当前位置:文档之家› 微胶囊技术

微胶囊技术

微胶囊技术
微胶囊技术

微胶囊技术

微胶囊(micro-encapsulation)技术是一项用途广泛而又发展迅速的新技术。自从1953年微胶囊技术问世以来,经过许多科学家和专业公司的努力,微胶囊技术获得不断的发展和完善。微胶囊技术在国际先进国家发展很快,已达到将此技术应用于细胞载体及液晶等高精尖水平,技术方法也不断完善在食品、化工、医药、生物技术等许多领域中已得到成功的应用,尤其在食品工业,许多由于技术障碍而得不到开发的产品,通过微胶囊技术得以实现,使得传统产品的品质得到大大的提高,为食品工业高新技术的开发展现了良好前景。食品中应用微胶囊技术的目的主要为将液体或气体成分转化成易处理的固体;保护敏感成分,防止其被氧化;控制释放的速度和时间等。由于这些特点,使该技术在食品中的应用越来越广泛。

微胶囊技术近几十年来在西方国家食品中的应用十分活跃,美国、日本、西欧的食品中微胶囊应用较多。我国在此方面仍处于探索阶段,直接应用于食品中的实例不多。

一、微胶囊技术原理及意义

微胶囊技术又称微胶囊化,是用特殊手段将固体、液体或气体物质包裹在一微小的、半透性或封闭胶囊内的过程。微胶囊的直径一般为2~2 0 0μm,囊壁厚10~20μm,此种微胶囊产品在一定条件下可有控制的将所包裹的材料(称为心材)释放出来。微胶囊可简单地看作由心材和壁材组成,食品工业中心材的范围很广泛,如维生素、色素、挥发性香料、风味物质、油脂、抗氧化剂、防腐剂、缓冲盐及无机盐等;此外,食品中一些不易贮存的或对其它组分产生不良影响的物质均可作为心材。常用的壁材物质有蛋白类、植物胶类、纤维素类、缩聚物类、油类、无机盐类等,这些壁材既可单独使用,又可混合使用,同时还可添加一些增塑剂、表面活性剂、色素等改良剂来提高品质。食品工业中,壁材的选用需根据产品的粘度、渗透性、吸湿性、溶解性及澄清度等因素来决定,并要求无毒、无嗅,对心材无不良影响。

微胶囊技术的优越性在于:(1)可有效减少活性物质对外界环境因素(如光、氧、水)的反应;(2)减少心材向环境的扩散或蒸发;(3)控制心材的释放;(4)掩蔽心材的异味;(5)改变心材的物理性质(包括颜色、形状、密度、分散性能)、化学性质等。对于食品工业,可以使纯天然的风味配料、生理活性物质融入食品体系,并能保持生理活性,它可以使许多传统的工艺过程得到简化,同时它也使许多用通常技术手段无法解决的工艺问题得到解决。

二、微胶囊化技术方法分类

(一)微胶囊的组成

1 心材

心材也称为囊心物质,可以是单一的固体、液体或气体,也可以是固液、液液、固固或气液混合体等。既可以是食品中的天然组分,也可以是食品添加剂,其选择具有很大的灵活性。可作为心材的物质有很多,在不同行业、不同用途中有不同的内容。在食品及饮料工业中,可作为心材的物质有:生物活性物质(如活性多糖、茶多酚、SOD等),各种氨基酸、矿物质元素,各种食用油脂、维生素、香料香精,各种酶制剂、防腐剂。此外甜味剂、酒类、微生物细胞、酸味剂、色素、酱油等也可作为囊心物质。

2 微胶囊的壁材

微胶囊技术实质上是一种包装技术,其效果的好坏与“包装材料”壁材的选择紧密相关。一种理想的壁材必须具有如下特点:

(1)高浓度时有良好的流动性,保证在微胶囊化过程中有良好的可操作性能;

(2)能够乳化心材并能稳定产生的乳化体系;

(3)在加工过程以及贮存过程中能够将心材完整的包埋在其结构中;

(4)易干燥以及易脱落;

(5)良好的溶解性;

(6)可食性与经济性。

通常一种材料很难同时具备上述性能,因此在微胶囊技术中常常是采用几种壁材复合使用。常用的一些壁材如下所述:

2.1 碳水化合物

用于微胶囊壁材的碳水化合物主要有麦芽糊精、玉米淀粉糖浆、环糊精、壳聚糖、纤维素、蔗糖及变性淀粉等物质。

麦芽糊精和玉米淀粉糖浆这两种碳水化合物本身不具备乳化能力,成膜能力也差,但它们与其他具有乳化性的壁材配合后,可提高体系的固形物浓度,有利于降低干燥能耗,减少生产成本。环糊精也不具备乳化能力,但其分子中疏水性空腔能同具有一定大小与形状的疏水性分子形成稳定的非共价复合物,从而起到稳定心材,掩盖心材异味的作用,但环糊精在微胶囊制品中应用有一定的局限性。壳聚糖主要用在复凝聚法微胶囊技术,纤维素及其衍生物主要用在水溶性食品添加剂如甜味剂、酸味剂以及酶或细胞的包埋剂。蔗糖具有溶解速度快、热稳定性高、价格低、来源广的特点,常被用来作为微胶囊的壁材,以往的研究主要限于在挤压法、共结晶两种微胶囊化工艺中使用,最近已开始有将蔗糖用作喷雾干燥法微胶囊工艺的壁材的报道。具有乳化性能的碳水化合物只有辛酰基琥珀酸酯化变性淀粉,这种淀粉分子结构中同时包含亲水亲脂基团,因此具备乳化心材的

能力,且已被FDA正式批准使用,它还具备高固形物浓度时低粘度的特点,比传统的阿拉伯胶具有更强的优越性,但它的来源依赖于进口。

综上所述,用作微胶囊壁材的碳水化合物以麦芽糊精,玉米淀粉糖浆,蔗糖较为切合实际,这三种碳水化合物中由于玉米淀粉糖浆的价格较高,因此又以麦芽糊精与蔗糖最具实用性。

2.2 胶质

海藻胶、瓜儿胶、卡拉胶可分别用于高脂食品,风味料,汤料与果汁等的包埋剂。阿拉伯胶由于含有约 1 %左右具乳化性的蛋白质,能够乳化心材,而且溶解性能好,因此在微胶囊技术中用途最为广泛,它主要应用在风味料的微胶囊化技术中,但阿拉伯胶的来源价格高且供应不稳定。黄原胶是一种微生物多糖,它在溶液中粘度较大,利于改善乳状液的流变性,增加乳化体系的稳定性,另外在体系固形物含量较低时添加适量的黄原胶,可以提高进料粘度,这对于喷雾干燥过程中形成较大的雾滴十分有利,因此在体系中使用黄原胶有利于微胶囊化工艺过程的实现,便于降低生产成本,黄原胶来源广,因此黄原胶是较为实用的一种微胶囊壁材辅料。

2.3 脂质

腊质一般用作喷雾冷却法微胶囊工艺的壁材,主要用于水溶性材料或固体物质等的微胶囊技术,以它为壁材的微胶囊产品在水中不溶解但具有一定条件释放的功能,卵磷脂应用于微胶囊技术的主要在于它在较低温度下就可形成卵磷脂胶束,因而可用于生物活性物质如酶类的微胶囊。卵磷脂作为乳化剂与其他壁材如聚乙烯复配可对甜味剂、风味料等进行微胶囊化,作为一种营养强化剂,它本身也已被制成微胶囊化产品。脂质体微胶囊化技术主要应用在医学上作为药物载体,除保持药物的生理活性外,还有定向释放的作用,该技术对于食品工业而言尚不现实。

2.4蛋白质

采用蛋白质作为微胶囊壁材主要在于蛋白质的乳化性能,能够在两相界面形成有良好粘弹性的界面膜,从而有效的促进了微胶囊过程。研究表明乳清蛋白能与麦芽糊精配合作为奶油或挥发性良好的微胶囊化壁材。

大豆蛋白是一种分子量极大的球状蛋白,在制备O/W乳状液时能定向吸附到油/水界面形成较强的界面膜,但乳化油滴过程中其球状结构的受热展开使大量憎水基团暴露,导致其在水相的溶解度大大下降。因此以其为主要壁材的微胶囊产品溶解性能欠佳,人们在大豆蛋白功能性质的长期研究中发现采用酶法改性是解决大豆蛋白溶解性的行之有效的方法,一方面减小分子的大小,另一方面由于肽键的断裂,使体系的亲水基团大大增加,从而使分子的亲水性增加,达到改善溶解性之目的。研究表明大豆分离蛋白经酶法改性后溶解性大幅度上升,在pH>8.0后可完全溶于水中,而且尚有一定的乳化能力,因此用它来作为水溶性微胶囊化产品的壁材有

一定的可能性。

明胶是亲水胶体,也是一种重要的蛋白源,已成为许多食品中的重要功能性成分,有许多广泛的用途,明胶同时具备乳化性,成膜性,而且也易溶于水,符合作为胶囊壁材中蛋白源要求。另一方面,明胶还有价格低,来源广的优势,更适合于工业化大生产中使用,实际上明胶也是微胶囊技术中至今为止用得最为广泛的一种蛋白源。目前为止大部分报道主要集中于明胶与其他一些离子型多糖采用复凝聚法形成微胶囊。

(二)微胶囊化技术方法分类

1 喷雾干燥法

喷雾干燥法以其操作灵活,成本低廉,具有良好的产品质量而成为食品工业中应用最广泛的微胶囊化方法。喷雾干燥微胶囊化过程,首先是制备心材和壁材的混合乳化液,然后将乳化液在干燥器内进行喷雾干燥而成。壁材在遇热时形成一种网状结构,起着筛分作用,水或其它溶剂等小分子物质因热蒸发而透过“网孔”顺利的移出,分子较大的心材滞留在“网”内,使微胶囊颗粒成型。心材通常是香料等风味物质和油类,壁材常选用明胶、阿拉伯胶、变性淀粉、蛋白质、纤维酯等食品级胶体。

2 喷雾冷冻法与喷雾冷却法

这两者与喷雾干燥法的不同点在于干燥室所用的空气温度以及所用的壁材性质不同,喷雾干燥法中采用热空气以将水分去除,而在喷雾冷冻法与喷雾冷却法之中,干燥室空气为室温或经冷却处理,远低于所用壁材如脂质或腊质的凝固点。这两种工艺适应面较窄,一般用于水溶性心材如矿物质、酶、水溶性维生素、酸味剂等的微胶囊化。喷雾冷冻还可用于固体心材,例如:硫酸亚铁、酸味剂、维生素、固体风味料等的微胶囊化,也可用于一般溶剂中溶解困难的生理活性物质的微胶囊化,同样通过将液态物质冷冻成固态,可实现对液滴的微胶囊。这两种方法所选壁材具有缓释功能的特点。

3 空气悬浮法

空气悬浮法又称硫化床法或喷雾包衣法,其工作原理是将心材颗粒置于硫化床中,冲入空气使心材随气流做循环运动,溶解或熔融的壁材通过喷头雾化,喷洒在悬浮上升的心材颗粒上,并沉积于其表面。这样经过反复多次的循环,心材颗粒表面可以包上厚度适中且均匀的壁材层,从而达到微胶囊化目的。

4 相分离法

相分离法又称凝聚法,该方法自50年代以来主要用于无碳复写纸的生产。主要原理为,将作为壁材的液相从连续相中分离,包覆于心材表面,形成囊壁结构。在这类方法中以复凝聚法最为主要,其他还有:单凝聚法、盐凝聚法、调节pH-聚合物沉淀法。复凝聚法可分为水相相分离法、非

水相相分离法两种方法。

4.1水相相分离法两种带相反电荷的胶体彼此中和而引起相分离,在此方法中由于微胶囊化是在水溶液中进行的,故心材必须是非水溶性的固体粉末或液体。这种方法中最常用壁材是明胶,在水溶液中当pH大于其等电点时为聚阴离子,而小于其等电点时则成为聚阳离子。利用这一特性当体系中存在其他电解质时,一般为聚阴离子,如:阿拉伯胶、海藻酸钠、琼脂、甲基纤维素等,二者发生相互作用在心材表面形成凝聚相,实现微胶囊化作用。

4.2非水相相分离法又称为油相分离法,在此方法中用来作为微胶囊化介质的是聚合物的有机溶剂,首先在体系中形成可充分流动的聚合物凝聚相,使其能够稳定在心材微粒上。一般过程是:首先乳化心材至聚合物与其溶剂构成的“油相”中,然后再加入引发剂或通过调节条件等手段使聚合物覆盖在心材表面并发生相分离,从而实现心材的微胶囊。这方面的应用如药物阿斯匹林,硫酸亚铁的微胶囊化等。相分离法尽管是一种非常有效的微胶囊化技术,但其生产成本很高,而且由于在这种方法中尚缺少可食用的壁材来源,因此对于食品工业而言不是很现实。

5 挤压法

挤压法是一种比较新的微胶囊技术,特别适用于包埋各种风味物质、香料、维生素C和色素等热敏感性物质,因为其处理过程采用低温方式。工艺流程为先将心材分散到熔融的碳水化合物中,然后将混合液装入密封容器,在压穿台上利用压力作用压迫混合液通过一组膜孔而呈丝状液,挤入吸水剂中。当丝状混合液与吸水剂接触后,液状的壁材会脱水、硬化,将心材包裹在里面成为丝状固体,而后将丝状固体打碎并从液体中分离出来,干燥而成。

6 包接络合法

包接络合法又称分子包埋法,利用具有特殊分子结构的壁材进行包埋而成。如常用的β-环糊精进行分子包埋取得了令人满意的效果。β-环糊精是由7个吡喃型葡萄糖分子以α-1,4-糖苷键连接成环状化合物,其外形成圆台状,亲水性基团分布在表面而形成亲水区,内部的中空部位则分布着疏水性基团(疏水中心),疏水中心可与许多物质形成包接络合物将外来分子置于中心部位而完成包埋过程。

包接络合法的方法较简单,一般将环糊精配制成饱和溶液,加入等摩尔量的心材,混合后充分搅拌 3 0 min,即得到所需络合物。对一些溶解度大的心材分子,其络合物在水中的溶解度也比较大,可加入有机溶剂促使析出沉淀,对不溶于水的固体心材,需先用少量溶剂溶解后,再混入环糊精的饱和溶液中。

7 界面聚合法

界面聚合发生在两种不同的聚合物溶液之间,将两种活性单体分别溶解在不同的溶剂中,当一种溶液被分散在另一种溶液中时,相互间可发生聚合反应。该反应是在两种溶液界面间进行的,界面聚合反应法已成为一种较新型的微胶囊化方法。利用界面聚合法可以使疏水材料的溶液或分散液微胶囊化,也可以使亲水材料的水溶液或分散液微胶囊化。常见过程为:单体A存在于与水不相混溶的有机溶剂中,称为油相。然后将含单体A的油相分散至水相中,使其呈非常微小的油滴。当把可溶于水的单体B加入到水相中,搅拌整个体系时,则在水相和油相界面处发生聚合反应,结果在油滴表面上形成了聚合物的薄膜,油被包埋在该薄膜之内,得到含油的微胶囊。反之当把含有单体B的水溶液分散到油相中去,使其分散成为非常小的水滴,再将单体A加入到油相去,则可获得含水的微胶囊,由于界面聚合法中连续相与分散相均必需提供活性单体,因此微胶囊化的效率高。界面聚合法微胶囊化产品很多,例如:甘油、水、药用润滑油、胺、酶、血红蛋白等。由于这种方法中所用的壁材均不具可食性,因此在食品工业中还不具备实用价值。

8复相乳液法

将壁材与心材的混合物乳化再以液滴形状分散到介质中,形成双重乳状液,随后,通过加热、减压、搅拌、溶剂萃取,冷冻、干燥等手段将壁材中的溶剂去除,形成了囊壁,再与介质分离得到微胶囊产品。根据所用微胶囊化介质的不同,此方法又可分为水浴干燥法和油浴干燥法。前一种方法首先形成W/O乳状液再分散到水溶性介质中形成(W/O) /W型乳状液,然后去除油相溶剂,使油相聚合物的心材外硬化成壁。后一种先将心材乳化至聚合物的水溶液形成O/W乳液,然后再将其分散到稳定的油性材料如(液态石蜡,豆油),形成(O/W) /O双重乳液,然后再除水,使水相聚合物的心材外硬化成壁。水浴干燥法的应用如过氧化氢酶的微胶囊化,油浴干燥法的应用如鱼肝油的微胶囊化。

微胶囊化的方法还有如:离心挤压法、旋转悬浮分离法、共结晶法、脂质体包埋法等,在此就不做详细介绍了。

三、微胶囊技术在食品工业中的应用

1 微胶囊化香料和风味料

微胶囊香料是最早应用于食品工业的微胶囊技术,它大大提高了耐氧、光、热的能力,提高了香料和风味料的加工性和稳定性,延长了贮存期,极大地拓宽了香味料的使用范围。

微胶囊化香料和风味料作为添加剂,应用于食品工业的许多方面,如焙烤食品时,将桂皮醛以脂肪微胶囊化,添加于发酵食品中,即达到保证风味的要求,又不妨碍发酵;生产糖果时,加入β-环糊精包埋的薄荷油,能防止加工过程中薄荷油的损失;口香糖中加入微胶囊化的风味物,食用

时与唾液接触,即刻释放香味,使得口味更浓厚等。

生产微胶囊化香料和风味料的主要方法有:喷雾干燥法、挤压法、包接络合法等。喷雾干燥法经常用于微胶囊化香料的生产,具有方法简单、操作方便、生产成本低等优点。可使用的壁材有明胶、卡拉胶、阿拉伯胶、改性淀粉和β-环糊精等。挤压法是生产粉末化香料的一种较新技术,整个工艺在较低的温度及人工调控下进行,产品质量较好,对香料品质有特殊要求的情况时,通常应用挤压法来满足生产的需要。

2 食用油脂的微胶囊化

微胶囊技术应用到油脂生产上,极大地提高了粉末油脂产品的质量,并拓宽了应用范围,几乎所有的油脂,如花生油、玉米油、大豆油、猪油、椰子油、棉子油等均可转化成固体粉末油脂。应用的壁材主要有明胶、阿拉伯胶、淀粉、改性淀粉、糊精、卡拉胶、植物蛋白等。配合使用的乳化剂有卵磷脂、单甘酯、蔗糖酯等。采用的微胶囊化方法主要有喷雾干燥法、凝聚法和分子包埋法。

3 微胶囊化酸味剂

近年来,随着各种方便食品的开发,酸味剂的品种也越来越丰富。但如果把某些酸味剂直接添加到食品配料中,酸味剂会与果胶、蛋白质、淀粉等成分发生作用,而使食品产生劣变。另外,酸味剂可促进食品氧化,改变配料系统的pH值,有很强的吸湿性等。因此,采用微胶囊技术,将酸味剂包埋起来,大大减少酸味剂与外界的接触,保证了食品的品质及贮藏期。如腌制肉品中添加微胶囊化乳酸和柠檬酸,通过控制熏烟温度,逐步释放出酸,从而保证了产品质量,免除发酵工序,使制造时间缩短5h。目前,微胶囊化柠檬酸、乳酸、苹果酸、抗坏血酸等产品已商品化,广泛用于布丁粉、馅饼填充物、点心粉、固体饮料及肉类的加工业中。

生产微胶囊化酸味剂主要采用喷雾干燥法、分子包埋法、凝聚法和空气悬浮法等。生产中通过对不同壁材的选择可设计生产出不同用途的新产品,如可设计成能在冷水中溶解、能在热水中溶解及在较高温度下才能释放的耐高温型各种微胶囊酸味剂产品。

4微胶囊化酶制剂和细胞

酶作为生物催化剂具有不稳定性,在食品加工过程中,酶易受外界因素影响而失活,如:在制造切达干酪时,常在牛奶中添加蛋白酶来分解蛋白质以增加风味;但如果直接将蛋白酶加入牛奶中,这些酶会在加工中流失。因此,将酶制剂用微胶囊包埋起来,在加工过程中会保持性质稳定,缓慢地发挥作用。

微胶囊化细胞同样在工业中得到应用。例如,在香槟酒的生产中,为了加速产气,法国轩尼诗酒厂采用新工艺,将酵母细胞以微胶囊形式包埋于半透膜中,因此大大减少了产气时间和工作量。

5微胶囊化防腐剂

在实际应用中这类产品主要利用微胶囊的控制释放及缓释的特点,避免在加工过程中由于直接加入山梨酸、苯甲酸等防腐剂影响产品质量。例如,饮料、罐头等食品的防腐剂微胶囊化,可以减少添加量,控制缓效释放,达到对使用者健康有利的目的。不久前问世的微胶囊化低度乙醇杀菌防腐剂,采用改性淀粉、乙基纤维素、硅胶等为壁材制成的高浓度固体防腐剂,应用于食品、水果的包装袋中,缓慢释放乙醇蒸气而达到杀菌的目的。

6 微胶囊复合蔬菜饮料

赵良忠等研究提出了运用微胶囊技术生产固体复合蔬菜饮料的工艺及生产方法,结果发现利用此技术可以生产出色泽艳丽,风味独特,外形美观的营养型复合蔬菜饮料。下面介绍一下此方法及生产工艺。

6.1工艺流程

6.2工艺说明

6.2.1蔬菜原料处理

将几种蔬菜洗净,沥干余水,用捣碎机捣碎,均质机将蔬菜泥均质,然后加入如糖、盐、香料等配料。

6.2.2微胶囊生产

先将水加热煮沸,加入蔗糖配成8%左右的糖浆,过滤,加入糖浆中 1.2~1.4%的海藻酸钠,待海藻酸钠溶化后加入葡萄酸内脂溶液及其它辅料,配制成海藻酸钠胶体溶液。取蔬菜浆1份,加入菜浆等重的胶体溶液及菜浆重4~4%的50%浓度的全脂奶液,混匀,然后泵入造囊机中生产微胶囊粒子。

①磁力搅拌器②钙化器③调节阀④成型管⑤贮料缸⑥原料出口⑦回流管

⑧饮料泵⑨料液⑩固定架

图1 微胶囊成型示意图

将调配好的适宜浓度的氯化钙溶液倒入钙化器,开启磁力搅拌器,使得氯化钙溶液形成环流。开启饮料泵,将混合料泵入贮料缸中,打开调节阀,调节流速适中,使浆料均匀滴入钙化器中硬化而形成圆形含蔬菜浆的微胶囊颗粒。

配制浸渍液,将其加热至沸腾,投入适当微胶囊颗粒于该溶液中,加热半小时左右,捞出沥干浸渍液,转入热风化床中干燥,然后用冷风迅速降温,包装成品。

7 微胶囊化果汁技术

邓光辉等利用微胶囊技术对芒果饮料留香试验如下:

7.1工艺流程

抗氧化剂CaCl2溶液

7.2试验方法

7.2.1芒果原料处理

选用外表鲜黄,成熟度九成以上的芒果作原料。将芒果洗干净,放入沸水中热烫一分钟左右,去皮去核,然后将果肉放入打浆机打浆,放入少量抗氧化剂Na2SO3,所得果浆经胶体磨均质即可得到颗粒微小的均匀的果浆均质体。

7.2.2微胶囊的生产

将含海藻酸钠 1.2%,糖8%的溶液,按1:1的比例与芒果浆均质体混合均匀,混合液溶转入胶囊生产成型机。将3% Ca Cl2溶液注入钙化器中,搅拌,使Ca-Cl2溶液在钙化器内形成环流,打开胶囊生产成型机使混合浆抖均匀滴下,速度为每分钟200滴,钙化器内温度控制在55℃至65℃。浆料滴到钙化器内遇到CaCl2即形成大量圆形的胶囊颗粒。定时将胶囊颗粒移出,用去离子水冲洗5~6次,除去胶囊上残余的钙盐溶液,即可得到芒果浆胶囊颗粒。

7.2.3 液体配制

用去离子水配制10%糖溶液,加入0.1%山梨酸作防腐剂,加入少量果胶或琼脂,添加一定量芒果将均质体,充分混合作为饮料配料液。

7.2.4成品

将配料液,按不同的比例与芒果浆胶囊颗粒进行混合,装瓶,压盖封口,杀菌消毒即得成品饮料。

7.3 结果

试验结果表明以海藻酸钠作为壁材,在温度为55℃~65℃之间制造得的芒果浆胶囊,有较好的稳压性,外形也比较固定,能够较好地包埋芒果原浆,有效地保留了芒果原有独特的风味。按照配料液与芒果浆胶囊为9:1的配方,生产出的饮料,从口感、风味及颜色等方面都比较好,特别在口感上基本保留原来芒果的特色,这说明利用微胶囊技术在芒果饮料生产中对香味的保持是成功的。

微胶囊技术在水产品加工中的应用

微胶囊技术在水产品加工中的应用 微胶囊能够储存微细状态的物质, 并在需要时释放该物质。微胶囊亦可转变物质的颜色、形状、重量、体积、溶解性、反应性、耐久性、压敏性、光敏性等特点。鉴于这些特性,微胶囊技术成为当今几大热门技术之一。随着工艺的日益成熟,更多高新技术的应用与开发,微胶囊制备技术也不再仅仅局限于药物包覆方面,应用范围逐渐扩大到食品、医药、农药、纺织、涂料、粘合剂、化妆品等行业。微胶囊技术可以将芯材与周围环境隔开,有效减少了芯材物质对水、光、氧气、温度等环境因素的反应,从而改善和提高芯材物质的这一独特性质,决定了它在食品中发展的必然性。而水产品加工工业作为我国一个巨大的食品产业分支,对这种新技术的需要是不言而喻的。目前,微胶囊技术已经在水产品加工的新产品研发、保鲜、加工助剂改良等诸多方面得到大力发展。本文将对微胶囊及其在水产品加工中的应用进行简要的介绍。 1微胶囊简介 微胶囊加工技术是将固体、液体或气体包埋、封存在一个微型胶囊内成为一种固体微粒产品的技术,它能够使被包囊的物料与外界环境隔离,最大限度地保持其原有的色、香、味、性能和生物活性,防止营养物质破坏和损失,并具有缓释功能。微胶囊主要由包囊和囊芯物组成。 1.1微胶囊的形态 微胶囊是由天然或合成高分子制成的微型容器,直径一般为1~ 1 000μm。微胶囊的形态主要受囊芯物的影响,含液体的微胶囊形状一般是球形的,如图1,含固体微胶囊的形状大多与囊内固体相同。

(图1 球形微胶囊在电镜下的图片) 但是有些也受成囊工艺、囊材的影响,比如用液中干燥法制备蜂胶乙基纤维素微球,由于囊材及囊芯在内相有良好的溶解,制得的微囊表面光滑并有微孔,圆整度较好[1]。 1.2微胶囊的包囊材料 1.2.1包囊材料的选择 包囊材料应该是可以掩盖或改变囊芯物不良性质的载体。其选择主要依据囊芯物的性质和微胶囊产品的应用性能要求。当然,囊材本身性质(如:渗透性、稳定性、粘度等)及价格也是需要考虑的。不同囊材也影响着微胶囊的结构,如图2。因此,我们也需要根据产品对微胶囊结构的要求选择囊材。 (图2 不同囊材的微胶囊的电镜扫描图) 1.2.2包囊材料的种类和性质

微囊化方法

1、TWI395017B 可重复加工之液晶膜及其制造方法 合成例:微胶囊化液晶微粒】 将2.5克聚氨酯(Desmodur N-3200,Bayer Corp.)与40克液晶(DH-032,工研院自制;△n=0.19、Tc=89℃)于60℃下均匀混合。将上述混合溶液加入200克之10%聚乙烯醇水溶液进行搅拌,然后于50-55℃下以3000rpm,3分钟进行乳化得到粒径1-10μm之颗粒。之后加入25克之10%三乙烯二胺(Triethylene Diamine)与25克之10%三乙醇胺(Triethanolamine)于55℃下反应10小时。反应完毕后,加入20克之10%氢氧化铵,静置过夜。最后将所得浆料以5000 rpm转速进行离心,得到粒径分布1-5μm之微胶囊化液晶微粒。 (三乙烯二胺:用于生产聚氨酯泡沫的基本催化剂,室温固化硅橡胶、聚氨酯橡胶、聚氨酯涂料的催化剂等。 三乙醇胺:用作环氧树脂的固化剂,参考用量12-15份(质量分数),固化条件80℃/4h或120℃/2h。也可用于天然橡胶、合成胶的硫化活化剂,丁腈橡胶聚合活化剂,还可用作润滑油和抗腐蚀添加剂等。三乙醇胺的长链脂肪酸盐几乎呈中性,可用作油脂和蜡的乳化剂。 无机工业用于制选各种铁盐。毛纺、丝绸、印染等工业用于洗 氢氧化铵:涤羊毛、呢绒、坯布,溶解和调整酸碱度,并作为助染剂等。有机工业上用作胺化剂,生产热固性酚醛树脂的催化剂。医药上用稀氨水对呼吸和循环起反射性刺激,医治晕倒和昏厥,并作皮肤刺激药和消毒药。也用作洗涤剂、中和剂、生物碱浸出剂。) 【实施例1】 将合成例之微胶囊化液晶微粒与20%聚乙烯醇水溶液依照1:1.5(重量比)在室温下比例均匀混合,即可配制出液晶涂料,涂料之黏度为1000~1100cps(25℃)、固含量约为42%。上述所用之聚乙烯醇的重量分子量为27000-32000,聚合度为550-650,钠离子含量低于60ppm。 以第2图所示之装置,将PET-ITO薄膜经狭缝涂布头涂上液晶涂料后(涂幅宽为1.1公尺),进入五段式烘箱(温度 40~90℃)干燥,以线速约为4公尺/分钟移动速度移动,最后经过约100℃热贴合轮与另一片PET-ITO薄膜贴合,连续生成电可调光液晶薄膜,厚度控制为15μm。 2、CN100456093C 彩色化胆固醇型液晶显示器及其制造方法 图2C为胶囊化胆固醇液晶层示意图,在该电极层22上形成一胶囊化胆固醇液晶层24,该胶囊化胆固醇液晶层的制作结果如同于美国专利US 6,203,723B1,本发明的该胶囊化胆固醇液晶层制作方式为液晶(可为向列型液晶)加入不同比例的旋光性材料与可调的手征性(tunable chiral)材料形成胆固醇液晶,最后再利用高分子分散法或高分子聚合法(如乳化聚合法或悬浮聚合法)成为涂料,再利用涂布方式将该涂料涂布于该电极层22上,以形成该胶囊化胆固醇液晶层24,该涂布方式为滚动条式(roll-to-roll)法。 图2D为曝光工艺示意图,利用灰阶光罩26配合紫外线28于该胶囊化胆固醇液晶层24上进行曝光,该紫外线28的波长为365nm,此时控制该紫外线28的曝光量,就可制作出单层彩色化胆固醇型液晶显示器,例如,该胶囊化胆固醇液晶层24所定义区域为红色,则该区域所使用灰阶光罩26的透光率为100%,该胶囊化胆固醇液晶层24所定义区域为绿色,则该区域所使用灰阶光罩26的透光率为50%,及该胶囊化胆固醇液晶层24所定义区域为蓝色,则该区域所使用灰阶光罩26的透光率为0%,本发明通过曝光工艺后,可形成胆固醇型液晶显示器。

微胶囊技术

microencapsulation (微胶囊技术) 指将物质细微分散包覆后,并在所需的时候将其释放出来的方法 capsules--粒径大于1000μm microcapsules (or microcells)--粒径分布在1~1000μm nanocapsules--粒径小于1μm 2.Principle:微胶囊技术主要是根据Bungenbergde Jong所提的聚集(coacervation)原理 (1) 运用高分子的聚集是微胶囊形成主要方式 (2) 它是利用分子间的化学或物理产生的边界作用力,让分子自行形成微胞的一种方法 3. 微胶囊技术在食品工业上的意义 (1) 将液体形式的食品转变成固体,以利于干燥食品中使用 (2) 留滯挥发性物,以供最佳条件时释放 (3) 避免蒸发及受水分影响 (4) 使不容(incompatible)成分均匀混合 (5) 掩蔽不良味道 (6) 藉由特定的溶释机构,达到特殊效果 (7) 改变固体物质的质地与密度 (8) 保护敏感物质 (1)corematerial(芯材)或nucleus (核心物质):包覆于壁膜内的物质。 重量约占整个微胶囊的80-99%,并于适当的时候被释放出來。 (2)wallmaterial(壁膜材料或囊壁)或shell (外壳) a.如芯材为亲油性物质,则囊壁材料选择亲水性材料 b.如芯材为亲水性物质,则囊壁材料用水不溶性的合成聚合物 壁材选择基本原则 芯材和壁材的溶解性能相反,芯材亲油、壁材一般要亲水,反之亦然。 壁料对芯材无不良影响 壁材有适当的渗透性、溶解性、可降解性、弹性、流动性、乳化性等 壁材成膜性能好、具有一定的机械强度与稳定性 2.核/壳比值 (1)典型的胶囊含有70-90%wt的核心物质,外壳厚度约为0.1-200μm a.胶囊外壳的厚度与颗粒大小和相对密度有关 b.微胶囊中核心物质和外壳的关系有许多表示方法,最常见的是「核心量」和「核/壳比值」两种表示方式 (2)核心量 a.心材在整个微胶囊中所占百分比 b.核心量可作为商品的重要准则 (3)核/壳比值 a.定义:核心与外壳的重量比值 b.核/壳比值是假设核心是一完美的球体,胶囊外壳厚度也是均匀不变的。

微胶囊技术的应用及其发展_刘永霞

收稿日期:2002-11-22 第一作者简介:刘永霞(1973-),女,硕士研究生。 微胶囊技术的应用及其发展 刘永霞,于才渊 (大连理工大学化工学院工程研究室,辽宁大连 116012) 摘 要:微胶囊化方法是功能性材料制备中一项重要的应用技术,近年来受到普遍关注。本文中详细地介绍了几种重要的胶囊制备方法及其在食品、渔业、医药和生物化工领域的应用实例,指出了该技术的发展前景。关键词:微胶囊;纳米微胶囊;功能材料中图分类号:T B34 文献标识码:A 文章编号:1008-5548(2003)03-0036-05 Application and Recent Progress of Microencapsulation Technology LIU Yong -xia ,Y U Cai -yuan (School of Chemical Engineering ,Dalian University of Technology ,Dal ian 116012,China ) A bstract :M icroencapsulation is an impor tant techmology of the production of functio nal powders ,and in recent y ears more and mo re attentin is paid to it .Several impo rtant microencapsula tio n technologies and applications in the field of food ,fish industiy ,medicine ,biochemical engineering ,et al .are introduced ,and the prog ress of microencapsulation technolog y is also pointed out .Key words :microcapsule ;nano -microcapsule ;functional materi -als 微胶囊技术是指利用成膜材料将固体、液体或气体囊于其中,形成直径几十微米至上千微米的微小容器的技术[1]。微小容器被称为微胶囊,器壁被称为壁材或壳材,而其内部包覆的物质则称为芯材 或囊芯。含固体的微胶囊形状一般与固体相同,含液体或气体的微胶囊的形状一般为球形。 从不同的角度出发,微胶囊有多种分类方法:从芯材来看,分为单核和复核微胶囊;从壁材结构来分,可分为单层膜和多层膜微胶囊;从壁材的组成来看,分为无机膜和有机膜微胶囊;从透过性来讲,又 分为不透和半透微胶囊,半透微胶囊通常也称为缓释微胶囊。 微胶囊具有保护物质免受环境的影响,降低毒 性,掩蔽不良味道,控制核心释放,延长存储期,改变物态便于携带和运输,改变物性使不能相容的成分均匀混合,易于降解等功能[2~4] 。这些功能使微胶囊技术成为工业领域中有效的商品化方法。美国的NRC 公司利用微胶囊技术于1954年研制成第一代无碳复写纸微胶囊[5~6],并投放市场,从此,微胶囊技术得到突飞猛进的发展。 1 微胶囊技术简介 微胶囊技术从20世纪30年代发展至今已有 60多年的历史。随着新材料的不断出现,到目前为止,微胶囊化的方法已将近200种[7],但还没有一套系统的分类方法。目前人们大致上将其分为:物理法、物理化学法和物理机械法[8] 。微胶囊化方法选择的依据主要是生产要求的粒子平均粒径、芯材及壁材的物理化学特性、微胶囊的应用场合、控制释放的机理、工业生产的规模及生产成本等。本文主要介绍其中的锐孔-凝固浴法、凝聚相分离法、喷雾干燥法和流化床喷涂法。之所以介绍这几种方法,主要是因为它们都适用于工业大规模生产。 锐孔-凝固浴法:是指将喷嘴喷出的微粒通过 多联化而后形成微胶囊。该法是Mabbs 于1940年和Rabbool 于1950年提出的[9]。此法一般是以可熔(溶)性高聚物作原料包覆囊芯,而在凝固浴中(水或溶液)固化形成微胶囊,固化过程可能是化学反应,也可能是物理过程。它采用的成膜材料多为褐藻酸钠、聚乙烯醇、明胶、蜡和硬化油脂等。由于在凝固浴中发生固化反应,一般进行得很快,因此含有囊芯的聚合物壁膜在到达凝固浴之前预先形成,这就需要锐孔装置(滴管是其中最简单的一种)。图1为该法流程图。 此项技术的关键除芯壁材的配比外,是否在凝固浴中加入搅拌也是相当重要的,如王显伦[9]在制 第9卷第3期2003年6月 中 国 粉 体 技 术 China Powder Science and Technology Vol .9No .3June 2003 DOI :10.13732/j .issn .1008-5548.2003.03.011

纳米微胶囊制作新技术及其应用

纳米微胶囊 小组成员: 日期:2014年9月28日

纳米微胶囊 摘要:随着微胶囊技术的发展,纳米微胶囊技术受到越来越多的关注,本文对纳米微胶囊的定义、与传统微胶囊相比的优点以及最新制备方法进行了介绍,并综述了近年来纳米微胶囊技术的应用研究进展,同时探讨了纳米微胶囊技术在各领域中的研究现状及以后的研究趋势。 关键词:纳米微胶囊;制备方法;应用研究 Abstract:With the development of microcapsule technology, nanocapsule technology has received more attention. The definition,characteristic and preparation methods of nanocapsule compared with traditional microcapsule are introduced in this paper, and the new research progress of nanocapsule technology applications in different fields in recent years are reviewed. In addition, current studies and future applications of nanocapsule technology in these fields are explored. Key words: nanocapsule, preparation method, application and research 1 引言 微胶囊技术是指将固体颗粒、液体微滴或气体作为胶囊的芯料,在其外部形成一层连续而极薄包裹的过程。其制备技术起源于20世纪50年代,在70年代中期得到迅猛发展,在此期间出现了许多微胶囊化产品和工艺[1]。微胶囊具有保护芯材物质免受环境影响,屏蔽味道、颜色、气味,改变物质重量、体积、状态或表面性能,隔离活性成分,降低挥发性和毒性, 控制芯材物质的可持续释放等多种作用,目前该技术已经成为材料、化学、化工、生物和医学等诸多学科领域工作者的研究热点,已被广泛应用于生物医学、食品、农药、化妆品、金属切割、涂料、油墨、添加剂等多个领域,因其具有广阔的应用前景,国际上将它列为21世纪重点研究开发高新技术之一[2]。 伴随着微胶囊技术的迅速发展,有学者在20世纪70年代末提出了“纳米微胶囊技术”这一概念。纳米微胶囊(nanocapsule),即具有纳米尺寸的微胶囊,其颗粒微小,易于分散和悬浮在水中,形成均一稳定的胶体溶液,并且具有良好的靶

微胶囊化技术

微胶囊化技术 第一节微胶囊化概述 1、基本概念 ?微胶囊:是指一种里面包埋有液体、固体或气体组分,而外面为聚合物壁壳的微型容器或包装体。 ?囊壁:微胶囊的聚合物壁壳,也称为外壳或保护膜。 ?囊心:被包埋的物料组分,也称囊核或填充物。 ?微胶囊化过程:将待包埋目标物质分成细粒,然后以这些细粒为核心,将成膜材料在其表面沉积、涂层的过程。 ?微胶囊化技术:将固体、液体或气体物质包埋在微小而封闭的胶囊内的方法与技术。 2、微胶囊化特性 1)微胶囊可包埋固体、液体和气体。 2)微胶囊大小一般在5~200um范围。当胶囊粒度小于5um时,由于布朗运动难于收集;当粒度超过200um时,由于表面的静电摩擦系数减小而稳定性下降。 3) 被包埋组分与囊壁是互相分离的两相。 4)囊壁较薄,厚度一般在0.2um至几微米,通常不超过10um。 5)囊壁可以是单层结构,也可以是双层或多层结构。囊心可以是单一组分(如单核),也可以是多种组分(多核、多核-无定形等)。 6)在特定条件下如加压、揉破、摩擦、加热、酶解、溶剂溶解、水溶解、电磁作用等,囊壁所包埋的组分可在控制速率下释放。 7)微胶囊形状和结构受被包埋物料结构、性质及胶囊化方法影响。一般为球体、粒状、肾形、谷粒形、絮状和块状。

常见微胶囊的各种结构。 微囊化产品特性研究 3、微胶囊化发展 药物胶囊化已有150多年历史,而微胶囊化则出现于20纪30年代。1936年美国大西洋海岸渔业公司提出了用液体石蜡制备鱼肝油明胶微胶囊专利。1949年Wurster发明了微胶囊化的空气悬浮法技术,实现了固体微粒的微胶囊化。1953年Green发明了凝聚法微胶囊化技术,实现了液体物料的微胶囊化,并研制出无碳复写纸(NCR纸),这是微胶囊化技术第一次商业应用,随后该技术得到了快速发展。 迄今为止,微胶囊化技术在化工、食品、医药、生化、印刷等领域获得了广泛应用,其理论和实践也日趋成熟。 4、微胶囊的功能 1)改变物料存在状态、质量和体积。 2)降低挥发性并进行控制性释放。 3)隔离活性成分,保护敏感性物质。 4)掩盖不良气味和风味。 5) 降低食品添加剂的毒理作用。 O/W型微胶囊技术的主要功能 ?尽管很多微囊化方法报道,喷雾干燥生产O/W型微囊化产品依然是工业化生产最重要手段。 ?将油脂转变成水溶性粉体、方便加工、运输和食品配方; 包括脂质类如V A、V D、V E,卵磷脂、叶黄素、植物功能性提取成分 ?将水溶性、油溶性功能成分有效复配为一体;功能食品

微胶囊技术

微胶囊技术在食品工业中的应用 摘要:本文主要就微胶囊技术的概念.特征及其应用等进行了系统的论述,同时就微胶囊技术在食品工业中的几个应用实例作了简要介绍。实践证明,微胶囊技术为食品的研究与开发提供了一条很重要的途径,具有很高的实用价值。 关键词:微胶囊技术;食品工业;应用 Application of Micronecapsulation Technology in Food Industry Li Ping Feng,20100806159 (School of Food(Biology),Xuzhou Institute of Technology, Xuzhou 221000, China) Abstract:In this paper the concept of microcapsule technology. The features and applicatio is discussed, also introduces several examples of application of microencapsulation technology in food industry. Practice has proved, micro provides an important way capsule technology for food research and development, has very high practical value. Key words:Microcapsule technology; Food industry; Application 微胶囊技术起于20世纪30年代,美国的Wurster用物理方法制备了微胶囊。到20世纪70年代,微胶囊技术的工艺日益成熟,应用范围逐渐扩大,今天它已从最初的药物包覆和无炭复写扩展到了医药、食品、日用化学品、肥料、化工等诸多领域。目前,微胶囊技术在国外发展迅速,美国对它的研究一直处领先地位。在美国约有60%的食品采用这种技术。日本在20世纪60-70年代也逐步赶上来,每年申报的有关微胶囊技术方面的专利可达上百件[1]。全球对微胶囊技术的研究机构从02年的2%增长到06、07年的22%充分说明微胶囊技术在全世界引起的广泛重视。我国的研究起步较晚,在 20 世纪 80 代中期引进了这一概念,虽然在微胶囊技术应用方面也有许多发展,但同国外相比,我国仍处于起步阶段,进口微胶囊在生产中仍占主导地位。微胶囊技术应用于食品工业始于20世纪50年代末,此技术可对一些食品配料或添加剂进行包裹,解决了食品工业中许多传统工艺无法解决的难题,推动了食品工业由低级的农产品初加工向高级产品的转变,为食品工业开发应用高新技术展现了美好前景。目前,油溶性物质微胶囊化研究较为成熟,而水溶性物质微胶囊化则相对研究较少。在食品工业中应用最广的微胶囊技术是喷雾干燥法,应用领域主要是粉末香精,香料与粉末油脂,今后它们仍然要占主导地位[2]。 微胶囊技术的应用现状:出于物质胶囊化后有许多独特的性能,可应用于许多特殊的过程,因而引起了各国科技工作者极大的兴趣。随着人们对微胶囊化技术认识的不断加深,新材料新设备的不断开发,微胶囊化技术将会沿着它这一独特的方式活跃于食品工业中[3]。目前,食品工业中应用微胶囊技术的领域主要有风味料、挥发性物质、微生物类、脂类物质、饮料和粉末状食品等[4]。

微胶囊技术在食品工业中的应用

微胶囊技术在食品中的应用 姓名黄相尧 学号12110302051 专业食品科学与工程 学校山东理工大学

目录 摘要 ............................................................................................................................................... I 引言 ............................................................................................................................................... I 1微胶囊技术在食品配料中的运用. (2) 1.1天然香精香料 (2) 1.2天然色素 (2) 1.3酸味剂 (2) 1.4甜味剂 (3) 1.5膨松剂 (3) 1.6防腐剂 (4) 1.7抗氧化剂 (4) 1.8粉末油脂 (5) 2微胶囊技术在营养强化剂中的应用 (7) 2.1活性肽和功能性蛋白 (7) 2.2多不饱和脂肪酸 (8) 2.3维生素 (9) 2.4矿物质 (9) 2.5益生菌 (10) 3微胶囊技术在食品酶制剂中的运用 (12) 4展望 (14) 参考文献 (15)

摘要 重点介绍了微胶囊技术在食品添加剂、功能性营养成分和食品酶制剂中的运用,及在解决食品工业中某些食品成分不稳定的问题或达到控制释放目的方面的各种应用,为推动该技术的进一步发展提供了依据。 关键词:微胶囊;食品工业;应用 Microencapsulationtechnologyanditsapplicationinfoodindustry Abstract:Applicationofmicroencapsulationtechnologyinfoodadditives,functionalnutritioncomponentsandfoodenzymepreparationswasfocused.Itwasexpectedtoresolvetheinstabilityofsomefoodingredientsandcontroltherelease,whichprovidedreferencesforthedevelopmenofthetechnology. Keywords:microencapsulation;foodindustry;application

微胶囊技术及其应用

微胶囊技术及其应用 摘要:微胶囊是一门新兴的工艺技术,目前获得了广泛的关注,对微胶囊的开发技术和应用微胶囊技术都在不断发展。本文从微胶囊化的方法及其在食品行业各个领域的应用出发,简要介绍了现在微胶囊技术的发展情况及其使用价值,为更好的了解和认识微胶囊技术打下了铺垫。 关键词:微胶囊技术、食品行业、展望 人们对微胶囊的研究大约始于20世纪30年代,当时的美国人D.E.Wurster用物理方法制备了微胶囊,此后微胶囊技术不断发展[1],应用范围也从最初的无碳复写纸扩展到医药、食品领域、农药、饲料、涂料、油墨、粘合剂、化妆品、洗涤剂、光感材料、纺织等行业等[2]。目前对微胶囊技术的研究在不断的发展,从微胶囊化的方法到微胶囊的各种应用都是国内外科学家关注的问题,特别是近年来随着人们对食品要求的不断提高,微胶囊技术成为食品行业一项极为重要和广泛应用的技术,本文立足与微胶囊技术在食品行业几个领域的应用,说明微胶囊技术在食品行业的最新应用进展,在一定程度上说明微胶囊技术在食品行业的发展展望,为更深刻的认识微胶囊技术提供了理论依据。 1 微胶囊的方法 微胶囊化技术是指利用天然或者合成高分子材料,将分散的固体、液体、或者气体包裹起来,形成具有半透性或者密封胶囊的微小粒子的技术包裹的过程即为胶囊化,形成的微小粒子成为微胶囊,其大小一般为5~ 200微米不等,形状多样,取决于原料的制备方法,通常把构成微胶囊外壳的材料成为“壁材”或“包衣”,把包在微胶囊内部的物质称为“囊心”或“芯材”[3]。一般可以将微胶囊化方法大致分为三类,即化学法、物理法和物理化学法[4]。其中物理法是用物理和机械原理的方法制备微胶囊具有成本低、易于推广、有利于大规模连续生产等有点,在商业领域特别是药品、食品工业经常利用这种方法来制备微胶囊可以分为,喷雾干燥、喷雾凝冻、空气悬浮、真空蒸发沉积、静电结合、多空离心等[5];化学法主要是利用单体小分子发生聚合反应生成高分子成膜材料将囊心包覆,许多合成高分子的聚合反应都可以运用到微胶囊制备上,化学法包括,界面聚合、原位聚合、分子包裹、辐射包囊,目前通常使用的方法是界面聚合和原位聚合[6];物理化学方法是应用物理化学原理制备微胶囊的技术有,水相分离油相分离、囊心交换、挤压、锐孔、粉末床、溶化分散[7]。 近年来人们不断研究尝试新的微胶囊制备方法,樊振江等以环糊精为壁材,用超声波法制备花椒精油胶囊[8],此外也有人在以阿明胶-阿拉伯胶壁材的复合凝聚法制备番茄红素微

微胶囊技术在食品中的应用

微胶囊技术在食品中的应用 食品科学与工程0801 曾奎杰 微胶囊技术是一项用途广泛而又发展迅速的新技术。在食品、化工、医药、生物技术等许多领域中已得到成功的应用,尤其在食品工业,许多于技术障碍而得不到开发的产品,通过微胶囊技术得以实现,使得传统产品的品质得到大大的提高,由于飞此项技术川以改变物质形态、保护敏感成分、隔离活胜物质、降低挥发胜、使不相溶成分混合并降低某些化学添加剂的毒性等,为食品工业高新技术的开发展现了良好前景。 一、微胶囊技术的基本概念和发展概况 1 微胶囊技术的基本概念 微胶囊技术是指利用天然或合成高分子材料,将分散的固体、液体,甚至是气体物质包裹起来,形成具有半透性或密封囊膜的微小粒子的技术。包裹的过程即为微胶囊化,形成的微小粒子称为微胶囊。微胶囊化后川以实现许多目的:改养被包裹物质的物理性质(颜色、外观、表观密度、溶解胜);使物质免受环境的影响,提高物质的稳定胜;屏蔽味道和气味;降低物质毒胜;将不相容的物质隔离;根据需要控制物质的释放等 微胶囊化技术将被包埋物作为芯材,外面聚合物为壁壳的微容器或包装体。微胶囊的大小为5 一200um,囊壁的厚度一般在。2um至几微米内,在特定的条件下,囊壁所包埋的组分川以在控制的速率下释放。在食品工业中,为了获得特殊的胶囊化产品,关键就是要选择好具有该特性的壁材。目前在食品工业中最常用的壁材为植物胶、阿拉伯胶、海藻酸纳、卡拉胶、琼脂等,其次是淀粉及其衍生物,如各种类型的糊精、低聚糖。此外还有蛋白质类、油脂类等。在微胶囊化技术中,根据不同芯材的要求,选择适当的壁材,以达到改变物态、体积和质量,控制释放和降低物质挥发胜,隔离活胜成份以及保护敏感物质等功能 二、微胶囊技术在食品工业中的作用 微胶囊技术应用于飞食品工业,使许多传统的工艺过程得到简化,同时也使许多用通常技术手段儿法解决的问题得到了解决,极大的推动了食品工业由低级初加工向高级深加工产业的转变。目前,利用微胶囊技术已开发出了许多微胶囊化食品,如粉末油脂、粉末酒、胶囊饮料、固体饮料等,风味剂(风味油、香辛料、调味品)、天然色素、营养强化剂(维生素、氨基酸、矿物质)、甜味剂、酸味剂、防腐剂及抗氧化剂等微胶囊化食品添加剂也已大量应用于生产中。概括起来,微胶囊技术应用于食品工业川以起到以下作用。 1、改变物料的状态 能将液态、气态或半固态物料固态化,如粉末香精、粉末油脂、固体饮料等,以提高其溶解性、流动性和贮藏稳定性,容易与其他原料混合均匀,便于深加工加工处理,也便于使用、运输和保存。 2、保护敏感成分 以防止某些不稳定的食品辅料挥发、氧化、变质,提高敏感性物质对环境因素的耐受力,确保营养成分不损失,特殊功能不丧失。例如,应用于飞肉类香精和海鲜香精的美拉德反应产物是一种很重要的呈味物质,这种物质以液态形式存在时极不稳定,制成了微胶囊产品后,稳定性得以提高,应用起来更加力便、广

微胶囊技术在纺织中的应用

微胶囊技术在纺织工业中的应用 摘要:本文主要介绍了微胶囊技术的特点,制备方法及原理,并介绍了微胶囊技术在纺织染整和功能性整理方面的应用及微胶囊技术的最新进展。 关键词:微胶囊技术;纺织工业;应用 |1、前言 微胶囊技术是指利用天然的或合成的高分子材料将固体的、液体的、甚至是气体的微小物质包覆,形成直径l- 5000ηm的一种具有半透性或封闭膜的微型胶囊技术。微胶囊的外形多样,可以是球状的葡萄串形.也可以是不规则的形状;胶囊外表可以是光滑的.也有折叠的;把包在微胶囊内部的物质称为芯材。囊芯可以是固体,也可以是液体或气体。固体粒子微胶囊的形状几乎与囊内固体一样,而含液体或气体的微胶囊是球形的。另外还可形成椭圆形、腰形、谷粒形、块状与絮状形态闭。微胶囊外部由成膜材料形成的包覆膜称为壳材。微胶囊具有改变物质外观及性质,以及延长和控制膜内物质的释放,提高储存稳定性,将不可混溶成分隔离等作用。微胶囊的囊膜既可以是单层也可以是双层或多层结构;而囊膜所包覆的核心物质既可以是单核也可以是多核如图1所示。 被包覆的芯材可以是油溶性、水溶性化合物或混合物,其状态可为固体、液体或气体。其主要包括的物质如表1所示。囊芯与壁材的溶解性能必须是不同的,即水溶性囊芯只能用油溶(疏水)性壁材包覆,而油溶性囊芯只能用水溶性壁材;为实现包囊化,包囊膜的表面张力应小于囊芯物的表面张力且包囊材料不与囊芯发生反应。

微胶囊制备技术起源于20世纪50年代,美国的NCR公司在1954年首次向市场投放了利用微胶囊制造的第一代无碳复印纸,开创了微胶囊新技术的时代.60年代,由于利用相分离技术将物质包囊于高分子材料中,制成了能定时释放药物的微胶囊,推动了微胶囊技术的发展。近20年,日本对微胶囊技术的大力开发和微胶囊的独特性能,更使微胶囊技术迅速发展。微胶囊技术已应用到医药、农业、计算机、化学品、食品加工、化妆品等工业中,引起世界范围内的广泛关注。每年发表的与微胶囊有关的公开出版物(包括专利)大约以30多种的速度递增,尤其是日本,每年申报的微胶囊技术方面的专利达上百件图.微胶囊化方法己经在几个不同技术领域得到了发展,作为一项高新技术,已经成为各国学者竞相研究的热点。微胶囊可改变囊芯物质的外观形态而不改变它的性质可以使囊芯与外界环境隔绝开来使性质不稳定、易挥发的物质的使用和保存期限延长。若壁材为半透过性膜囊芯物质就能透过膜壁释放出来,因而具有缓控释功能。微胶囊的这些特点使它广泛应用于纺织、化工、医药、农药、香料、无碳复写纸等行业。 2、微胶囊化的方法及原理

微胶囊与微胶囊技术_余若冰

收稿日期:2000-04-12。 作者简介:余若冰,湖北工学院化工系高分子材料专业研究生。现从事微胶囊的研究工作。 微胶囊与微胶囊技术 余若冰 彭少贤 郦华兴 (湖北工学院化工系,武汉,430068) 杨敬宇 汪秉坤  (武汉塑料十一厂,430010) (武汉马应龙药业公司,430064) 摘要:介绍了微胶囊、微胶囊的包囊材料的种类及选用原则、微胶囊囊芯物的种类。重点介绍微胶囊化技术,主要的制备方法有水相分离法、有机相分离法、复相乳液聚合法、乳液聚合法、界面聚合法、界面沉积法,后面三种方法主要用来制备纳米微胶囊。对微胶囊建立特性参数进行表征,并对微胶囊的大小、膜厚、微胶囊膜的孔径对微胶囊的扩散性能的影响进行探讨。预测了微胶囊技术的发展前景。 关键词: 微胶囊 微胶化 技术 微胶囊是由天然或合成高分子制成的微型容器,直径一般为1~1000μm 。含固体微胶囊的形状与囊内固体相同,含液体或固体的微胶囊形状是球形的。微胶囊技术包括微胶囊的制备技术和应用技 术。即采用特定的方法和特定的设备,使高分子材料包封住药品、涂料及反应试剂等,制成微胶囊,然后将制备的微胶囊通过一些其他的工艺,再制成具有优良特性的产品。 广义地说,微胶囊具有改善和提高物质表观及其性质的能力。更确切的说,微胶囊能够储存微细状态的物质,并在需要时释放该物质。微胶囊亦可转变物质的颜色、形状、重量、体积、溶解性、反应性、耐久性、压敏性、光敏性等特点。正因为以上特点,所以微胶囊已被广泛地用于医药、农药、涂料、生物固定化技术等行业。 1 微胶囊包囊材料 1.1 微胶囊包囊材料的选择原则 包囊材料应是可以掩盖或改变囊芯物不良性质的载体。选择微胶囊包囊材料应根据被包囊物质的性质、微胶囊产品的应用性能要求;包囊材料应具有足够的渗透性、稳定性、溶解性、粘度、介电性能、吸湿性;囊材对囊芯物有足够的包裹率,易于成囊。 此外,包囊材料的价格也是选择包囊材料所需考虑的因素。 1.2 微胶囊包囊材料 包囊材料可分为天然高分子材料、半合成高分 子材料、合成高分子材料三大类。天然高分子材料为可胶凝的胶体材料,如明胶、阿拉伯胶及淀粉等[1~3] ,这类材料无毒,成膜性好,但是机械强度差,原料质量不稳定。以天然高分子为包囊材料的微胶囊制备方法有许多,主要采用复凝聚法及其改进方法。半合成高分子材料以纤维素衍生物为主,如羧甲基纤维素钠(CMC -Na )、邻苯二甲酸醋酸纤维素(CAP )、乙基纤维素(EC ),纤维素衍生物的优点是毒性小、粘度大、成盐后溶解度增加,缺点是易水解,不耐高温,耐酸性差。在半合成高分子材料中,乙基纤维素(EC )适用于非水体系絮凝工艺制备微胶囊;醋酸纤维素酯适用于非水体系絮凝工艺和水体系中单凝聚的工艺制备微胶囊[4]。合成高分子材料(聚丁二烯、聚乙烯、聚乙烯醇缩醛、聚醚、聚乙二醇、聚丙烯酰胺、聚甲基丙烯酸甲酯、聚氨酯、环氧树脂、合成橡胶等)的特点是成膜性好,化学性能好,稳定性好[5]。随着药物控释技术的发展,合成生物降解型高分子材料将成为该领域的热点。由于此种材料可生物降解,也不会在体内滞留, 所以得到人们的关注,如聚乙烯吡咯烷酮(PVP )[6] 、现 代 塑 料 加 工 应 用 第12卷第6期 Modern P lastics Processing and A pplicatio ns 2000年12月

微胶囊技术在食品中的应用

微胶囊技术在食品中的应用 食品科学与工程 0801 曾奎杰 微胶囊技术是一项用途广泛而又发展迅速的新技术。在食品、化工、医药、 生物技术等许多领域中已得到成功的应用, 尤其在食品工业, 许多于技术障碍而 得不到开发的产品, 通过微胶囊技术得以实现, 使得传统产品的品质得到大大的 提高,由于飞此项技术川以改变物质形态、保护敏感成分、隔离活胜物质、降低 挥发胜、使不相溶成分混合并降低某些化学添加剂的毒性等, 术的开发展现了良好前景。 一、微胶囊技术的基本概 念和发展概况 1 微胶囊技术的基本概念 微胶囊技术是指利用天然或合 成高分子材料, 将分散的固体、 物质包裹起来, 形成具有半透性或密封囊膜的微小粒子的技术。 微胶囊化, 形成的微小粒子称为微胶囊。 微胶囊化后川以实现许多目 的: 包裹物质的物理性质(颜色、外观、表观密度、溶解胜);使物质免受环境的影 响,提高物质的稳定胜; 屏蔽味道和气味; 降低物质毒 胜; 将不相容的物质隔离; 根据需要控制物质的释放等 微胶囊化技术 将被包埋物作为芯材, 外面聚合物为壁壳的微容器或包装体。 微胶 囊的大小为5 一 200um 囊壁的厚度一般在。2um 至几微米内,在特定的条件下, 囊壁所包埋的组分川以在控制的速率下释放。 在食品工业中, 为了获得特殊的胶 囊化产品, 关键就是要选择好具有该特性的壁材。 目前在食品工业中最常用的壁 材为植物胶、阿拉伯胶、海藻酸纳、卡拉胶、琼脂等,其次是淀粉及其衍生物, 如各种类型的糊精、 低聚糖。此外还有蛋白质类、 油脂类等。 在微胶囊化技术中, 根据不同芯材的要求,选择适当的壁材,以达到改变物态、体积和质量,控制释 放和降低物质挥发胜,隔离活胜成份以及保护敏感物质等功能 二、微胶囊技术在食品工业中的作用 微胶囊技术应用于飞食品工业, 使许多传统的工艺过程得到简化, 同时也使许多 用通常技术手段儿法解决的问题得到了解决, 极大的推动了食品工业由低级初加 工向高级深加工产业的转变。 目前,利用微胶囊技术已开发出了许多微胶囊化食 品,如粉末油脂、粉末酒、胶囊饮料、固体饮料等,风味剂(风味油、香辛料、 调味 品)、天然色素、营养强化剂(维生素、氨基酸、矿物质)、甜味剂、酸味 剂、防腐剂及抗氧化剂等微胶囊化食品添加剂也已大量应用于生产中。 微胶囊技术应用于食品工业川以起到以下作用。 1 、改变物料的状态 能将液态、气态或半固态物料固态化, 以提高其溶解性、 流动性和贮藏稳定性, 加工 处理,也便于使用、运输和保存。 2 、保护敏感成分 以防止某些不稳定的食品 辅料挥发、 素的耐受力,确保营养成分不损失,特殊功能不 丧失。例如,应用于飞肉类香精 和海鲜香精的美拉德反应产物是一种很重要的呈味物质, 这种物质以液态形式存 在时极不稳定,制成了微胶囊产品后,稳定性得以提高,应用起来更加力便、广 泛。 3 、控制芯材释放 微胶囊产品与通过预先设计的溶解和释放机理, 在最适时问以最适速率释放 心材物质。为食品工业高新技 液体,甚至是气体 包裹的过程即为 改养被 概括起来, 如粉末香精、 粉末油脂、 容易与其他原料混合均匀, 固体饮料等, 便于深加工 氧化、变质,提高敏感性物质对环境因

微胶囊技术

微胶囊技术简介与实例 目录 微胶囊技术简介与实例 (1) 微胶囊技术概述 (1) 微胶囊及微胶囊技术概述 (1) 常规微胶囊的制备方法 (2) 三类特殊结构微胶囊简介 (4) 人工器官微胶囊 (5) 微胶囊在纺织品和医药中的应用 (7) 微胶囊技术概述 本章旨在对微胶囊的基本概念进行介绍。对其微胶囊的各种制备原理及做一个涵盖面较全、概括性强的简介。最后,对三种结构特殊的微胶囊(人工器官微胶囊、脂质体胶囊、纳米粒)进行简介。 微胶囊及微胶囊技术概述 微胶囊是利用天然或合成的高分子材料对固体、液体或气体进行包封的、粒径为5~1000um的中空微囊(特别的,纳米微胶囊的平均粒径为200~300nm)。微胶囊一般由一层薄膜和囊芯物质组成。组成薄膜的材料称为囊材,组成囊芯的材料称为芯材。囊材可以是天然物(如蜂蜡、氢化植物油衍生物、壳聚糖、乳清蛋白、纤维素等),也可以是合成物(如聚酯、聚氨酯、聚赖氨酸、聚乙二醇等)。芯材的种类更加多样,按物质的状态分类,可以是液体、固体、气体,甚至可以是固、液混合物。理论上可以将需要被包覆和保护的各种微小物质封存在囊壳内部(如精油、芳香剂、抗菌药物、金属粒子、酶、活细胞等等)。 将芯材包封在囊材的过程,即制备微胶囊的过程称为微囊化。微囊化技术的主要特点是:改变活性物质的理化性质(相态、溶解度等);保护物质免受环境条件的影响;屏蔽味道、颜色和气味;降低物质的毒性;控制释放活性物质等。经微胶囊化的芯材局域靶向性和控释性,可以根据需要在恰当的时间和恰当的位置以一定的速率对芯材进行释放。如:经过微胶囊化的抗凝血药物,可生物降解的载药纳米粒借助导管给药系统,可将其输送到局部血管,并缓慢释放所携带的药物,可望有效防治血管再狭窄。 由于微胶囊技术的特点,带来了许多好处。比如说,可以极大程度地保留了具有生物活性功能的物质;使液体转变为固体,便于加工;提高药物的生物利用率,减少药物用量,降低毒副作用等等。

微胶囊化方法及常用壁材

微胶囊化方法及常用壁材 一、微胶囊制备方法 1、微胶囊的常规制备方法 复凝聚法复凝聚法是利用两种带有相反电荷的高分子材料以离子间的作用相互交联,制成的复合型壁材的微胶囊一种带正电荷的胶体溶液与另一种带负电荷的胶体溶液相混,由于异种电荷之间的相互作用形成聚电解质复合物而发生分离,沉积在囊芯周围而得到微胶囊。 单凝聚法单凝聚法通常被称为沉淀法,该方法通过向含有芯材的某种聚合物溶液中加入沉淀剂,使该聚合物的溶解性降低,该聚合物和芯材一起从溶液中析出,从而制取微胶囊的方法该方法不需要事先制备乳液,也可以不使用有机交联剂,可以避免有机溶剂的使用,但通过该法制得的微胶囊粒径较大。 界面聚合法界面聚合法是将两种发生聚合反应的单体分别溶于水和有机溶剂中,其中芯材溶解于处于分散相溶剂中然后,将两种液体加入乳化剂以形成乳液,两种反应单体分别从两相内部向液滴界面移动,并在相界面上发生反应生成聚合物将芯材包裹形成微胶囊的方法该法的优点是反应物从液相进入聚合反应区比从固相进入更容易,所以通过该法制备的微胶囊适于包裹液体,制得的微胶囊致密性好在界面聚合法制备微胶囊时,分散状态在很大程度上决定着微胶囊的性能,搅拌速度溶液黏度以及乳化剂和稳定剂的种类用量对微胶囊的性质也有很大的影响。 原位聚合法原位聚合法应用的前提是形成壁材的聚合物单体可溶,而聚合物不溶该法需先将聚合物单体溶解在含有乳化剂的水溶液中,然后加入不溶于水的内芯材料,经过剧烈搅拌使单体较好的分散在溶液中,单体在芯材液滴表面定向排列,经过加热单体交联从而形成微胶囊如何让单体在芯材表面形成聚合物,是该方法需要控制的重点。 锐孔-凝固浴法锐孔-凝固浴法用的壁材要求是可溶性的通常将芯材物质和高聚物壁材溶解在同一溶液中,然后借助于滴管或注射器等微孔装置,将此溶液滴加到固化剂中,高聚物在固化剂中迅速固化从而形成微胶囊因为高聚物的固化是瞬间进行并完成的,所以将含有芯材的聚合物溶液加入到固化剂中之前应预先成型,所以需要借助于注射器等微孔装置锐孔-凝固浴法的固化过程可能是化学变化或物理变化。 喷雾干燥法喷雾干燥法是将芯材分散在壁材的乳液中,再通过喷雾装置将乳液以细微液滴的形式喷入高温干燥介质中,依靠细小的雾滴与干燥介质之间的热量交换,将溶剂快速蒸发使囊膜快速固化制取微胶囊的方法喷雾干燥法操作简单,综合成本较低,易于实现大规模生产但通过该方法制备微胶囊时,芯材会处于高温气流中,有些活性物质容易失活,限制了其应用范围; 且通过该方法制备微胶囊溶剂蒸发较快,微胶囊的囊壁容易出现裂缝,致密性有待提高,该方法目前主要用于生产粉末香料和粉末油脂。

相关主题
文本预览
相关文档 最新文档