当前位置:文档之家› 流量计输出的信号一般是脉冲信号或4

流量计输出的信号一般是脉冲信号或4

流量计输出的信号一般是脉冲信号或4
流量计输出的信号一般是脉冲信号或4

流量计输出的信号一般是脉冲信号或4-20mA电流信号,这两种信号输出的都是瞬时流量(也有用继电器输出累积量信号,原理一样,不再赘述),我们的目的是在PLC中计算和显示瞬时流量值和计算累积量值,当输入信号是脉冲信号是,在计算瞬时流量的时候,必须按照一个严格的时间间隔计算才能保证瞬时流量的准确性,因此,计算瞬时流量的时候必须用定时中断来进行,而且,在PLC系统中只能运行这一个中断程序,不允许再产生其它中断(即使是低优先级的中断也不允许运行),以防止干扰定时中断的时间间隔的准确性,计算瞬时流量就是将这个时间段的累计脉冲个数换算成累计流量,再除以时间就是瞬时流量,对于4-20mA输入只需按照其对应的量程进行换算就可以直接得到瞬时流量,而累积流量就是将每个时间段内的累积流量累加起来就是累积流量,在实际使用PLC

编程的过程中必须注意以下几个问题:

1. 输入脉冲频率范围是否超出PLC接收的范围;

2. PLC高速计数器在达到最大计数值时如何保证计算正确;

3. 如何保证定时中断不受干扰;

4. 如何避免计算累积量的误差;

5. 累积量的最大累积位数;

6. 如何复位累积量;

下面就最关键的2,4,6问题进行详细的叙述,以西门子S7-200 CPU224

为例,S7-200的CPU224具有6个单相最大30kHz的高速计数器,但PLC内部没有提供相应的算法来计算频率,因此,需要自己编程计算,这就需要在PLC高速计数器在达到最大计数值时要保证计算的正确性,实际编程时,对高速计数器初始化以后就使之连续计数,不再对其进行任何干预,其高速计数器的初始化程序如下:

注意:此段程序应该放到PLC第一个扫描周期执行的程序中执行。

对于高速计数器是否达到最大计数值时需要判断,S7-200CPU的高速计数器是可以周而复始的进行累计的,最高位为符号位,最小值为7FFFFFFF,由于计

数器是一直累加的,不可能出现本次读取的的计数值小于上次的计数值,因此判断计数器当前值是否小于前一次的计数值,就可以判断计数是否达到最大值的拐点(7FFFFFFF),如果达到,则执行特殊的计算以便消除计算错误,如下列程序所示,当当前计数值大于等于上次计数值时,两个计数值做差,就得到程序两次扫描时间间隔内的计数差值,同时将当前计数值赋值到上次计数值上;当当前计数值小于上次计数值时,计算上次计数值与7FFFFFFF之间的差值(用减法),以及当前计数值和7FFFFFFF之间的差值(用加法),然后将两个结果相加就是程序两次扫描时间间隔内的计数差值,从而实现对对累计计数值达到拐点时的正确计算。

注:此程序应放在定时中断子程序中执行。

实际上,在现场应用中定时中断子程序是采用250ms中断一次执行的,使用SMB34进行控制的,需要注意的是,系统中必须只保证这个中断是唯一存在的,不会受到其他中断的影响,否则可能会由于其他中断的影响使周期性中断不准时,从而影响精度。

通过以上计算就得到了250ms内流量计发过来的脉冲个数,这个数值乘以脉冲当量就是250ms内的流量值,再除以时间就是瞬时流量,另外,在250ms内再执行累加程序就可以计算累积流量了,在计算累积流量过程中需要避免累积过程的的计算误差,我们知道,流量累积量是一直累积的一个数值,一般会累积到8位数,而PLC内部的浮点数的有效位数是6位,当累积量数值很大的时候就会造成一个大数和一个小数相加,势必导致小数的有效位数丢失,造成很大的累积误差,因此,要避免大数和小数相加的情况出现,解决方法是采用多个流量累积器,只允许同数量级的数值相加,从而避免数值有效位数损失,实际编程中采用了5个累积器,根据常用流量情况下,在周期中断时间间隔(250ms)内流过的流量乘以15作为第一个累积器的上限,当达到这个累积器的上限值后,将这个累积器的值累加到第2个累积器中,并把第一个累积器清零,对于第三个累积器也同样处理,第4个累积器用于保存累积量小数部分数值,第5个累积器用于保存累积量整数部分数值,这样在显示总累积量时只需显示整数部分和小树部分就可以了,整个过程充分避免了累积过程中大数与小数相加的情况出现,在实际工程中,需根据流量的大小、周期中断的时间间隔来确定所用累积器的个数,而累积器的整数部分用双整数来表示,双整数的范围是-2,147,483,648到+2,147,483,647,

因此,可以使累积器的整数位数达到9位,这样,在显示累积量时就可以最多显示9位整数的累积量和6位的小数累积量。总计15位,从而省略累积器倍乘系数,使读数更简便。

对累积器需要在一定条件下复位,累积到最大数值或手动复位,在中断程序中判断累积量是否达到超过最大位数,当超过最大数值时,将各个累积器清零,另外清零的触发信号也可以是手动触发。原文出自:

https://www.doczj.com/doc/eb16606863.html,/index

脉冲响应函数简析

3-2 脉冲响应函数 对于线性定常系统,其传递函数)(s Φ为 )() ()(s R s C s =Φ 式中)(s R 是输入量的拉氏变换式,)(s C 是输出量的拉氏变换式。 系统输出可以写成)(s Φ与)(s R 的乘积,即 )()()(s R s s C Φ= (3-1) 下面讨论,当初始条件等于零时,系统对单位脉冲输入量的响应。因为单位脉冲函数的拉氏变换等于1,所以系统输出量的拉氏变换恰恰是它的传递函数,即 )()(s s C Φ= (3-2) 由方程(3-2)可见,输出量的拉氏反变换就是系统的脉冲响应函数,用)(t k 表示,即 1 ()[()]k t s -=Φ 脉冲响应函数)(t k ,是在初始条件等于零的情况下,线性系统对单位脉冲输入信号的响应。可见,线性定常系统的传递函数与脉冲响应函数,就系统动态特性来说,二者所包含的信息是相同的。所以,如果以脉冲函数作为系统的输入量,并测出系统的响应,就可以获得有关系统动态特性的全部信息。在具体实践中,与系统的时间常数相比,持续时间短得很多的脉动输入信号就可以看成是脉冲信号。 设脉冲输入信号的幅度为11t ,宽度为1t ,现研究一阶系统对这种脉动信号的响应。如 果输入脉动信号的持续时间t )0(1t t <<,与系统的时间常数T 相比足够小,那么系统的响应将近似于单位脉冲响应。为了确定1t 是否足够小,可以用幅度为12,持续时间(宽度)为 21t 的脉动输入信号来进行试验。如果系统对幅度为11t ,宽度为1t 的脉动输入信号的响应,与系统对幅度为12t ,宽度为21t 的脉动输入信号的响应相比,两者基本上相同,那么1t 就可以认为是足够小了。图3-3(a)表示一阶系统脉动输入信号的响应曲线;图3-3(c)表示一阶系统对脉冲输入信号的响应曲线。应当指出,如果脉动输入信号T t 1.01<(图3-3(b)所示), 则系统的响应将非常接近于系统对单位脉冲信号的响应。 这样,当系统输入为一个任意函数)(t r 时,如图3-4所示。那么输入量)(t r 可以用n 个连续脉冲函数来近似。只要把每一个脉冲函数的响应求出来,然后利用叠加原理,把每个脉冲函数的响应叠加起来,就可得到系统在任意输入函数)(t r 作用下的响应。

脉冲信号发生器使用方法

脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般都以矩形波为标准信号输出。 脉冲信号发生器的种类繁多,性能各异,但内部基本电路应包括图1所示的几个部分。 主振级一般由无稳态电路组成,产生重复频率可调的周期性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器使输出的脉冲信号幅度可调。 所示为xc-15型脉冲信号发生器的面板示意图,xc-15型脉冲信号发生器是高重复频率ns (纳秒)级脉冲信号发生器。其重复频率范围为1kHz~100MHz,脉冲宽度为5ns~300μs,幅度为150mV~5V,并输出正、负脉冲及正、负倒置脉冲,性能比较完善。 (1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用 ①“频率”粗调开关和“频率细调”旋钮。调节“频率”粗调开关和“频率细调”旋钮,可实现1kHz~100MHz的连续调整。粗调分为十挡(1kHz、3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz和100MHz),用细调覆盖。“频率细调”旋钮顺时针旋转时频率增高,顺时针旋转到底,为“频率”粗调开关所指频率;逆时针旋转到底,为此“频率”粗调开关所指刻度低一挡。例如,“频率”粗调开关置于10kHz挡,“频率细调”旋钮顺时针旋转到底时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。 ②“延迟”粗调转换开关和“延迟细调”旋钮。调节此组开关和旋钮,可实现延迟时间5ns~300,tts的连续调整。延迟粗调分为十挡(5ns、10ns、30ns、l00ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输出负方波的下降沿超前主脉冲前沿的时间。 “延迟细调”旋钮逆时针旋转到底为粗调挡所指的延迟时间。顺时针旋转延迟时间增加,顺时针旋转到底为此粗调挡位高一挡的延迟时间。例如,“延迟”粗调开关置于30ns挡,“延迟细调”旋钮顺时针旋转到底时输出延迟时间为100ns;逆时针旋转到底时输出延迟时间为30ns。 ③“脉宽”粗调开关和“脉宽细调”旋钮。通过调节此组开关和旋钮,可实现脉宽5ns~300μs 的连续调整。“脉宽”粗调分为十挡(5ns、10ns、30ns、100ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。“脉宽细调”旋钮逆时针旋转到底为粗调挡所指的脉宽时间。顺时针旋转脉宽增加,顺时针旋转到底为此粗调挡位高一挡的脉宽。例如,“脉宽”粗调开关置于10ns挡,“脉宽细调”旋钮顺时针旋转到底时输出脉宽为30ns;逆时针旋转到底时输出延迟时间为10ns。 ④“极性”选择开关。转换此开关可使仪器输出四种脉冲波形中的一种。 ⑤“偏移”旋钮。调节偏移旋钮可改变输出脉冲对地的参考电平。 ⑥“衰减”开关和“幅度”旋钮。调节此组开关和旋钮,可实现150mV~5V的输出脉冲幅度调整。 (2)使用注意事项在使用xc 15型脉冲信号发生器时应注意如下两点事项。 ①本仪器不能空载使用,必须接入50Ω负载,并尽量避免感性或容性负载,以免引起波形畸变。 ②开机后预热15min后,仪器方能正常工作。

喷油脉冲信号.doc

喷油脉冲信号 操作说明 喷油器的驱动器简称喷油驱动器有四种基本类型: 饱和开关型 峰值保持型 博士(BOSCH)峰值保持型 PNP型 喷油脉冲检测操作说明 连接: 用通用探针连接喷油脉冲传感器输出信号线。将一缸信号拾取器夹在一缸高压线上。 操作说明: ●在“电控发动机参数”菜单下点击“喷油脉冲信号”图标,系统即可进入 喷油脉冲传感器波形测试界面,并显示所测得的喷油脉冲传感器波形,如下图所示。 ●用鼠标左键点击“停止”图标(“停止”图标被按下后即变为“测试”图 标),系统即停止测试,再点击此图标即可恢复测试(同时“测试”图标恢复为“停止”图标)。 ●显示的转速、占空比、频率与显示的波形实时对应。 ●在停止状态下可点击“显示调整”图标,在弹出的工具窗口中可对X、Y轴 进行缩放、平移,以便观察。 ●用鼠标左键点击“保存数据”图标可将检测有效结果进行保存。

●用鼠标左键点击“保存波形”图标可将波形保存于指定目录。 ●用鼠标左键点击“图形打印”可对界面有效区域进行图形打印。 ●点击帮助图标可进入帮助系统查看相应技术数据。 ●用鼠标左键点击“返回”图标可返回上级菜单。 喷油脉冲传感器检测 饱和开关型(PFI/SFI)喷油器驱动器

*测试步骤 起动发动机,以2500转/分转速保持油门2-3分钟,直至发动机完全热机,同时燃油反馈系统进入闭环,通过观察屏幕上氧传感器的信号确定这一点。 关掉空调和所有附属电器设备,让变速杆置于停车档或空档,缓慢加速并观察在加速时喷油驱动器喷油时间的相应增加。 A. 从进气管加入丙烷,使混合气变浓,如果系统工作正常,喷油驱动器喷油时间将缩短,它试图对浓的混合气进行修正(高的氧传感器电压)。

E题脉冲信参数测量仪报告精编版

E题脉冲信参数测量仪 报告 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

脉冲信号参数测量仪 摘要:本设计选用 FPGA 作为数据处理与系统控制的核心,采用FPGA与单片机相结合的方式制备出可测量脉冲信号频率、占空比、幅度、上升时间的测量仪以及标准脉冲信号发生器。本设计由以下功能模块构成:前端信号处理模块、峰值检波模块、窗口比较器模块、幅值升压模块等。利用FPGA的强大处理能力,完成数字信号处理,并将处理后的信号送至单片机进行显示,设计中综合运用了电容去耦、滤波以及同轴电缆等抗干扰措施,减少了电路干扰。在FPGA内有等精度测频模块、占空比测量模块和上升时间测量模块、标准脉冲产生模块等。显示与校准通过单片机完成。 关键词:峰值检波窗口比较器脉冲参数测试仪标准脉冲信号发生器 一、系统方案 1.方案论证与比较 方案一:图1所示为中规模电路脉冲信号测量仪。此方案采用中规模数字电路构成,主要由比较器、功能选择、量程选择、计数器和控制模块组成。该方案电路复杂,频带过窄,功能不强,实现起来比较困难。故不采用此方案。 图1 小规模数字电路原理框图 方案二:图2所示为纯单片机方案,该方案以单片机为核心。门控信号由单片机内部计数定时器产生。该方案成本低,但受单片机本身限

制,其时序控制能力弱,处理速度慢,无法达到本次设计要求。故不采用此方案。 图2 纯单片机方案原理框图 方案三:图3所示为FPGA与单片机相结合的方案。此方案中,FPGA 构成主要测量模块,输入信号经过前端处理电路,得到5V信号输入到FPGA中。单片机控制FPGA完成各种测量功能并显示测量数据。该方案外围元件相对较少,对高速信号处理速度快,精度高,且控制灵活、可靠性高。 图3 FPGA与单片机结合方案原理框图 综上所述,本设计拟采用方案三。 2.总体方案设计 当进行频率测量时,脉冲信号进入前置分挡模块。当信号较大时衰减,当信号较小时放大。在放大模块中,高频信号通过高速放大器,低频信号通过精密放大器,使输入波形均为幅值适中的脉冲,直接进入FPGA进行计算测量。FPGA中,采用等精度测频方法进行测频和测占空比,利用基本上升时间测量模式进行两个信号的上升时间测量。单片机完成数据读取及校准功能。测量幅值时经过峰值检测并保持电路,再经单片机AD采集测出。 二、理论分析与计算 1.频率测量方法

4 脉冲信号产生电路共23页文档

4 脉冲信号产生电路 4.1 实验目的 1.了解集成单稳态触发器的基本功能及主要应用。 2.掌握555定时器的基本工作原理及其性能。 3.掌握用555定时器构成多谐振荡器、单稳态触发器的工作原理、设计及调试方法。 4.2 实验原理 1.集成单稳态触发器及其应用 在数字电路的时序组合工作中,有时需要定时、延时电路产生定时、展宽延时等脉冲,专门用于完成这种功能的IC,就是“单稳延时多谐振荡器”,也称“单稳触发器”。其基本原理是利用电阻、电容的充放电延时特性以及电平比较器对充放电电压检测的功能,实现定时或延时,只需按需要灵活改变电阻、电容值大小,就可以取得在一定时间范围的延时或振荡脉冲输出。常用的器件有LS121/122、LS/HC123、LS/HC221、LS/HC423、HC/C4538及CC4528B等。 集成单稳态触发器在没有触发信号输入时,电路输出Q=0,电路处于稳态;当输入端输入触发信号时,电路由稳态转入暂稳态,使输出Q=1;待电路暂稳态结束,电路又自动返回到稳态Q=0。在这一过程中,电路输 出一个具有一定宽度的脉冲,其宽度与电路的外接定时元件C ext 和R ext 的数 值有关。 图4-1

集成单稳态触发器有非重触发和可重触发两种,74LS123是一种双可重触发的单稳态触发器。它的逻辑符号及功能表如图4-1、表4-1所示。 在表4-1中“正”为正脉冲,“负”为负脉冲。 LS/HC123的特点是,复位端CLR也具有上跳触发单稳态过程发生的功能。 在C ext >1000pF时,输出脉冲宽度t w ≈0.45R ext C ext 。 器件的可重触发功能是指在电路一旦被触发(即Q=1)后,只要Q还未恢复到0,电路可以被输入脉冲重复触发,Q=1将继续延长,直至重复触发的最后一个触发脉冲的到来后,再经过一个t w (该电路定时的脉冲宽度)时间,Q才变为0,如图4-2所示: 图4-2 74LS123的使用方法: (1)有A和B两个输入端,A为下降沿触发,B为上升沿触发,只有AB=1时电路才被触发。 (2)连接Q和A或Q与B,可使器件变为非重触发单稳态触发器。 (3)CLR=0时,使输出Q立即变为0,可用来控制脉冲宽度。 (4)按图4-3、3-5-4连接电路,可组成一个矩形波信号发生器,利用开关S瞬时接地,使电路起振。 图4-3 图4-4 2.555时基电路及其应用 555时基电路是一种将模拟功能和数字逻辑功能巧妙地结合在同一硅片上的新型集成电路,又称集成定时器,它的内部电路框图如图4-5所示。 图4-5 电路主要由两个高精度比较器C 1、C 2 以及一个RS触发器组成。比较器 的参考电压分别是2/3V CC 和1/3V CC ,利用触发器输入端TR输入一个小于 1/3V CC 信号,或者阈值输入端TH输入一个大于2/3V CC 的信号,可以使触发 器状态发生变换。CT是控制输入端,可以外接输入电压,以改变比较器的参考电压值。在不接外加电压时,通常接0.01μF电容到地,DISC是放电输入端,当输出端的F=0时,DISC对地短路,当F=1时,DISC对地开路。 R D 是复位输入端,当R D =0时,输出端有F=0。 器件的电源电压V CC 可以是+5V~+15V,输出的最大电流可达200mA,当 电源电压为+5V时,电路输出与TTL电路兼容。555电路能够输出从微秒级到小时级时间范围很广的信号。 (1)组成单稳态触发器 555电路按图4-6连接,即构成一个单稳态触发器,其中R、C是外接定时元件。单稳态触发器的输出脉冲宽度t w ≈1.1RC。 图4-6 (2)组成自激多谐振荡器 图4-7 自激多谐振荡器电路 按图4-7连接,即连成一个自激多谐振荡器电路,此电路的工作过程

脉冲信号发生器的使用方法

脉冲信号发生器的使用方法 脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲 信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般 都以矩形波为标准信号输出。脉冲信号发生器的种类繁多,性能各异,但 内部基本电路应包括主振级一般由无稳态电路组成,产生重复频率可调的周期 性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主 振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路 组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对 脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉 冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器 使输出的脉冲信号幅度可调。 如(1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用 ①频率粗调开关和频率细调旋钮。调节频率粗调开关和频率细调旋钮, 可实现1kHz~100MHz的连续调整。粗调分为十挡 (1kHz、3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz 和100MHz),用细调覆盖。频率细调旋钮顺时针旋转时频率增高,顺时针旋转 到底,为频率粗调开关所指频率;逆时针旋转到底,为此频率粗调开关所指刻 度低一挡。例如,频率粗调开关置于10kHz挡,频率细调旋钮顺时针旋转到底 时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。 ②延迟粗调转换开关和延迟细调旋钮。调节此组开关和旋钮,可实现延 迟时间5ns~300,tts的连续调整。延迟粗调分为十挡 (5ns、10ns、30ns、l00ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输

基于单片机的脉冲信号采集与处理分析

基于单片机的脉冲信号采集与处理分析 单片机应用系统是通过核心CPU设备来显示工业领域各个设备环节的系统。单片机的应用程序比较复杂,现代经济的发展对单片机的应用提出了更高的要求,特别在当下机械加工、化工和石油工程等多个领域,对单片机的各种性能要求十分高。而在我省工业自动化控制领域中,缺乏相应的单片机技术体系,难以满足当下工程的数据采集、计算机处理应用、数据通信等方面的需要。为了确保工业自动化控制模式的正常开展,实现机械应用与计算机应用技术的协调发展,可通过优化单片机内部结构程序或使用内部倍频技术和琐相环技术等,达到提升其运算和内部总线速度的目的。 1单片机脉冲信号采集 1.1单片机模拟信号采集 单片机系统采集器的信号有模拟电压信号、PWM信号和数字逻辑信号等,其中,应用较广泛的是模拟信号采集。模拟信号指的是电压和电流,采用的处理技术主要有模拟量的放大和选通、信号滤波等。因为单片机测控系统有时需要采集和控制多路参数,如果对每条路都单独采用一个较为复杂且成本较高的回路,就会对系统的校准造成较大影响,几乎不能实现。因此,可以选用多路模拟开关,方便多种情况下共用。但在选择多路模拟开关时,要注意考虑通道数量、数漏电流设计、切换速度、通导电阻、器件封装、开关参数的漂移性和每路电阻的一致性这几点。信号滤波是为了减少或消除工作过程中的噪声信

号,滤波常用的有模拟滤波电路和数字滤波技术,后者在单片机系统中发展较快。 1.2随机脉冲信号采集卡的设计 随机脉冲信号采集卡的硬件组成主要有输入输出接口、单片机运行和控制、复读采集和控制、信号重放和主机接口控制这五个电路模块。该系统的主要硬件电路包括单片机主系统中的随机脉冲放大和限幅电路、脉冲幅度、脉冲宽度测量电路、高速信号采集、存储电路以及由EPLD等构成的控制信号电路等。单片机除了负责随机脉冲信号的采集以外,还要将相关的数据与随机脉冲数据组织成一个完整的信号数据结构。 1.3单片机脉冲信号采集优化模式 单片机脉冲信号的采集应用必须要做好相关软硬件的应用、采集模式等的剖析准备工作。在硬件系统中,需要主机板与接口板设备的配合。在应用软件子系统过程中,要采用模块化分区结构,确保脉冲信号的有效采集和处理。在单片机脉冲信号采集过程中,要注重对单片机CPU的选择,确保其与接口板等设备相协调。优化编制程序结构,使其满足脉冲信号采集的需求。例如SOC单片机嵌入系统,该系统的应用效果良好,是单片微控制器设备的延伸。采集单片机脉冲信号时,需要单片微控制器的配合,才能应用多个微处理器协调接口板,实现CCL信号、信号、t信号等的应用。该模式要求单片机具有运作速度快、功耗成本低、处理效率高等特点,同时,要为软件系统的运行提供稳定的工作环境,实现单片机脉冲信号采集的优化,并确保整体系

脉冲群测试仪操作规程

一、用途 电气、电子产品实际使用过程中会受到以传导方式传入的脉冲信号干扰;脉冲群发生器是模拟环境中的脉冲信号并将其以传导方式施加到产品工作环境中检测设备,用于检测电气、电子产品对电快速瞬变脉冲群抗扰度是否符合设计要求。

二、外形简介 2.1工作平台 脉冲群发生器:脉冲群信号产生装置,型号为NSG 3060,可扩展浪涌等模块 耦合去耦网络:将脉冲群信号耦合到三相电路中,用于对电源施加脉冲群干扰,型号为CDN 3063 脉冲群耦合钳:将脉冲群信号耦合到数据线中,用于对485线路施加脉冲群干扰,型号为CDN 3425 485线:用于连接电力终端与电表,一端连接集中器或采集器,另一端连接电表 测试台:用于放置待测设备 测试台 脉冲群发生器 脉冲群耦合钳 485线 耦合去耦网络

脉冲群发生器 耦合去耦网络 调压器电源 接地线 调压器 调压器:三相电压调节器,用于调节耦合去耦合网络的输入电压,默认状态为380V 调压器电源:用于输入环境中的实际三相电源 接地线:基于设备、人员安全考虑,接真正的大地

2.2脉冲群测试仪 三相电源输入端口 信号耦合器电源线 耦合去耦网络开关 脉冲群发生器开关 脉冲群发生器电源线 显示屏 单相电源输出线 三相电源耦合输出端口 三相电源耦合输出线 参数调节旋钮 按键组 数据输出线 工作指示灯 耦合去耦网络脉冲群数据线输入端口

显示屏:显示脉冲群发生器操作参数,为触摸屏 按键组:左边三个分别为:启动、暂停、停止键;右边三个为参数调节进制,分别为1、10、100 参数调节旋钮:旋转可调节参数大小 工作指示灯:power(电源指示灯)、pulse(脉冲信号指示灯)、Hige Voltage(高电压指示灯)、EUT Power(待测设备供电指示灯)、Error(错误指示灯) 单相电源输出线:脉冲群信号通过两条单相电源线输出给耦合去耦网络 数据输出线:脉冲群信号通过数据线输出脉冲群耦合钳 三相电源耦合输出端口:耦合去耦网络将施加到单相电源的脉冲群信号转变为施加到三相电源的脉冲群信号,最右端的PE端口一般不用,空置即可 三相电源耦合输出线:用于给待测设备提供已施加脉冲群信号的三相电源 三相电源输入端口:将三相电源输入给耦合去耦网络,用于耦合脉冲群信号 耦合去耦网络脉冲群数据线输入端口:目前不用,空置即可 三、供电 脉冲群发生器、耦合去耦网络接普通220V民用电源即可

脉冲脉宽输出功能汇总

脉冲输出功能 利用FP0的高速计数器功能,可以实现两路脉冲信号的输出。并且,若 以FP0的专用指令,可实现定位控制、梯形升降速控制、原点返回和点动等功能。 概述 ●利用FP0的脉冲输出功能,可以控制脉冲串输入形式的电机驱动器,来 实现定位控制。 ●指令F168能够根据设置的初始速度、最大速度、加/减速时间以及目标 值,自动输出所要求的脉冲,实现梯形升降速的定位控制。 ●F168指令也能实现自动回原点功能。 ●利用指令F169,可以实现点动(JOG)的脉冲输出。 设置系统寄存器 当使用脉冲输出功能时,应将相应通道(CH0或CH1)的系统寄存器

No.400和No.401设置为“不使用高速计数器”。设置方法请参考“7.4.3的系统寄存器表”。 F168 位置控制(梯形控制/原点返回) 根据设定的参数,从特定的输出点(Y0或Y1)输出特定形式的脉冲信号。 编程举例: 相应的寄存器表

A:可使用N/A:不可使用 说明: ●若控制标志(Control flag)(R903A或R903B)为OFF,且控制触点(如 R0)为ON状态时,则从指定的输出点(Y0或Y1),按照数据表给定的参数输出一个特定形式的脉冲串。 ●数据表用于指定位控运动的控制码、起始速度、最大速度、加速/减速时 间或目标值等。 ●根据加/减速时间,输出频率从起始速度升到最大速度。 ●相应的数据区见下表: ●在脉冲输出的过程中,可通过重写目标值,来输出更多的脉冲。 运行模式说明: ●增量模式<相对值控制> 根据目标的设置设定值,来输出相应脉冲数的脉冲。 将控制码(Control code)设置为H02(即:增量模式;正向:OFF;反向:ON),当目标值为正时,方向信号输出为OFF,同时高速计数器的当前值增加。当目标值为负时,方向信号输出为ON,同时高速计数器的当前值减少。当控制码(Control code)设置为H03时,方向信号输出则和前述情况的相反。

丢失周期脉冲信号的检测电路

在科学研究和生产实践当中,周期脉冲信号是很常见的。如何检测周期脉冲信号的丢失,或因故障丢失周期脉冲信号需要报警的情况也是经常碰到的。本文给出了解决这类问题的办法,并通过理论分析给出了检测周期脉冲信号丢失的实用电路。 1 可重触发的单稳态电路 众所周知,所谓单稳态是指电路只有一个稳定状态,另一个是暂稳态。如电路输出稳定状态为低电平L,当输入信号到达后,电路输出变为高电平H,但是高电平状态只是暂时的,过了一定时间后它又自动回到稳定状态L。输入i u 的周期T小于输出 o u 的脉冲宽度W T 。(由W T 电路定时元件的 参数决定,定时元件参数不变,输出o u 的脉冲宽度W T 就不变),当电路在暂稳态期间若再来输入脉冲,输入脉冲对电路不起作用,只有当电路回到稳态后,再来输入脉冲信号才能触发单稳态再次动作。此种电路称为不可重复触发的单稳态电路。单稳态电路的作用一般是定时、延时、和波形整形。定时、延时的时间就是W T 。 当单稳态电路在暂稳态期间若再来输入脉冲,输出从此时刻开始再延迟W T 的宽度,此种单稳态电路为可重复触发的单稳态电路。可重复触发的单稳态电路若i u 为周期脉冲信号,且其周期T小于W T ,只要输入信号i u 正常,则o u 一直是暂稳态,这种情况输入i u 和输出o u 的波形如图(1)所示。 丢失周期脉冲信号的检测电路 许立新 李金民 (西京学院 西安 710123) 摘 要:本文通过对可重触发的单稳态电路的分析,得出了只要可重触发单稳态触发器的输出脉冲宽度大于输入周期脉冲信号的周期T,就可用可重触发的单稳态触发器构成检测周期脉冲信号丢失的电路。本文用芯片CD4538给出了实用的丢失周期脉冲信号的检测和报警电路。关键词:周期脉冲信号 单稳态 可重单稳态中图分类号:TN78文献标识码:A文章编号:1674-098X(2010)04(b)-0068-02 2 丢失周期脉冲信号的检测电路实例 利用可重复触发的单稳态电路可以构成丢失周期脉冲信号的检测电路。可重复触发的单稳态电路有多种,CD4538是双可重复触发的单稳态集成芯片,它的引脚排列如图(2)所示。 查CD4538的功能表知,端为清“0”端,低电平有效,它的稳定状态是Q=L,Q =H,当CLR =H,B输入端接高电平时,A 输入端来一个脉冲上升沿,则Q=H,Q =L,电路进入暂稳态。CD4538的W T 决定外接的定时元件Rext和Cext,其 W T =Rext﹒Cext(1) 若输入周期脉冲信号i u 的周期是T,可重触发单稳的输出脉冲宽度为W T ,当 W T =1.5T左右时,只要输入i u 的周期脉冲 正常,则输出o u 就一直处在高电平状态(暂稳态)如图(1)所示。假设i u 的第4个脉冲丢失,第5个脉冲又正常,则输入i u 与输出o u 的波形如图(3)所示(图示为i u 从CD4538的A端输入,i u 需要正的窄脉冲)。由图(3)的波形知,由于第4个周期信号丢失,单稳态电路又回到稳态低电平,当第5个输入脉冲再来时,输出o u 又为暂稳态高电平,据此可以 将丢失的周期脉冲信号检测出来。 如某自动工作的冲床,每3秒钟冲压一个工件,通过光电传感器使冲压工件的个数转换成脉冲数,每冲压一个工件,通过光电转换电路产生一个计数脉冲,计数脉冲的周期T=3S。若间隔4.5S左右未来脉冲信号,说明工作不正常,应该报警。由CD4538构成的报警电路如图(4)所示。图(4)中计数部分用四位计数,锁存译码驱动,显示电路构成(图中未画出具体电路)。周期脉冲的上 升沿触发计数器。经光电转换,放大整形后的信号1i u 的周期T=3S,若1i u 的脉冲宽度tp=0.2s,经过RC微分电路及二极管D的限幅作用后,得到周期T=3S的正尖脉冲信号 i u (如图(3)中的i u ) 微分电路参数的选择原则是 τ=RC<<tp(2) 本例选C=1F μ,R=20 ? K ,可以满足式 (2)的要求。 图1 图2图3 (下转70页)

如何正确使用脉冲信号发生器

如何正确使用脉冲信号发生器 脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般都以矩形波为标准信号输出。 脉冲信号发生器的种类繁多,性能各异,但内部基本电路应包括图1所示的几个部分。 主振级一般由无稳态电路组成,产生重复频率可调的周期性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器使输出的脉冲信号幅度可调。 所示为xc-15型脉冲信号发生器的面板示意图,xc-15型脉冲信号发生器是高重复频率ns(纳秒)级脉冲信号发生器。其重复频率范围为1kHz~100MHz,脉冲宽度为5ns~300μs,幅度为150mV~5V,并输出正、负脉冲及正、负倒置脉冲,性能比较完善。 (1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用 ① “频率”粗调开关和“频率细调”旋钮。调节“频率”粗调开关和“频率细调”旋钮,可实现 1kHz~100MHz的连续调整。粗调分为十挡(1kHz、 3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz和100MHz),用细调覆盖。“频率细调”旋钮顺时针旋转时频率增高,顺时针旋转到底,为“频率”粗调开关所指频率;逆时针旋转到底,为此“频率”粗调开关所指刻度低一挡。例如,“频率”粗调开关置于 10kHz挡,“频率细调”旋钮顺时针旋转到底时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。 ②“延迟”粗调转换开关和“延迟细调”旋钮。调节此组开关和旋钮,可实现延迟时间5ns~300,tts的连续调整。延迟粗调分为十挡(5ns、10ns、30ns、l00ns、 300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输出负方波的下降沿超前主脉冲前沿的时间。 “延迟细调”旋钮逆时针旋转到底为粗调挡所指的延迟时间。顺时针旋转延迟时间增加,顺时针旋转到底为此粗调挡位高一挡的延迟时间。例如,“延迟”粗调开关置于30ns挡,“延迟细调”旋钮顺时针旋转到底时输出延迟时间为100ns;逆时针旋转到底时输出延迟时间为30ns。 ③ “脉宽”粗调开关和“脉宽细调”旋钮。通过调节此组开关和旋钮,可实现脉宽5ns~300μs的连续调整。“脉宽”粗调分为十挡(5ns、10ns、 30ns、100ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。“脉宽细调”旋钮逆时针旋转到底为粗调挡所指的脉宽时间。顺时针旋转脉宽增加,顺时针旋转到底为此粗调挡位高一挡的脉宽。例如,“脉宽”粗调开关置于10ns挡,“脉宽细调”旋钮顺时针旋转到底时输出脉宽为30ns;逆时针旋转到底时输出延迟时间为10ns。 ④“极性”选择开关。转换此开关可使仪器输出四种脉冲波形中的一种。 ⑤“偏移”旋钮。调节偏移旋钮可改变输出脉冲对地的参考电平。 ⑥“衰减”开关和“幅度”旋钮。调节此组开关和旋钮,可实现150mV~5V的输出脉冲幅度调整。

脉冲信号参数测量仪

2016年TI杯江苏省大学生电子设计竞赛题目: 脉冲信号参数测量仪 题目编号: E题 参赛队编号: 参赛队学校: 参赛队学生: 二○一六年七月

目录 摘要 (1) 1.设计方案工作原理 (1) 1.1方案选择 (1) 1.2总体方案设计 (2) 2.核心部件电路设计 (3) 2.1高速缓冲电路 (3) 2.2自动增益电路 (3) 2.3高速比较器电路 (4) 2.4放大电路 (5) 3.系统软件设计分析 (5) 3.1 CPLD数据处理 (5) 4.竞赛工作环境条件 (6) 4.1设计分析软件环境 (6) 4.2仪器设备硬件平台 (6) 5.作品成效总结分析 (6) 5.1脉冲信号频率测量 (6) 5.2脉冲信号占空比测量 (7) 5.3脉冲信号幅值测量 (7) 5.4脉冲信号上升时间测量 (8) 6.参考文献 (8) 附录.................................................................................................. 错误!未定义书签。

脉冲信号参数测量仪 摘要:本作品以美国德州仪器(TI)生产的16位超低功耗单片机MSP430F169作为主控芯片,利用CPLD技术实现矩形脉冲信号的频率、占空比、上升时间的测量,并且利用CPLD产生一个标准矩形脉冲信号。本设计外围硬件电路主要由高速缓冲降压模块、AGC自动增益模块、幅度测量模块组成,通过对上述模块的合理整合,设计并制作了一个性能较好的脉冲信号参数测量仪。由于采用了AGC模块,系统实现了全程自动增益控制,稳定输出电压。 针对矩形脉冲信号的特点,本设计采用多种抗干扰措施,对电路布线进行优化,并合理运用低噪声芯片OP07、OPA690、VCA810、THS3001、TLV3501。后期,利用ADS1115及Matlab,对测试数据进行合理的分析,以优化算法系统,进一步提高了精度。 该脉冲信号参数测量仪结构简单,性能稳定,功能完善,达到了各项设计指标。关键词:脉冲信号参数测量仪;CPLD ;AGC ;TLV3501 ;Matlab; 1.设计方案工作原理 1.1方案选择 本方案主要由THS3001缓冲模块、AGC自动增益模块、TLV3501高速比较模块、ADS1115模块组成,实现脉冲信号频率、占空比、幅度、上升时间测量。 1、主控部件选择 方案一:采用CPLD作为参数测量仪的主控芯片,完成参数测量及实时显示等全部功能。CPLD具有可编程和大规模集成的特点,此方案可以使电路大为简化,但此设计仅使用PLD不能充分发挥其特点及优势,导致系统性能降低。因此不采用此方案。 方案二:采用FPGA作为主控芯片,FPGA外围拓展功能更多,但在运行速度、编程灵活性以及使用方便性上CPLD优于FPGA,即在电路结构上FPGA更复杂,因此不采用此方案。 方案三:采用CPLD和单片机相结合的方案。分别利用CPLD在信号处理高速稳定方面以及单片机在逻辑运算、智能控制方面的优越性,使得电路不仅能够简化,而且能够达到设计要求,因此选择方案三。 2、频率测量 方案一:采用周期法。需要有标准倍的频率,在待测信号的一个周期内,记录标准频率的周期数,这种方法的计数值会产生±1个脉冲误差,并且测试精度与计数器中的记录的数值有关,为了保证测试精度,测周期法仅适用于低频信号的测量。

关于脉冲输出概要

一、脉冲输出功能 XC3系列和XC5系列PLC 一般具有2个脉冲输出。通过使用不同的指令编程方式,可以进行无加速/减速的单向脉冲输出,也可以进行带加速/减速的单向脉冲输出,还可以进行多段、正反向输出等等,输出频率最高可达200K Hz 。 Y0 COM0 Y1 COM1 Y2 COM2 注:1)为了使用脉冲输出,必须要使用带有晶体管输出的PLC 。如XC3-14T-E 或XC3-60RT-E 等。 2)XC5系列输出点数为32点的PLC 最大能够具有4路(Y0、Y1、Y2、Y3)脉冲输出功能。 二、脉冲输出的种类与指令应用 1、 无加减速时间变化的单向定量脉冲输出指令PLSY ? 以指定的频率产生定量脉冲的指令。 ? 支持32位指令[DPLSY]。 ? 频率:0~200KHz ? 输出端子:Y0 或 Y1 ? 输出模式:连续或有限脉冲输出 ? 脉冲数目:16位指令 0~K32767 32位指令 0~K2147483647 注意:如控制对象是步进电机或伺服电机,建议不要采用该指令,以避免电机失步。采用带加减速的脉冲输出指令PLSR 可以避免失步造成的影响。 步进/伺服电机 驱动器

当输出完设定的脉冲数目之后,输出自动停止。 2、 可变频率脉冲输出指令PLSF M0 以设定频率连续输出脉冲直到通过指令停止输出。

3、带加减速的定量脉冲输出指令PLSR (含3种控制模式) ?以指定的频率和加减速时间产生定量脉冲的指令。 ?频率:0~200KHz ?加减速时间:5000ms以下 ?支持32位指令[DPLSR]。 ?输出端子:Y0 或Y1 ?输出模式:有限脉冲数目 ?脉冲数目:16位指令0~K32,767 32位指令0~K2,147,483,647 一般情况中途停止

脉冲检测电路

如图所示为脉宽检测电路。该检测电路由微分电路(R2、C2)、放大电路BG1、单稳定时电路(555、R1、C1)等组成。输入的脉冲信号Vin(如波形A)一路加至微分、放大电路,另一路经R4后加至BG2的集电极电路。经微分放大后的负向脉冲(如波形B)触发555电路置位,使其③脚输出一定宽度的正向脉冲(如波形C),其脉宽即为单稳电路的定时时间td=1.1R1C1(秒),且该正向脉冲加至BG2的基极,故在检测期间,BG2饱和导通,其集电极(即电路输出端V0)呈低电平。若被检测的脉宽大于设定的脉宽td,则因BG2的集电极加压的时间大于基极偏置时间td,V0出现高电平,这说明被检测脉宽超过设定时间了。 基于NE555的脉冲丢失检测电路 发布:2011-09-27 | 作者:—— | 来源: jiaoyouhao | 查看:550次 | 用户关 注:检测电路 NE555定时器IC可以检测一个两个连续脉冲的脉冲列车之间的脉冲丢失或异常长的时间。这种电路可用于检测的汽车火花塞的间歇发射或监视一个生病的病人心脏的跳动。挑了传感器的信号的形状形成一个负脉冲,并应用到这是作为一个单声道稳定连接的集成电路的引脚2。只要脉冲之间的间距不到的时间间隔,时间周期不断复位输入脉冲电容器是通过T1出院。在减少脉冲频率或脉冲丢失许可证完成的时间间隔,这会导致产出水平的变化。 NE555定时器IC可以检测一个两个连续脉冲的脉冲列车之间的脉冲丢失或异常长的时间。这种电路可用于检测的汽车火花塞的间歇发射或监视一个生病的病人心脏的跳动。 挑了传感器的信号的形状形成一个负脉冲,并应用到这是作为一个单声道稳定连接的集成电路的引脚2。只要脉冲之间的间距不到的时间间隔,时间周期不断复位输入脉冲电容器是通过T1出院。在减少脉冲频率或脉冲丢失许可证完成 的时间间隔,这会导致产出水平的变化。

脉冲信号发生器

电子技术综合训练 设计报告 题目:脉冲信号发生器 姓名:xxx 学号:xxxxxxx 班级:xx 电气及其自动化xx 同组成员:xxx 指导教师:xxx 日期:2011年1月4日

脉冲信号发生器的原理主要分为四部分,即正弦波的产生,方波的变换,分频电路和倍频电路,并由这四部分最终产生三种不同频率的信号,其要点在于电路的线路连接及焊接。通过设计体会理论与实际结合的重要性. 关键字:正弦发生多谐振荡器降频电路锁相环

一、设计任务和要求 (5) 1.1设计任务 (5) 1.2设计要求 (5) 二、系统设计 (6) 2.1系统要求 (6) 2.2方案设计 (6) 2.3系统工作原理 (7) 三、单元电路设计 (8) 3.1 RC正弦发生器 (8) 3.1.1电路结构及工作原理 (9) 3.1.2电路仿真 (9) 3.1.3元器件的选择及参数确定 (9) 3.2 555定时器组成的多谐振荡器 (9) 3.2.1电路结构及工作原理 (9) 3.2.2电路仿真 (11) 3.3 74LS161计数器降频电路 (11) 3.3.1电路结构及工作原理 (11)

3.3.2电路仿真 (11) 3.3.3元器件的选择及参数确定 (11) 3.4 锁相环升频电路 (13) 3.4.1电路结构及工作原理 (13) 3.4.2元器件的选择及参数确定 (15) 四、系统仿真 (17) 五、电路安装、调试与测试 (18) 5.1电路安装 (17) 5.2电路调试 (17) 5.3系统功能及性能测试 (17) 5.3.1测试方法设计 (18) 5.3.2测试结果及分析 (18) 结论 (19) 参考文献 (20) 总结、体会和建议 (21) 附录 (22)

准确测量脉冲信号的S参数(一)

准确测量脉冲信号的S参数(一) 传统上,矢量网络分析仪被用来测量元件的连续波形(CW)S参数性能。 在这些操作环境下,分析仪常常作为窄带测量仪器工作。它向元件传输已知的CW频率并测量CW频率响应。如果我们想查看单个CW频率的响应,我们可 以在频率看到单个的频谱。分析仪具有一个内置的源和接收器,它们被设计成 工作在同步模式下,利用窄带检测来测量元件的频率相应。大多数的分析仪可 以配置用来对许多频率进行频率扫描。在某些情况下,加到元件上的信号必须以一定的速度和持续时间进行脉冲调制(开关)。如果我们要查看一个单音脉 冲调制的频率响应,它将包含无数的频率成分从而使标准窄带VNA的使用变 得很困难。本文讲述了如何使用Agilent科技公司的PNA矢量网络分析仪进行 配置并获得准确测量脉冲信号的S参数。 ?为了查看一个脉冲调制信号的频率响应的频谱是什么样子,我们首先从数 学上分析时域响应。公式1给出了一个脉冲调制信号的时域关系。它的产生步 骤是首先建立一个用脉宽为PW的矩形窗加窗的信号。然后产生一个shah函数,这个函数包含一个间隔为1/PRF的周期脉冲序列,其中PRF是脉冲重复频率。这也同可以看作是间隔和脉冲周期相等的脉冲。而后加窗信号和shah函数卷积,产生一个和脉冲调制信号相应的周期脉冲串: ?为了查看这个信号在频域的样子,对脉冲调制信号y(t)进行傅立叶变换: ?式2表明脉冲调制信号的频谱是一个抽样的sinc函数,抽样点(信号呈现)和 脉冲重复频率(PRF)相等。 ?图1的左面给出在PRF为1.69kHz和脉冲宽度7μs情况下脉冲调制谱的样子。图1的右面给出在放大脉冲基调条件下同样的脉冲调制谱。频谱具有距 离基调nPRF的成分,其中n是谐波数。基音包含测量信息。PRF音是基音的

脉冲信号发生器

北华航天工业学院 《EDA技术综合设计》 课程设计报告 报告题目:脉冲信号发生器 作者所在系部: 作者所在班级: 作者姓名: 指导教师姓名: 完成时间: 内容摘要 简单介绍了基于FPGA的脉冲信号发生器的设计。通过对系统进行结构分析,采用层次化的设计方法,给出了脉冲信号发生器与数字频率计的VHDL代码,利用Quartus II对其进行

了仿真,并在硬件电路上得以实现其逻辑功能。 关键词 FPGA;Quartus II;脉冲信号发生器

目录 一课程设计任务书 (4) 二概述及技术要点 (5) 三程序编码 (5) 1.主程序编码 (5) 2.辅程序编码 (7) 四设计仿真及结果 (7) 五调试及性能测试 (7) 六课程设计总结 (7) 七参考文献 (7) 八教师评语及成绩 (8) 课程设计任务书 课题名称脉冲信号发生器完成时间2010-12-11

指导教师胡辉职称副教授学生姓名班级 总体设计要求和技术要点 总体设计要求:通过本课程的学习使学生掌握可编程器件、EDA开发系统软件、硬件描述语言和电子线路设计与技能训练等各方面知识;提高工程实践能力;学会应用EDA 技术解决一些简单的电子设计问题。 技术要点: 将输入的时钟作为计数器的计数脉冲,计数结果的第N位是2的N次幂分频。将对应的为数取出就能得到所需的频率。信号发生器系统组成如图1所示,由一分频模块与占空比调节模块共同组成。。 工作内容及时间进度安排 12月9、10号设计程序并初步仿真调试,11号运用试验箱完成设计并验收。 课程设计成果 1.与设计内容对应的软件程序 2.课程设计报告书 3.成果使用说明书 4.设计工作量要求

数据采集与处理

数据采集与处理 实验指导书 山东理工大学 二00二年十一月

实验一数据采集系统认识实验 一、实验目的 熟悉数据采集系统的组成、工作过程,熟悉不同传感器的使用,增加感性认识,为后面的课堂教学打下基础。 二、实验仪器 自动控制温室中的温度传感器、湿度传感器、CO2传感器、风向风速传感器、计算机、A/D板卡、8255板卡、电气控制柜。 三、实验步骤 1. 在温、湿度传感器的安装处,介绍温、湿度传感器的工作原理、模拟信号的传送和计算机数据采集过程和方法,讲解数据处理的方法。 2. 在CO2传感器的安装处,介绍CO2传感器的类型、红外式CO2传感器的工作原理和特点。 3. 在风向风速传感器的安装处,介绍风向数字信号并行传送的原理、数据采集方法和处理,介绍风速(转速)脉冲信号的采集和处理方法。 4. 在电气控制柜处,介绍温室电气控制的工作原理和工作过程。 5. 在计算机处,运行温室环境测控程序,介绍数据采集程序的工作过程,介绍编程技术的最新发展趋势和方法。 四、作业 1. 数据采集系统的任务是什么? 2. 数据采集系统由哪几部分组成? 3. 模拟信号是如何采集到计算机? 4. 并行数字信号如何采集到计算机? 5. 转速脉冲信号如何采集到计算机?

实验二模拟信号的数据采集实验 一、实验目的 让同学在计算机上输入自编的程序,并调试程序,使同学掌握模拟信号的采集方法,掌握相应数据采集程序的编程方法。 二、实验仪器 万用表、信号接口箱、温度传感器。 计算机、A/D板卡、31 2 三、实验步骤 1. 用万用表检查温度传感器输出信号的电压值。 2. 将温度信号接入接口箱。 3. 用并行信号线分别与接口箱和计算机上的A/D卡相连接。 4. 接通计算机、温度传感器电源。 5. 进入Quick BASIC语言环境。 6. 由每组同学将自编的程序(题目见作业)输入计算机,并调试运行程序、输出运行结果。 四、作业 题目:用PC-6319板卡采集温室的温度数据。 对象:温度传感器 要求: ⑴每隔10s钟采集一次温度数据。 ⑵ A/D板卡采用双极性方式工作。 ⑶用0通道采集模拟信号。 ⑷A/D转换结果要做标度变换。 ⑸每个采样点上连续采集10个数据,然后作数字滤波处理。 ⑹在计算机上显示出温度值。 五、思考题 1. 什么是数据采集板卡? 2. 现有一BASIC语句中为“U=(H*256+L)*10 / 4096”,试说明该语句完成什么任务?语句中的“H*256+L”部分起到什么作用?为什么要有“H*256”? 3. 什么是标度变换?为什么要进行标度变换?

相关主题
文本预览
相关文档 最新文档