性质3 设方阵A 和T A 写成如下形式

A=??????????32

1

32

1

321

C C C B B B A A A T

A =????

??????32

1

32

1

321

C C C A A A B B B

其中321321321,,,,,,,,C C C B B B A A A 都是s ×t 矩阵。 则︱T A ︱=?

??-为奇数时,当为偶数时

当s A s A ,

证明:A 可由T A 中的321B B B ,,与321A A A ,,相应的两行对换而得到,而对换行列式的两行,行列式反号,故当s 为偶数时,︱T A ︱=︱A ︱;当s 为奇数时,︱T A ︱=-︱A ︱。

2、将分块矩阵分成方阵元素计算行列式

2.1分块矩阵行列式计算的几种情况

2.1.1 分块矩阵的元素可逆

定理2.1 设A 、B 分别为m 与n 阶方阵,则(1)当A 可逆时,有

B

C D

A =︱A ︱〃︱B-CA -1D ︱; (2.1.1) (2)当

B 可逆时,有

B

C D

A =︱A-D

B -1

C ︱〃︱B ︱.[4] (2.1.2) 证:(1)根据分块矩阵的乘法,有

?????

?--E CA E 10 ??????B C D A =?????

?--D CA B D A 10由引理知,两边取行列式即得(2.1.1)。

(2)根据分块矩阵的乘法,有

?

?????--E DB E 01??????B C D A =??

?

???--B C C

DB A 01两边取行列式即得(2.1.2)。 注意:利用定理1解题时,要注意条件:矩阵A 或B 可逆。

推论2.1 设A,B,C,D 分别是m,n,n ×m 和m ×n 矩阵。证明 (1)

B

C

D E m =︱B-CD ︱; (2.1.3)

(2)n

E C D

A = ︱A-DC ︱; (2.1.4)

证明:只需要在定理2.1的(1.1)中令A=E m ,,即得(1.3);在(1.2)中令B=E n ,即得(1.4)。

推论2.2 C,D 分别是n ×m 和m ×n 矩阵。 证明

n

m E C

D E =︱E n -CD ︱=︱E m -DC ︱. (2.1.5)

证明:在推论2.1的(2.1.3)中,令B=E n ,在(2.1.4)中,令A=E m ,即得(2.1.5)。

例2.1 计算下面2n 阶行列式

︱H 2n ︱=b c

b c d a d

a

(a ≠0)

解:令

A=??????????a a ,B=??????????b b ,C=??????????c c ,D=??

??

??????

d d 为n 阶方阵。由于a ≠0,故A 为可逆方阵。

又易知 B-CA -1D=?????

?

?

????

?

??------d ca b d ca b d ca b 111

从而由定理1中(1.1)得︱H 2n ︱=B

C D

A =︱A ︱〃︱B-CA -1D ︱

=a n (b-ca -1d)n =(ab-cd)n 。

例2.2 计算行列式

(1)n

a a a a

1

0010

011

1

1

210

,(a i ≠0,i=1,2,…,n );

(2)

c

b b b b a a a a n

n

32

1

3

2

11

0001000

1

0001

解:(1)设Q=B

C D

A ,其中A=(a 0),B=?????

????

?

?

?n a a a

2

1, C=(1,1,…,1)T ,D=(1,1,…1).因为a i ≠0,i=1,2,…n,所以B 是可逆矩阵。又易知A-DB -1

C=(a 0-∑

=n

i i

a 1

1

)从而由定理2.1中的(2.1.2)得 B C D A =︱A-DB -1

C ︱〃︱B ︱=a 1a 2…a n (a 0-∑=n i i

a 11)。 (2)设Q=

B

C D

E n ,其中B=(c),C=(b 1,b 2,…,b n )D=(a 1,a 2,…,a n )T 由于CD=(b 1,b 2,…,b n )(a 1,a 2,…,a n )T

=i n

i i b a ∑=1

,从而由推论2.1知,

Q=B C

D

E n

=︱B-CD ︱=c-i n i i b a ∑=1

2.1.2 分块矩阵有元素相等的情况 定理2.2 设A ,B 是n 阶方阵,则

A

B B

A =︱A+

B ︱〃︱A-B ︱[5]。 证:A B B A =A B A B B A ++=

B

A B

B A -+0

=︱A+B ︱〃︱A-B ︱。 例2.3 计算行列式

D=0

000x

y

z

x z y y z x z y x 解 这道题看似简单,但如果方法选择不佳,做起来并不轻松。这里设A=????

??00x x ,B=??

?

??

?y z z y

,由定理2.2知 D=

A B B A =︱A+B ︱〃︱A-B ︱=y z

x z x y

++y

z

x z

x y

---- =[y 2-(x+z)2][y 2-(x-z)2]=(x+y+z)(-x+y-z)(x+y-z)(-x+y+z)。

例2.4 计算2n 阶行列式

︱D ︱=a

b

a b a b b a b a b

a

00000

0000

0000

0000

行列式跟矩阵的关系

行列式跟矩阵的关系 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 矩阵由数组成,或更一般的,由某元素组成。就是m×n 矩阵就是mn个数排成m个横行n个竖列的阵式。n×n矩阵的行列式是通过一个定义,得到跟这个矩阵对应的一个数,具体定义可以去看书。注意,矩阵是一个阵式,方阵的行列式是跟一个方阵对应一个数。行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。 也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

高中数学复习专题矩阵与行列式

专题八、矩阵与行列式 1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1,ΛΛ==排成m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn n m n n a a a a a a a a a A ΛM M ΛΛ212221211211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。 ?? ?=+=+222 1 11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行; ②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。 变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法 (1)矩阵的和(差):记作:A+B (A -B ). 运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C ) (2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数 α的乘积矩阵,记作:αA.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==; (3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n . 运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠。 5.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)???=+=+222 1 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数 且不全为零,21,c c 是常数项) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ??? --=--=1221122 112211221b a b a c a c a y b a b a b c b c x , 引入记号 2 1a a 2 1b b 表示算式1221b a b a -,即 2 1a a 2 1b b 1221b a b a -=. 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记= D 2 1a a 2 1b b ,= x D 2 1c c 2 1b b ,= y D 2 1a a 2 1c c ,则: ①当= D 2 1a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ? ==D D y D D x y x . ②当D =0时,0x y D D ==,方程组(*)无穷组解; ③当D =0时,0,0x y D or D ≠≠,方程组(*)无解。 系数行列式112 2 a b D a b =也为二元一次方程组解的判别式。

分块矩阵在行列式计算中的应用(1)

矩阵与行列式的关系 矩阵是一个有力的数学工具,有着广泛的应用,同时矩阵也是代数特别是线性代数的一个主要研究对象.矩阵的概念和性质都较易掌握,但是对于阶数较大的矩阵的运算则会是一个很繁琐的过程,甚至仅仅依靠矩阵的基本性质很难计算,为了更好的处理这个问题矩阵分块的思想应运而生[]1. 行列式在代数学中是一个非常重要、又应用广泛的概念.对行列式的研究重在计算,但由于行列式的计算灵活、技巧性强,尤其是计算高阶行列式往往较为困难.行列式的计算通常要根据行列式的具体特点采用相应的计算方法,有时甚至需要将几种方法交叉运用,而且一题多种解法的情况很多,好的方法能极大降低计算量,因此行列式计算方法往往灵活多变.在解决行列式的某些问题时,对于级数较高的行列式,常采用分块的方法,将行列式分成若干子块,往往可以使行列式的结构清晰,计算简化.本文在广泛阅读文献的基础上,从温习分块矩阵的定义和性质出发,给出了分块矩阵的一些重要结论并予以证明,在此基础上讨论利用分块矩阵计算行列式的方法,并与其他方法相互比较,以此说明分块矩阵在行列式计算中的优势. 1.1 矩阵的定义 有时候,我们将一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样[]1.特别在运算中,把这些小矩阵当做数一样来处理.这就是所谓的矩阵的分块.把原矩阵分别按照横竖需要分割成若干小块,每一小块称为矩阵的一个子块或子矩阵,则原矩阵是以这些子块为元素的分块矩阵.这是处理级数较高的矩阵时常用的方法. 定义1[]2 设A 是n m ?矩阵,将A 的行分割为r 段,每段分别包含r m m m 21行,将 A 的列分割为s 段,每段包含s m m m 21列,则 ?? ? ? ? ? ? ??=rs r r s s A A A A A A A A A A 21 2222111211 , 就称为分块矩阵,其中ij A 是j i m m ?矩阵(,,,2,1r i =s j ,,2,1 =). 注:分块矩阵的每一行(列)的小矩阵有相同的行(列)数. 例如,对矩阵A 分块, = ?? ? ? ? ? ? ? ?-=21010301012102102301A ??? ? ??22211211 A A A A , 其中

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的?就如矩阵的元素(数)一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,- 般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法?比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A、C都是n阶矩阵, A B 其中A 0,并且AC CA,则可求得AD BC ;分块矩阵也可以在求解线性 C D 方程组应用? 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利

1 分块矩阵的定义及相关运算性质 1.1 分块矩阵的定义 矩阵分块 , 就是把一个大矩阵看成是由一些小矩阵组成的 . 就如矩阵的元素 ( 数) 一 样,特别是在运算中 , 把这些小矩阵当作数一样来处理 . 定义1设A 是一个m n 矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 A 11 ... 分成s 块,于是有rs 块的分块矩阵,即A .... A r1 . 1.2 分块矩阵的相关运算性质 1. 2.1 加法 A A ij r s , B B ij r s , 其中 A ij , B ij 的级数相同, A B A ij B ij r s 1.2.2 数乘 kA 1.2.3 乘法 1.2.4 转置 A A ji s r 1.2.5 分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换: A 1s ... ,其中 A ij 表示的是一个矩阵 . A rs 设 A a ij B mn b ij m n ,用同样的方法对 A,B 进行分块 设是任 A a ij mn A ij r s ,k 为任意数, 定义分块矩阵 A A ij r s 与 k 的数乘为 设 A a ij ,B sn n m 分块为 A A ij nm r l ,B B ij l r ,其中 A ij 是 s i n j 矩阵, B ij 是 n i m j 矩阵, 定义分块矩阵A A j rl 和B B ij l r 的乘积为 r C ij A i1 B 1j A i2 B 2j ... A il B lj , i 1,2,...t; j 1,2,3,..., l a ij s n 分块为 A sn A ij r s ,定义分块矩阵 A A ij r s 的转置为 rs

上海版教材 矩阵与行列式习题(有问题详解)

矩阵、行列式和算法(20131224) 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x ”能推出命题B :“x a >”,则a 的取值围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .

9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下 变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必 要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- =

第一章行列式与矩阵的计算的练习(含答案)

行列式及矩阵的计算(课堂练习) 、填空 1 ?已知三阶方阵A 的行列式为3,贝U 2A = -24 1 2 ,g(x) 0 1 3 .设, ,为3维列向量, 记矩阵 A ( , , ),B ( A 3, 则B 3 = ,,丨 6 1 1 1 4?行列式 1 1 x 的展开式中,X 的系数是 2 . 1 1 1 1 0 1 0 5.设A 则A k 。(k 为正整数). 2 1 2k 1 7.已知四阶行列式D 中第三列元素分别为1 , 3 , 别为3, 2, 1 , 1,则行列式D =二3 24 4 (1) 1 , 2, 3, 2 16m n 2.设A 则 g(A )= n ,则 1 , 2, 3,2 1 2 16m n 2, 2,它们对应的余子式分

(X ) 解:D = 1 X 3+ 3X(— 2) + (— 2)X 1 + 2X 1 = — 3 二、判断题 1. 设A 、B 均为n 阶方阵, |AB | [AB AB A|B. (V ) 二、行列式计算 3 3 3 3 4 3 3 4 (1) D n 3 3 4 3 3 3 3 4 3n 1 3 Cl C 2 3n 1 4 解: Ci C 3 D n 3n 1 3 G C n 3n 1 3 1 1 1 1 1 2 3 1 (2 D 1 4 9 1 1 8 27 1 2. 设A 、B 均为n 阶方阵, 解:(范得蒙行列式)=(— 3 3 3 1 =3n 1 1 0 0 0 1 3 3 3n 1 3 3 D n 0 「3 A 4 3 ——0 3 4 r n r 1 ax 1 X 2 X 3 2 五、 a 为何值时, 线性方程组: X 1 ax 2 X 3 2 有唯一解? X 1 X 2 ax 3 3 a a 1 1 解: det A 1 a 1 (a 2)(a 1)2 a 2且a 1时,有唯一解 1 1 a 1)=— 240 1 — 3) (— 1 + 2) (— 1— 1) (3+ 2) ( 3— 1) ( — 2—

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

矩阵与行列式的相似与不同

矩阵与行列式的相似与不同 学校:长江大学 院系:信息与数学学院 专业:信息与计算科学 姓名:郑洲 辅导老师:谢老师

【摘要】:本文中主要讨论了高等代数中矩阵和行列式的概念,并且从概念,性质以及运算几个方面阐述了行列式与矩阵的相似与不同。 【关键词】:矩阵.行列式.相似与区别 矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字、符号或数学式。其重要的作用是解线性方程组和表示线性变换。 行列式在数学中,是由解线性方程组产生的一种算式,是由若干数字组成的一个类似于矩阵的方阵。行列式是一个函数,值是一个标量。其值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负取决于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是基数。 我们先看看矩阵和行列式有哪些相似。 1.形式上比较相似:矩阵和行列式看上去比较相似,主要表现在:它们中的元素都有顺序的排成行列表,表面上看起来很相似,导致很多初学者容易把行列式和矩阵弄混淆;其次,它们中的表示方法一致,比如说行列式和 矩阵中第i行第j列的元素都用a ij表示;并且,它们对行列的称呼一致,从 上到下依次称作第一行,第二行…第n行,记作r1,r2,…r n;从左到右依次称为第一列,第二列,…第n列,记作c1,c2…c n。 2.性质上有相同点:在一个不等于0的数乘行列式或矩阵的某一行或某一列时,等于该数乘以此行或此列的每一个元素;行列式和矩阵中把一个不为0的数乘行列式或矩阵的某一行或列后可以加到另一行或列对应的元素上,即某一行(列)的k倍可以加到另一行(列)上。 3.运算上具有相同点:(1)行列式和矩阵都满足叫法交换率和结合律。可以表示为 D1+D2=D2+D1(D1+D2)+D3=D1+(D2+D3) A+B = B+A (A+B)+C = A+(B+C) (2)行列式和矩阵满足乘法结合律,即 D1D2D3=(D1D2)D3 A(BC)=(AB)C (3)行列式适合乘法分配率,矩阵适合乘法左分配率和右分配率,也就是说 D1(D2+D3)=D1D2+D1D3(D2+D3)D1=D2D1+D3D1 A(B + C) = AB + AC (B + C)A=BA + CA 矩阵和行列式虽然说有很多相同点,但它们始终是两个不同的概念,那么矩阵和行列式有什么区别呢。 1.先从概念上可以看出:(1)n阶行列式D n是n2个数按一定顺序排列成的n行n列的方阵,其实际上是一个数,行列式在数表两端加||;而矩阵是m ×n个数按一定方式排列的m行n列数表,归根结底是一个数表,矩阵在数表两端加()或[]。行列式是方形数表中定义,对不上方形的数表,不能讨论任何行列式的问题,而矩阵无此限制(2)行列式和矩阵行列之间存在差

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析 1.定义运算?? ????++=?????????????df ce bf ae f e d c b a ,如??? ???=?????????????1514543021.已知πβα=+, 2 π βα=-,则=? ? ? ???????? ??ββααααsin cos sin cos cos sin ( ). A. 00?? ???? B. 01?????? C. 10?????? D. 11?????? 2.定义运算 a b ad bc c d =-,则符合条件 120 121z i i i +=--的复数z 对应的点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.矩阵E =??? ? ??1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数 4. 若行列式21 24 1 013 9x x =-,则=x . 5.若2021310x y -??????= ??? ?-?????? ,则x y += . 6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-?? ??? ,则 x y -=_______. 7.矩阵1141?? ???? 的特征值为 . 8.已知变换100M b ?? =? ??? ,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618 法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知 , ,则y= . 11.若2211 x x x y y y =--,则______x y +=

分块矩阵及其应用

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

矩阵与行列式知识梳理

矩阵与行列式知识梳理 一、矩阵的概念 1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来): ?? ? ? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211称为一个m 行n 列的矩阵,简称n m ?矩阵,用______表示. 简记为_____.数ij a 称为矩阵的元素. 几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组?? ?=+=+222111c y b x a c y b x a ,则矩阵??? ? ??2211 b a b a 称为该线性方程组的系数矩阵. 矩阵??? ? ??22 2 111 c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换: (1) (2) (3) 4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解. 二、二阶行列式 1 定义:我们用记号 2 2 11b a b a 表示算式1221b a b a -,即 12212 2 11b a b a b a b a -=,记号 2 2 11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式 2 2 11b a b a 的展开式,其计算结果叫做 2 2 11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式 2 2 11b a b a 的元素. 2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积. 3作为判别式的二阶行列式:关于x 、y 的二元一次方程组???=+=+222 1 11c y b x a c y b x a ①其中1a 、2a 、 1b 、2b 不全为零,行列式2 2 11b a b a D = 叫做方程组①的系数行列式. 设2 2 11b c b c D x = ,

分块矩阵的若干性质及其应用

分类号密级 U D C 编号 本科毕业论文(设计) 题目分块矩阵的若干性质及其应用 学院数学与经济学院 专业名称应用统计学 年级 学生姓名 2017 年 4 月

文献综述 一、概述 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。分块矩阵是矩阵的一种特殊形式,对于一些高阶矩阵,形式表达上就比较抽象,运算上就更为繁杂,然而通过矩阵分块的方法达到降阶的目的。分块矩阵的若干性质及其应用是一个应用型的课题,是通过对分块矩阵的若干性质的掌握并应用于现实生活上的实际问题,它的应用范围非常广,远远不止于本文所列出的这几个方面,还有更广阔的应用有待于我们更加深入地去研究与探索。 二、正文 通过阅读居余马著作的《线性代数》一书中了解到,“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。但是追根溯源,矩阵最早是出现在我国的《九章算术》中,在《九章算术》方程一章中,就提出了解线性方程各项系数、常数按顺序排列成一个长方形的形状,随后移动,就可以求出这个方程。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。 现阶段,分块矩阵的性质及其应用在各个方面都起着至关重要的作用,分块矩阵的应用非常广泛和深刻,特别是在高等代数和线性代数中的应用更加广阔,例如在计算行列式以及矩阵的秩等方面,都有着很重要的应用。但国内一些专家对其研究主要还是在证明和计算方面。 林瑾瑜在《分块矩阵的若干性质及其在行列式计算中的应用》中,从行列式计算中的经常用到的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明问题中的应用。 蔡铭晶在《例说分块矩阵的应用》中论述了分块矩阵的概念,举例说明和分析了分块矩阵在线性代数中的应用,包括利用分块矩阵求逆矩阵、求高阶行

矩阵和行列式复习知识点(完整资料).doc

【最新整理,下载后即可编辑】 矩阵和行列式复习 知识梳理 9.1矩阵的概念: 矩阵:像[27],[ 4202],[945 354 ]的矩形数字(或字母)阵列称为矩阵.通常用大写字母A 、B 、C…表示 三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵; ① 矩阵行的个数在前。 ② 矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。 行向量、列向量 单位矩阵的定义:主对角线元素为1,其余元素均为0的矩阵 增广矩阵的含义及意义:在系数矩阵的右边添上线性方程组等号右边的值的矩阵。通过矩阵变换,解决多元一次方程的解。 9.2矩阵的运算 【矩阵加法】 不同阶的矩阵不可以相加; 记11122122A A A A A =?? ????,11122122B B B B B =??????,那么 ??? ???++++=+22222121 12121111B A B A B A B A B A , 【矩阵乘法】, [A 1A 2]×[A 1A 2]=11122122A B A B A B A B ?????? ; ?? ? ? ??++++=2222122121 2211212212121121 121111B A B A B A B A B A B A B A B A AB 【矩阵的数乘】().ij kA Ak ka == 【矩阵变换】

相似变换的变换矩阵特点:k [10 01]等 轴对称变换的变换矩阵:[?1001]、[100?1]、[01 10]等 旋转变换的变换矩阵:[0?1 10 ]等 9.3二阶行列式 【行列式】行列式是由解线性方程组产生的一种算式; 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 行列式行数、列数一定相等;矩阵行数、列数不一定相等。 二阶行列式的值a d D ac bd b c = =- 展开式ac - bd 【二元线性方程组】 对于二元一次方程组111 222 a x b y c a x b y c +=?? +=?,通过加减消元法转化为方程组 x y D x D D y D ?=??? ?=?? 其中1 11 11 1 2 22 222 ,,x y a b c b a c D D D a b c b a c = == 方程的解为{A = A A A A = A A A 用行列式来讨论二元一次方程组解的情况。 (I )0D ≠,方程组(*)有唯一解; (II )0D = ○1 ,x y D D 中至少有一个不为零,方程组(*)无解; ○2 0x y D D ==,方程组(*)有无穷多解。 系数行列式1122 a b D a b =也为二元一次方程组解的判别式。 9.4三阶行列式

第八讲 矩阵的分块法

第八讲 矩阵的分块法 一、矩阵的分块法 用处:(1)将高阶矩阵用低阶矩阵表示 (2)把每一小块看成元素一样按矩阵的运算来进行运算 (3)分块之后使得矩阵的一些运算简化 分块的标准:(1)能分出一些零子块 (2)能分出一些单位矩阵 (3)分成数量矩阵 二、分块矩阵的运算 简单解释一下即可,不做要求 三、分块对角矩阵 1、定义 2、对应的行列式的求法 3、逆矩阵的求法 例题1、设???? ? ??--=320210002A ,求A ,1-A 四、线性方程组的矩阵表示 1、一般表示 ?????=++=++m n mn m n n b x a x a b x a x a 1 111111 系数矩阵n m m m n a a a a A ?????? ??=11111

未知量矩阵???? ? ??=n x x X 1 常数项矩阵???? ? ??=m b b b 1 2、线性方程组的矩阵表示 将上面的方程组用矩阵表示: ???? ? ??=????? ??????? ??m n m m n b b x x a a a a 1111111 b AX = 例题:设?????=--=-+-=+-02212321 321321x x x x x x x x x ,写出矩阵表达式。 对角矩阵的行列式值和逆矩阵的求法要求必须会。 练习题 1、 求逆矩阵101210002A ?? ?= ? ??? 2、 求逆矩阵1200250000620032A ?? ? ?= ? ??? 3、求x 和y ,使2180341x y -??????+= ??? ?-?????? . 4、 求x ,y 和z ,使110101************x y z --?????? ??? ?-= ??? ? ??? ?-??????

上海版矩阵与行列式基础练习题分析

矩阵与行列式习题 本试卷共18题,时间60分钟,满分100分) 班级: 姓名: 一、填空选择题:(每题3分,共36分) 1、已知46x A y ??= ???,13u B v ?? = ??? ,且A B =,那么A+AB= 。 2、设231001252437A B -???? ? ? ==- ? ? ? ?-?? ?? ,则3A –4B 为 。 3、设A 为二阶矩阵,其元素满足,0a a ji ij =+,i=1,2,j=1,2,且2a a 2112=-,那 么矩阵 A= . 4、设2442,1221A B -???? == ? ?-???? 則32A B - = ,=AB , =BA 5、若点A 在矩阵1222-????-?? 对应的变换作用下得到的点为(3,- 4),那么点A 的坐标 为 . 6、若202137x y -?????? = ??? ?-?????? ,则x y +=___________. 7、 121 2 a a b b =1,则 1 2 12 2233b b a a =-- _____ 。 8、(1)行列式z kc c y kb b x ka a = ;(2)211 121__________11 2 -= 9、已知1 242 2 1342 D -=---,则21a 的代数余子式21A = 。 10、已知2 4132 01x x 的代数余子式012=A ,则代数余子式=21A

11、设A 为3阶方阵,且3A =,则2A -=______________ 12、如果方程组???=++=++010 1dy cx by ax 的系数行列式1=d c b a ,那么它的解为 二、简答题(每题8分,共64分) 1、已知? ??? ??-=533201A ? ??? ? ??-=013164245B 求()AB . 2. 已知1011A ??= ??? ,分别计算23A A 、,猜测* (2)n A n n ≥∈N ,; 3. 将下列线性方程组写成矩阵形式,并用矩阵变换的方法求解: ⑴ 32110250x y x y --=??+-=? ; ⑵111612102113x y z ?????? ??? ?-= ??? ? ??? ?-?????? . 4、已知函数f(x)=x a x +1111 1 1 1 ,其中a 是实数,求函数f(x)在区间[2,5]上的最小值。

矩阵和行列式知识点

矩阵和行列式复习 知识梳理 9.1矩阵的概念: 矩阵:像 , , 的矩形数字(或字母)阵列称为矩阵.通常用大写字母A 、 B 、C…表示 三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵; ① 矩阵行的个数在前。 ②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。 行向量、列向量 单位矩阵的定义:主对角线元素为1,其余元素均为0的矩阵 增广矩阵的含义及意义:在系数矩阵的右边添上线性方程组等号右边的值的矩阵。通过矩阵变换,解决多元一次方程的解。 9.2矩阵的运算 【矩阵加法】 不同阶的矩阵不可以相加; 记11 1221 22A A A A A =?? ? ???,11 1221 22B B B B B =?? ???? ,那么 ?? ? ???++++=+22222121121211 11B A B A B A B A B A , 【矩阵乘法】, =11122122A B A B A B A B ?? ???? ; ?? ? ???++++=22221221212211212212121121 1211 11B A B A B A B A B A B A B A B A AB 【矩阵的数乘】().ij kA Ak ka == 【矩阵变换】 相似变换的变换矩阵特点:k 等 轴对称变换的变换矩阵: 、 、 等 旋转变换的变换矩阵: 等 9.3二阶行列式 【行列式】行列式是由解线性方程组产生的一种算式; 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。

行列式行数、列数一定相等;矩阵行数、列数不一定相等。 二阶行列式的值a d D ac bd b c ==- 展开式ac -bd 【二元线性方程组】 对于二元一次方程组111222a x b y c a x b y c +=??+=?,通过加减消元法转化为方程组x y D x D D y D ?=????=?? 其中1 11 11 12 22222 ,,x y a b c b a c D D D a b c b a c = == 方程的解为 用行列式来讨论二元一次方程组解的情况。 (I )0D ≠,方程组(*)有唯一解; (II )0D = ○ 1,x y D D 中至少有一个不为零,方程组(*)无解; ○ 20x y D D ==,方程组(*)有无穷多解。 系数行列式11 2 2 a b D a b = 也为二元一次方程组解的判别式。 9.4三阶行列式 三阶行列式展开式及化简12 3 1 231232313121 2 3 a a a D b b b a b c a b c a b c c c c ==++321213132() a b c a b c a b c -++(对角线法则) 三阶行列式的几何意义:直角坐标系中A 、B 、C 三点共线的充要条件(沪教P95) 【余子式】把三阶行列式中某个元素所在的行和列划去,将剩下的元素按原来位置关系组成的二阶行列式叫做该元素的余子式;添上符号(-1)i+j 后为代数余子式。

相关主题
文本预览
相关文档 最新文档