当前位置:文档之家› 甲基三甲氧基硅烷改性工业硅溶胶的工艺及机理

甲基三甲氧基硅烷改性工业硅溶胶的工艺及机理

甲基三甲氧基硅烷改性工业硅溶胶的工艺及机理
甲基三甲氧基硅烷改性工业硅溶胶的工艺及机理

甲基三甲氧基硅烷改性工业硅溶胶的工艺及其机理

【摘要】以有机硅氧烷和工业硅溶胶为主要原料,采用sol-gel方法获得了水性有机硅溶胶。通过硅氧烷的选择、膜层性能检测以及pH值、水浴温度、改性时间等改性工艺的研究,获得MTMS改性硅溶胶的最佳工艺:MMTMS/MSiO2为2∶1~4∶1;pH值3.5~5.5;水浴温度50~70℃;改性时间40~120min。经FTIR分析和改性机理的探讨,表明MTMS水解生成的硅醇基团与硅溶胶粒子表面的羟基发生缩聚交联,屏蔽了硅溶胶内部的Si-O-Si键,对硅溶胶粒子进行了包覆改性。1引言

工业硅溶胶作为一种水性、无机粘结剂,广泛应用于涂料中提高膜层的理化性能。但是,由于其在成膜过程中体积收缩大、干燥快,容易造成涂膜龟裂、流平性差等缺陷[1],在涂料中的用量较少,不能够作为主要的成膜物质,使其无机粘结剂的性能优势受到限制。应用中,硅溶胶常常与有机粘结剂复合使用或经过改性处理,如与丙烯酸酯、氟树脂等乳液混合,使两者的性能相互补充,研发有机-无机复合涂料[1-2]。但是这种改性硅溶胶[3-6]中存在大量的有机组分,涂料在使用和成膜过程中存在高VOC(VolatileOrganicCompounds),不环保;而且这种涂料涂层遇火易燃,一旦发生火灾,

会释放有毒的气体和浓烟。因此,结合我国涂料工业经济(Economy)、能源(Energy)、生态(Ecology)和效率(Efficiency)的4E要求,制备水性、低VOC、无机不燃的涂料用于金属表面的装饰和防护[7],具有较强的应用需求。有机硅氧烷兼有无机和有机两种官能团,成膜时以Si-O-Si为主链,是一种有机-无机杂化高分子材料,用于涂层材料具有耐热、耐候等优良的理化性能[8]。一些文献[9

-10]采用有机硅氧烷改性硅溶胶制备薄膜涂层,而硅溶胶是由硅酸乙酯的水解缩聚制备,且在改性过程中引入过多的有机组分;直接采用有机硅氧烷对工业硅溶胶进行改性,并制备水性涂料应用于金属表面的装饰和防护,文献报道较少[11-12]。因此,本文以有机硅氧烷和工业硅溶胶为主要原料,在酸催化、水浴的条件下改性硅溶胶粒子,以获得一种水性无机涂料所需的主要成膜物质。本文着重于对硅溶胶改性工艺及改性机理的研究,而通过论文中最佳工艺制备有机硅溶胶及涂层的相关性能测试与表征参见文献[11]。

2实验

2.1试剂

甲基三甲氧基硅烷(MTMS):WMTMS>98%,

沸点:101~102℃,工业品,杭州硅宝化工有限公司;其它硅氧烷试剂也购买于该公司。LS-30低钠型硅溶胶,含30wt%SiO2,浙江宇达化工有限公司。其它试剂均为分析纯,

2.2测试

pH值测试:使用PHB便携式酸度计(杭州雷磁分析仪器厂)

。电导率测试:采用DDB-11A便携式电导率仪(上海三信仪表厂),直接将电极插入水解溶液中,读出相应电导率值。FTIR测试:将改性硅溶胶放置烘箱中,120℃4h,冷却后采用KBr压片法对其进行FTIR分析(布鲁克光谱仪器有限公司TENSOR27)。

2.3改性方法

称取一定质量的硅溶胶于500ml烧杯中,用盐酸调节pH值,然后放入水浴中加热并恒力搅拌,同时按所需的比例称取有机硅氧烷,缓慢加入硅溶胶烧杯中,反应一段时间后获得有机硅溶胶。后文中将经过MTMS改性后的硅溶胶称为有机硅溶胶。

3试验结果

3.1改性硅氧烷的选择

由于聚硅氧烷的分子构型主要取决于有机基团对硅原子的比例,即R/Si(R为取代基数目,Si为硅原子数目)。R/Si小,即三官能或四官能硅-氧单元比例高时,固化后,交联度高,产物主要为高度交联的网状聚合物[13]。而且与硅直接相连的烷氧基数目越少,或与硅直接相连的有机链越长,其硅烷水解性及改性产物的水溶性就越差,因此实验选择几种常用的三烷氧基硅烷对硅溶胶进行改性。表1是几种硅氧烷改性硅溶胶的条件及产物,可见MTMS改性硅溶胶的实验条件较低,产物透明,易溶于水;而且甲基做取代基时具有优良的耐热性能,可用来制备耐热涂层[14]。因此,实验选择MTMS对硅溶胶粒子进行改性

3.2pH值对硅溶胶改性的影响MTMS无论是在酸性条件还是碱性条件下,遇水都极易发生水解生成硅醇,但生成的硅醇不稳定,活性很高,易发生缩合反应,且缩合随着硅原子上的羟基数目的增加而加快。MTMS水解体系为逐级反应化学平衡体系[15],水解的过程也比较复杂。一般酸性条件有利于水解,而碱催化下缩合过程更容易实现[

16-17]。因此,酸度对MTMS改性硅溶胶及其稳定性的影响是最主要的因素之一。实验利用盐酸调节硅溶胶的pH值对其进行改性,发现pH值越低,MTMS水解速度越快,且加入MTMS后变为澄清透明的速度就越快。pH值小于3.5时,容易得到半透明的硅溶胶;pH值在3.5~5.5时,都能得到透明的澄清的粘稠硅溶胶;当pH值在5.5~7.0时,得到不透明或接近半透明的溶胶,时间稍长,就很容易形成白色凝胶;pH值大于7.0时,加入MTMS,很快就形成白色凝胶。根据MTMS水解

反应的动力学特征公式[18],随着[H+]浓度的增加,MTMS水解反应速率也会随之增大。当水解反应在弱酸条件下进行时,[H+]对反应有催化作用,水解生成的硅醇会

与硅溶胶粒子周围的羟基发生缩合,这种缩合是逐渐的;在[H+]较大的情况下,马上会生成大量的硅醇,由于[H+]对硅醇的缩聚也有催化作用,生成大量的硅醇不能稳定存在,一部分会很快与硅溶胶粒子周围的羟基发生缩合,另一部分直接发生硅醇与硅醇之间的缩聚,生成低聚物而得不到透明的溶胶。在碱性条件下,水解的速率较低,但由于[OH-]的存在,更容易发生缩合形成聚合物。因此实验选定水解改性的pH范围在3.5~5.5之间。3.3MTMS与硅溶胶的比例

表2是MTMS与硅溶胶不同比例制备的有机硅

溶胶涂层性能,可见MMTMS/MSiO2≥2∶1时性能较好。实验按MMTMS/MSiO2的质量比例分别为5∶1、4∶1、3∶1、2∶1、1∶1、0.5∶1进行改性,能够获得透明的有机硅溶胶,但是MMTMS/MSiO2的比例越小,对pH值的酸度要求就会增加,而且得到的有机硅溶胶稳定性差,容易凝胶。MMTMS/MSiO2比例低时,成膜中起主要作用的是二氧化硅无机粒子表面的羟基,形成的涂层较脆,体积收缩较大,使涂层内部产生大量的微裂纹,致使涂层附着力、耐冲击性能较差;比例高时,硅醇基团较多,成膜时易于交联成网状结构,提高涂层的附着力。但MTMS的水解会形成大量的硅醇基而快速交联,降低了有机硅溶胶的稳定性。从有机硅溶胶的稳定性、成本考虑,应当减少MTMS的用量。因此实验以MMTMS/MSiO2的比例为2∶1~4∶1为佳。如不做特殊说明,文中MMTMS/MSiO2的比例为3∶1。

3.4水浴温度对硅溶胶改性的影响

MTMS和水的电导率均很低,而产物硅醇和醇的电导率较高,因此可以通过电导率测试了解MTMS,水解平衡与水浴温度的关系,当电导率不再增大时表明该条件下水解与缩合达到了体系的平衡。实验中发现将MTMS加入酸性硅溶胶中后,体系的电导率会

变得很小,而在2min左右后迅速增加,十几秒内达到最大,然后开始逐渐降低。图1是

不同水浴温度下,体系在5min~8

0min改性过程中电导率的变化。可见,当改性温度为30℃、40℃时,电导率开始缓慢降低,15min后平缓;而50~80℃范围内,电导率值也下降,但是达到最低点时,电导率还有逐渐增加的趋势,而且随水浴温度的升高,

电导率降低后增加的时间缩短。这种变化与MTMS是否完全水解有关,温度低时,尽管电导率很快达到了平衡,但MTMS水解不彻底,生成的甲醇在体系中阻碍反应的正水解;温度接近或高于甲醇的沸点时(甲醇的沸点64.5℃),生成的甲醇很容易挥发,加快MTMS水解,电导率值很快达到最同时,水浴温度高,体系内链段热运动能力较强,羟基间相遇脱水的机会较大,缩聚反应速率较快,在较短的时间内就达到较高的反应程度[

19],也加快了MTMS的水解。实验中还观察到水浴温度高于70℃时,体系容易沸腾,会出现浑浊现象,甚至导致体系凝胶。因此,水浴温度以50~70℃为宜,此时在40min左右便达到了体系水解-缩合平衡。

3.5改性时间对产物结构的影响

图2是不同改性时间改性硅溶胶涂层的红外图谱。随着水解时间的延长,峰的位置没有明显变化,而强度却显著减弱,

说明水解时间对产物的结构有很大的影响。水解15min时,3500~3200cm-1处的分子间氢键O-H伸缩振动峰和1000~1250cm

-1

处的Si-O、

Si-O-Si、Si-O-C以及O-Si-O引起的振动峰强而宽;3000~2

850cm-1为C-H伸缩振动吸收峰、1273cm-1和781cm-1为Si-CH3的特征吸收峰、906cm-1Si-OH

的伸缩振动特征峰和478cm

-1

处为O-Si-O面内弯曲

振动峰也特别的尖锐,都说明此时的水解程度很大,体

系中存在大量的Si-CH3、Si-O-Si、Si-O-C、-OH,此时交联反应的程度比较低。而在30~120min内,这些峰都不同程度地减弱。3000~2850cm-1为C-H伸缩振动吸收峰的减弱可能与体系中甲醇的挥发有关;1000~1250cm-1处的Si-O、Si-O-Si、Si-O-C以及O-Si-

O引起的振动峰吸收变弱变宽,

说明此时的硅溶胶中二氧化硅粒子表面的羟基与MTMS水解产物发生了

交联,屏蔽了硅溶胶内部的Si-O-Si键[20]

。反应180min时,除3500~3200cm-1处的分子间氢键O-H

伸缩振动吸收和1629cm-1处为水的羟基弯曲振动特征峰外,其余的红外吸收峰强度都明显降低,说明此时产物交联程度较高,生成大颗粒或交联成大分子。实验中观察到180min时,改性硅溶胶会迅速由透明胶体转变为深灰色,然后瞬间变为白色。同时,由于改性硅溶胶过程不是在回流条件下完成的,

随改性时间的延长,水分的蒸发也会影响体系水解-缩合的继续进行,因此改性时间不宜过长。

3.6MTMS改性硅溶胶的机理

图3是硅溶胶、MTMS水解液和有机硅溶胶涂层的红外图谱。3500~3200cm-1宽的吸收峰为分子间氢键O-H伸缩振动峰;3000~2850cm-1为C-H伸缩振动吸收峰,MTMS水解后产物包括-CH3;1631cm-1为水的羟基弯曲振动特

征峰,可能是涂层中残存的吸附水或结晶水;1279cm-1和780cm-1为Si-CH3的特征吸收峰,硅溶胶没有此峰,说明MTMS和有机硅溶胶涂层中包括-CH3;在906cm-1处为Si-OH的伸缩振动特征峰,硅溶胶中没有此峰,说明MTMS和有机硅溶胶涂层中存在大量的硅羟基,有一部分羟基未发生交联反应,而硅溶胶的成膜温度低,在100℃左右的温度干燥时Si-OH已经完全发生了交联;1000~1250cm-1处的振动吸收峰强而宽,这是Si-O的振动吸收带,是由Si-O、Si-O-Si、Si-O-C以及O-Si-O引起的,

强度减弱,变宽,说明MTMS与硅溶胶粒子表面的-OH发生

了交联反应,包裹住了硅溶胶内部的Si-O-

Si键[20]

。而且硅溶胶在这一吸收带的峰值由1116cm-1(Si-O-Si非对称伸缩振动)变成为MTMS水解的伸缩振动特

征双峰:1192cm-1和1095cm-1,

这两处的吸收峰分别是Si-O-C、Si-O-

Si的特征峰[21]

。受包覆改性的影响,硅溶胶在802cm-1附近的O-Si-O对称伸缩振动峰消失,474cm-1

O-Si-O面内弯曲振动峰吸收明显减弱,并且发生偏移。通过以上的分析,表明MTMS改性硅溶

胶过程中发生了水解-缩合反应,MTMS与硅溶胶粒子表面的-OH发生了交联反应,包裹住了硅溶胶粒子,生成了含有有机基团的Si-O-Si的无机骨架结构[

22]。

由于硅溶胶中二氧化硅粒子是粒径在8~20nm的球形粒子,分散均匀,因此当存在MTMS的水解产

物时,它就会将二氧化硅颗粒连接起来[13]

,形成如图4所示的MTMS有机硅溶胶模型图,而有机硅溶胶的FTIR分析很好地解释了这一模型。聚硅氧烷的分子

构型主要取决于有机基对硅原子的比例,即(R/Si),实验的R/Si为1,产物主要为高度交联的线型、网状聚合物。从而MTMS改性,改善了硅溶胶粒子在成膜

过程中易龟裂的缺陷。

4结论1.选择甲基三甲氧基硅烷对工业硅溶胶进行改性,获得了透明的易溶于水的有机硅溶胶,其最佳制备工艺为:MMTMS/MSiO22∶1~4∶1,pH值3.5~5.5,水浴温度50~70℃,改性时间40~120min;2.MTMS的水解产物与硅溶胶粒子表面的-OH发生了交联反应,屏蔽了硅溶胶内部的Si-O-Si键,对硅溶胶粒子进行了包覆改性。

硅溶胶制备与应用

硅溶胶制备与应用 材料学院化工一班李彦辉20090583 内容摘要: 硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液,广泛应用于陶瓷、纺织、造纸、涂料、水处理、半导体等行业。介绍了硅溶胶的各种制备方法及几种特殊用途的硅溶胶的制备。阐述了影响硅溶胶稳定性的因素及其性能测试方法。 关键词:无机化学硅溶胶制备硅溶胶应用高分子 正文:硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液。1915年美国人首先用电渗析法制备出SiO2质量分数为2.4%的硅溶胶,硅溶胶得以大规模生产和应用,是在年美国人发明利用离子交换法生产硅溶胶以后。目前硅溶胶已被广泛应用于纤维、织物、纸张、橡胶、涂料、油漆、陶瓷、耐火涂料、地板蜡等行业中。另外其在半导体硅晶片的抛光、水处理、矿物浮选和啤酒、葡萄酒酿造等工艺中也有应用。 自1996年以来,随着电子工业迅速发展,作为硅晶片抛光液的原料———硅溶胶的产量快速增加。瑞士公司在2001年第1季度将它位于Martin的硅溶胶厂的生产能力提高了1倍,达到1.4万t/a。同期,日本Fuso Chemial公司也将它位于东京的硅溶胶厂的生产能力由原来的0.7万t/a提高到2.5万t/a. 从20世纪90年代开始,有机硅溶胶的研究和应用也得到较大发展。有机硅溶胶可应用于非水性体系,如用于制造磁性胶体和记录介质,高技术陶瓷化合物和催化剂载体需要有机硅溶胶特殊用途的改性产品研制也得到快速发展,如日本日产化学工业株式会社提出的用于墨水容纳层和喷墨记录介质的念珠状硅溶胶的制备方法。另外该公司申请的中国专利提供了一种含细长形非晶体胶体SiO2粒子的稳定硅溶胶的制备方法。铝改性硅溶胶的研究也取得了进展,这种硅溶胶的最大特点是体系呈中性时很稳定,而采用碱金属氢氧化物作稳定剂的硅溶胶,在体系呈中性时很快就凝胶 我国硅溶胶的研制和生产始于20世纪50年代,南京大学配位化学研究所、天津化工研究院、兰州化学工业公司化工研究院、青岛海洋化工厂、大连油漆厂、广州人民化工厂等都从事硅溶胶产品的研制和生产,但品种和产量与国外都有很大差距。 2002年11月4~8日,全国无机硅化合物技术与市场信息交流大会在广西桂林市召开,大会认为硅溶胶、层硅、聚硅、气相法白炭黑等将是行业发展的新热点。 【一】硅溶胶制备方法 1.1渗析法 渗析法是用酸中和硅酸钠水溶液,经陈化后,再通过半透膜渗析钠离子。该法缺点是渗析所需时间太长,不适于工业化生产。 1.2硅溶解法 采用无机或有机碱作催化剂,以单质硅与纯水反应来制备硅溶胶的方法称硅溶解法。Joseph等在1950年申请的专利中,利用可溶性有机碱作催化剂,使水和硅粉反应来制备 硅溶胶。其中的有机碱ph值(20~25摄氏度时)为6~12,含1~8个碳原子的脂肪胺或脂环胺,硅粉粒径为80~320目。硅粉在使用前应预活化,除去硅粉表面形成的惰性膜。活化时先用质量分数为48%的氢氟酸洗涤,然后依次用纯水、醇、醚冲洗,最后在氮气保护下干燥。活化后的硅粉与水在胺催化作用下,于20~100温度下反应,可制备粒径8~15mm的硅

硅溶胶的制备方法简述

硅溶胶的制备方法简述 目前,硅溶胶的制备主要有两种方法,即凝聚法和分散法。利用在溶液中的化学反应首先生成SiO2超微粒子,然后通过成核、生长,制得SiO2溶胶的方法为凝聚法;利用机械分散将SiO2微粒在一定条件下分散于水中制得SiO2溶胶的方法,即分散法。根据使用原料及工艺的不同,上述两种方法可细分成下面多种常见的制备方法。 1.离子交换法 用离子交换法制备硅溶胶的历史较长,1941年首先由美国人Bird 发明,其后发展迅速,到目前为止该项技术被国内外大多数硅溶胶生产企业所采用。该方法通常可分为3个步骤:活性硅酸制备,胶粒增长和稀硅溶胶浓缩。 首先,将稀释后的一定浓度的水玻璃依次通过强酸型阳离子交换树脂和阴离子交换树脂,分别除去水玻璃中的钠离子及其它阳离子和阴离子杂质,制得高纯度活性硅酸溶液。此溶液在酸性条件下不稳定,可用适当的NaOH或氨水调节其PH为8.5-10.5,以提高稳定性。在此步骤中使用的离子交换树脂应尽快再生。避免残余的硅酸形成凝胶,使交换柱失效。然后,将上述硅酸溶液加入到含晶种的母液中,通过控制加入速度和反应温度,使硅溶胶胶粒增长到所需粒径即可。最后将完成结晶聚合过程的聚硅酸溶液进行加热蒸发浓缩,或超滤浓缩,以得到合适浓度的产品。如果要进一步进行纯化,可采用离心分离法除去其中杂质,制得高纯硅溶胶。 可见,此方法本身具有不可克服的缺点:一是起始原料水玻璃受离

子交换的限制其浓度不能太高,这就致使第3部中的浓缩过程较长,能耗大,不利于能源的节约;二是离子交换树脂再生时会产生大量废水,对水的浪费较大且废水处理需要一定的成本;三是该法工艺程序多,生产周期长,反应过程中影响产品性能的因素众多以至较难控制。 2.直接酸中和法 一般采用稀水玻璃作为起始原料,经过离子交换出去钠离子,然后通过制备晶核,直接酸化反应,晶粒长大等步骤可制得硅溶胶。 (1) 离子交换除去钠离子:用离子交换树脂除去原料中的钠离子,制得SiO2/Na2O重量比较大的稀溶胶,稀溶胶中钠离子含量已较低。 (2)制备晶核:将上步骤制得的稀溶胶加热并停置一段时间,在稀溶胶中逐步形成数毫微米大小的晶核,与离子交换法中的离子增长反应步骤相似。 (3)直接酸化反应:将稀水玻璃原料及酸化剂(如稀硫酸)持续加入到前述制得的含晶核的稀溶液中,加入过程应注意控制混合液中钠离子的浓度、混合液加热温度、PH值、加入时间等条件。 (4)晶粒长大:上述混合液在控制适当条件下,进行晶粒长大过程,持续长大过程之后,即可制得硅溶胶成晶。 3.电解电渗析法 这是一种电化学方法。在电解电渗析槽中加入电解质,调节电解质溶液的PH值,控制电解电渗析反应的电流密度、温度等反应条件,在制备有合适的电极(如析氢电极、氧阴极)的电解电渗析槽中反应后可制取硅溶胶成品。

硅溶胶的制备

硅溶胶的制备 摘要:硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液,广泛应用于陶瓷、纺织、造纸、涂料、水处理、半导体等行业。本文介绍了硅溶胶的各种制备方法及几种特殊用途的硅溶胶的制备。阐述了影响硅溶胶稳定性的因素及其性能测试方法。 关键词:无机化学;硅溶胶制备;硅溶胶应用;综述 1 技术领域 本发明一般涉及适合用于造纸的含水二氧化硅基溶胶(Silica—based sols)。更具体地,本发明涉及二氧化硅基溶胶,它们的制备方法和在造纸中的用途。 本发明提供一种用于制备具有高稳定性、高含量SiO2和提高的滤水(drainage )性能的二氧化硅基溶胶的改进方法。 2技术背景[1, 2] 在造纸领域中,含有纤维素纤维以及任选的填料和添加剂的含水悬浮液(称为纸料)被装人流浆箱,该流浆箱将纸料喷到成型网架(wire)上。水从纸料中滤出,从而在网架上形成湿纸幅,然后在造纸机的干燥段对该纸幅进行进一步的脱水和干燥。 通常将滤水和留着(retention)助剂引人到纸料中,以便促进滤水并增加颗粒在纤维素纤维上的吸附,这样它们与纤维一起被保留在网架上。 虽然高比表面积和一定的聚集或微凝胶形成的程度对性能来说是有利的,但太高的比表面积和大量的颗粒聚集或微凝胶形成会导致二氧化硅基溶胶稳定性的显著降低,因此需要使该溶胶极其稀释,以避免形成凝胶。 国际专利申请公开WO 98/56715公开了一种用于制备含水聚硅酸盐微凝胶的方法,包括混合碱金属硅酸盐水溶液与pH 为11或更小的二氧化硅基材料的水相。该聚硅酸盐微凝胶与至少一种阳离子或两性聚合物一起在纸浆和纸的生产以及水净化中

用作絮凝剂。 国际专利申请公开WO 00/66492公开了一种用于生产包含二氧化硅基颗粒的含水溶胶的方法,该方法包括:酸化含水硅酸盐溶液至pH值为1—4以形成酸溶胶;在第一碱化步骤中碱化该酸溶胶;使碱化溶胶的颗粒生长至少10分钟和/或在至少30℃的温度下热处理该碱化溶胶;在第二碱化步骤中碱化所得到的溶胶;并且任选地,用例如铝对该二氧化硅基溶胶进行改性。 美国专利US 6372806公开了一种用于制备S值为20-50的稳定胶态二氧化硅的方法,其中所述二氧化硅具有大于700 m2/g的表面积,该方法包括: (1)在反应容器中加人阳离子型离子交换树脂(其离子交换能力的至少40%为氢形式),其中所述反应容器具有用于将所述离子交换树脂与所述胶态二氧化硅分离的装置; (2)向所述反应容器中加人SiO2与碱金属氧化物的摩尔比为15:1至1:1且pH值为至10.0的含水碱金属硅酸盐; (3)搅拌所述反应容器的内容物,直到所述内容物的pH 值为8.5—11.0; (4)用额外量的所述碱金属硅酸盐调节所述反应容器的内容物的pH值至大于10.0 ;并且将所得的胶态二氧化硅与所述离子交换树脂分离,同时将所述胶态二氧化硅移出所述反应容器。 (5)美国专利US 5176891公开了一种用于生产表面积为至少约1000m2/g的水溶性聚 铝硅酸盐微凝胶的方法,该方法包含下述步骤: (a)酸化包含约0.1—6重量%SiO2的碱金属硅酸盐稀溶液至pH值为2—10.5以制备聚酸;然后在该聚硅酸胶凝之前使其与水溶性铝酸盐进行反应,从而得到氧化钥/二氧化硅摩尔比大于约1/100的产物; (b) 然后在胶凝化发生之前稀释该反应混合物至SiO2含量为约2.0%(重量)或更少,以稳定该微凝胶。因此,有利地是能够提供一种具有高稳定性和SiO2含量及改进的 滤水性能的二氧化硅基溶胶。还有利地是能够提供用于生产具有高稳定性和SiO2含 量及改进的滤水性能的二氧化硅基溶胶的改进方法。还有利地是能够提供一种改进滤水的造纸方法。

硅溶胶用途

无机硅涂料的应用 1、防水涂料 硅溶胶对混凝土、水泥砂浆具有良好渗透力,同时渗透进去的胶体粒子膨胀这就使涂料牢固地粘接在墙上。现在的“立邦漆”等大部分高档乳胶漆都含有硅溶胶。 2、防壁毯装饰涂料 涉及一种呈软包装效果的仿壁毯涂料,用硅溶胶和白乳胶做为助剂,用传统配比制作工艺调配而成,具有良好的软包装饰效果和质感,是目前最新式的高档内外墙装饰材料。 3、种彩色建筑装饰膏 装饰膏中有831纤维素,硅溶胶,重钙,多能粉。还可有增塑剂成膜助剂,活化重钙,有机硅乳液等。成膜后表面光滑细腻、硬度高、成本低、工艺简单、适应性强、寿命长。 4、水溶性高光彩瓷涂料 本发明公开了一种水溶性高光彩瓷涂料,由(按重量%计):硅溶胶3—4,尿素树脂80,苯丙乳液0.5—1,聚乙烯醇2—3,本发明可以直接用水调节其粘度。无毒、无味、不污染环境,成本较低,附着力较好,色彩丰富,耐磨和耐酸碱。 5、新型水性复合高分子外墙涂料 提供了一种新型水性复合高分子外墙涂料,采用的是二次复合工艺。其组分是硅溶胶、苯丙乳液、各类助剂及颜填料。本涂料既有有机涂料的柔性、又有无机涂料的硬度,涂料软硬适度,耐酸、耐碱、耐高温、耐久性好,施工上墙后同水泥墙面不仅仅表面附着,还形成配位反应,对基层产生渗透,十分牢固。涂膜不产生静电、不易吸附灰尘、耐污染性好、十分有利美化市容。 6、一种防水涂料 提供了一种防水涂料,是乙二醛和硅溶胶作为成膜物质,利用其良好的耐水性能和不透水性,以及对混凝土、水泥砂浆的良好粘结力,并添加了防水剂、早强剂等,使其成为具有一定柔性特征的刚性多功能防水涂料。 7、水性无机双组分富锌涂料的制造方法及该涂料 一种水性无机双组分富锌涂料制造方法及该涂料,该涂料通过将制备好的组分A即粘结剂与组分B即锌粉以1∶2-4的重量比混和而制成,所述组分A的制备包括:1)将含适量锂、钠、钾离子的混合型硅溶胶放入容器加以搅拌,并在搅拌的旋涡稳定的条件下顺序加入总重量比为0.2-10%的硅酸锂,同时不断搅拌,使溶液呈半透明胶体状。该制造方法操作简便、成本低;制成的涂料早期耐水性特好,对基材附着力强且稳定;且无废水、废渣及挥发性气体产生,符合环保要求。 8、一种环保型水性彩瓦涂料及其制备方法 涉及一种环保型彩瓦涂料,其原料为:水份、分散剂、硅溶胶、成膜助剂、杀菌剂。实用而又廉价的产品,必然具有极大的商业价值;3.由于产品无毒、无味、不燃不爆,无论对生产环境的安全、生产和使用人员的集体健康来说都是十分有益的。 9、具有自洁、抗霉、灭菌及净化空气作用的水性功能涂料 是一种具有自洁、抗霉、灭菌及净化空气作用的水性功能涂料,水溶性树脂或聚合物乳液或硅溶胶以及它们的复合物。该涂料可用于各种混凝土、金属或木质等建筑物的内、外表面,亦可用于家具、办公用具、交通工具等,应用范围。 10、抗日光隔热涂料 涉及一种抗日光隔热涂料,它的组分和含量(重量份)为苯丙乳液7-15、三聚氰胺改性聚乙烯醇粘合剂4-8、聚醋酸乙烯2-20、硅溶胶(液态)3-7、尿素0.3-0.8、粉状硅酸盐纤维1-2、明矾0.3-0.8。它有极好的反射太阳光的作用和隔热保温性能,并且涂层不龟裂、硬度好、表面 11、一种环保型光催化内墙涂料 该涂料的特征在于具有以下各原料组分及重量百分配比:硅丙乳液和聚丙烯酸酯乳液中的一种或两种的混合液为10-35%、硅溶胶为5-15%、纳米级的锐钛矿相或锐钛矿相和金红石相的混合相二氧化钛颗粒,本发明的环保性光催化内墙涂料可有效降解周围空气中污染物质,净化室内空气,特别是对室内的甲醛、甲苯等有害有机物质进行降解,且具有抗菌、自净、消雾等功能。 12、光催化空气净化水性环保内墙涂料 提供一种光催化空气净化水性环保内墙涂料,主要应用于建筑内墙的涂装。其主要特征是以

甲基三甲氧基硅烷改性工业硅溶胶的工艺及机理上课讲义

甲基三甲氧基硅烷改性工业硅溶胶的工艺 及机理

甲基三甲氧基硅烷改性工业硅溶胶的工艺及其机理 【摘要】以有机硅氧烷和工业硅溶胶为主要原料,采用sol-gel方法获得了水性有机硅溶胶。通过硅氧烷的选择、膜层性能检测以及pH值、水浴温度、改性时间等改性工艺的研究,获得MTMS改性硅溶胶的最佳工艺:MMTMS/MSiO2为2∶1~4∶1;pH值3.5~5.5;水浴温度50~70℃;改性时间40~120min。经FTIR分析和改性机理的探讨,表明MTMS水解生成的硅醇基团与硅溶胶粒子表面的羟基发生缩聚交联,屏蔽了硅溶胶内部的Si-O-Si键,对硅溶胶粒子进行了包覆改性。 1引言 工业硅溶胶作为一种水性、无机粘结剂,广泛应用于涂料中提高膜层的理化性能。但是,由于其在成膜过程中体积收缩大、干燥快,容易造成涂膜龟裂、流平性差等缺陷[1],在涂料中的用量较少,不能够作为主要的成膜物质,使其无机粘结剂的性能优势受到限制。应用中,硅溶胶常常与有机粘结剂复合使用或经过改性处理,如与丙烯酸酯、氟树脂等乳液混合,使两者的性能相互补充,研发有机-无机复合涂料[1-2]。但是这种改性硅溶胶[3-6]中存在大量的有机组分,涂料在使用和成膜过程中存在高VOC(VolatileOrganicCompounds),不环保;而且这种涂料涂层遇火易燃,一旦发生火灾, 会释放有毒的气体和浓烟。因此,结合我国涂料工业经济(Economy)、能源(Energy)、生态(Ecology)和效率(Efficiency)的4E要求,制备水性、低VOC、无机不燃的涂料用于金属表

面的装饰和防护[7],具有较强的应用需求。有机硅氧烷兼有无机和有机两种官能团,成膜时以Si-O-Si为主链,是一种有机-无机杂化高分子材料,用于涂层材料具有耐热、耐候等优良的理化性能[8]。一些文献[9-10]采用有机硅氧烷改性硅溶胶制备薄膜涂层,而硅溶胶是由硅酸乙酯的水解缩聚制备,且在改性过程中引入过多的有机组分;直接采用有机硅氧烷对工业硅溶胶进行改性,并制备水性涂料应用于金属表面的装饰和防护,文献报道较少[11-12]。因此,本文以有机硅氧烷和工业硅溶胶为主要原料,在酸催化、水浴的条件下改性硅溶胶粒子,以获得一种水性无机涂料所需的主要成膜物质。本文着重于对硅溶胶改性工艺及改性机理的研究,而通过论文中最佳工艺制备有机硅溶胶及涂层的相关性能测试与表征参见文献[11]。 2实验 2.1试剂 甲基三甲氧基硅烷(MTMS):WMTMS>98%, 沸点:101~102℃,工业品,杭州硅宝化工有限公司;其它硅氧烷试剂也购买于该公司。LS-30低钠型硅溶胶,含30wt%SiO2,浙江宇达化工有限公司。其它试剂均为分析纯, 2.2测试 pH值测试:使用PHB便携式酸度计(杭州雷磁分析仪器厂) 。电导率测试:采用DDB-11A便携式电导率仪(上海三信仪表厂),直接将电极插入水解溶液中,读出相应电导率值。FTIR测试:将改性硅溶胶放置烘箱中,120℃4h,

甲基三甲氧基硅烷改性工业硅溶胶的工艺及机理

甲基三甲氧基硅烷改性工业硅溶胶的工艺及其机理 【摘要】以有机硅氧烷和工业硅溶胶为主要原料,采用sol-gel方法获得了水性有机硅溶胶。通过硅氧烷的选择、膜层性能检测以及pH值、水浴温度、改性时间等改性工艺的研究,获得MTMS改性硅溶胶的最佳工艺:MMTMS/MSiO2为2∶1~4∶1;pH值3.5~5.5;水浴温度50~70℃;改性时间40~120min。经FTIR分析和改性机理的探讨,表明MTMS水解生成的硅醇基团与硅溶胶粒子表面的羟基发生缩聚交联,屏蔽了硅溶胶内部的Si-O-Si键,对硅溶胶粒子进行了包覆改性。 1引言 工业硅溶胶作为一种水性、无机粘结剂,广泛应用于涂料中提高膜层的理化性能。但是,由于其在成膜过程中体积收缩大、干燥快,容易造成涂膜龟裂、流平性差等缺陷[1],在涂料中的用量较少,不能够作为主要的成膜物质,使其无机粘结剂的性能优势受到限制。应用中,硅溶胶常常与有机粘结剂复合使用或经过改性处理,如与丙烯酸酯、氟树脂等乳液混合,使两者的性能相互补充,研发有机-无机复合涂料[1-2]。但是这种改性硅溶胶[3-6]中存在大量的有机组分,涂料在使用和成膜过程中存在高VOC(VolatileOrganicCompounds),不环保;而且这种涂料涂层遇火易燃,一旦发生火灾, 会释放有毒的气体和浓烟。因此,结合我国涂料工业经济(Economy)、能源(Energy)、生态(Ecology)和效率(Efficiency)的4E要求,制备水性、低VOC、无机不燃的涂料用于金属表面的装饰和防护[7],具有较强的应用需求。有机硅氧烷兼有无机和有机两种官能团,成膜时以Si-O-Si为主链,是一种有机-无机杂化高分子材料,用于涂层材料具有耐热、耐候等优良的理化性能[8]。一些文献[9-10]采用有机硅氧烷改性硅溶胶制备薄膜涂层,而硅溶胶是由硅酸乙酯的水解缩聚制备,且在改性过程中引入过多的有机组分;直接采用有机硅氧烷对工业硅溶胶进行改性,并制备水性涂料应用于金属表面的装饰和防护,文献报道较少[11-12]。因此,本文以有机硅氧烷和工业硅溶胶为主要原料,在酸催化、水浴的条件下改性硅溶胶粒子,以获得一种水性无机涂料所需的主要成膜物质。本文着重于对硅溶胶改性工艺及改性机理的研究,而通过论文中最佳工艺制备有机硅溶胶及涂层的相关性能测试与表征参见文献[11]。 2实验 2.1试剂 甲基三甲氧基硅烷(MTMS):WMTMS>98%, 沸点:101~102℃,工业品,杭州硅宝化工有限公司;其它硅氧烷试剂也购买于该公司。LS-30低钠型硅溶胶,含30wt%SiO2,浙江宇达化工有限公司。其它试剂均为分析纯, 2.2测试 pH值测试:使用PHB便携式酸度计(杭州雷磁分析仪器厂) 。电导率测试:采用DDB-11A便携式电导率仪(上海三信仪表厂),直接将电极插入水解溶液中,读出相应电导率值。FTIR测试:将改性硅溶胶放置烘箱中,120℃4h,冷却后采用KBr压片法对其进行FTIR分析(布鲁克光谱仪器有限公司TENSOR27)。 2.3改性方法 称取一定质量的硅溶胶于500ml烧杯中,用盐酸调节pH值,然后放入水浴中加热并恒力搅拌,同时按所需的比例称取有机硅氧烷,缓慢加入硅溶胶烧杯中,反应一段时间后获得有机硅溶胶。后文中将经过MTMS改性后的硅溶胶称为有机硅溶胶。

硅溶胶精密铸造的工艺

硅溶胶精密铸造的工艺 一、蜡模制作 蜡料处理工艺操作守则 蜡料处理流程: (静置桶I中)静置脱水→(除水桶中)搅拌蒸发脱水→(静置桶II中)静置去污 1 工艺参数 静置桶I 静置温度85-90℃ 静置时间6-8h 除水桶搅拌温度110-120℃搅拌时间10-12h 静置桶II 静置温度80-85℃静置时间>12h 保温箱保温温度54±2℃保温时间>24h 2 操作程序 2.1 检查设备、温控仪表是否处于正常工作状态。 2.2 将脱蜡釜回收的旧蜡液倒入过滤槽中过滤;再送到静置桶I中,在低于90℃下静置6-8h。 2.3 静置完毕把沉淀水放掉后,将蜡液倒入除水桶中。 2.4 除水桶中的蜡液,在110-120℃保温并搅拌,使残留水分蒸发,到目视蜡液表面无泡沫为止。 2.5 将除完水的蜡液,经过<60目筛网过滤再放入<90℃的静置桶II中,保温静置12h 以上。 2.6 各除水桶、静置桶应定期性的放掉其底部的残留水和脏杂物。 2.7 把静置桶II中处理好的回收蜡液送到模头压蜡机保温桶中,用于主产模头(浇道)。 2.8 根据旧腊料性能和腊料消耗情况,不定期的在静置桶II中适量加新蜡,一般在3%-5%左右。 2.9 将合格的蜡液灌入保温箱内的蜡缸中,为减少蜡缸内蜡液中的气体,先保持一段高温时期80℃/2h后降至54℃。在54±2℃下保温24h后,方可用于压制蜡模。 3 注意事项 3.1除水桶,静置桶均应及时排水、排污。

3.2经常检查各设备温控仪表的工作状况,防止失控,尤其应防止温度过高造成蜡料老化。 3.3每月检查一次蜡处理设备各导热油的液面位置,油面应距设备顶面200㎜左右,防止油溢出。并注意检查设备有无渗油现象。 3.4经常检查环境状态,避免灰尘及外来物混入蜡料中。 压制蜡模工艺操作守则 1 工艺要求 室温24±3℃ 蜡缸温度54±2℃(大件应根据工艺要求设定) 射蜡嘴温度57-64℃ 压射压力 4.2Mpa(42kgf/cm2) 保压时间5-15s 冷却水温度<10℃ 2 操作规程 2.1 检查压蜡机油压、保温温度、操作按钮等是否正常。按照技术规定调整压蜡机压射压力、射蜡嘴温度、保压时间、冷却时间等。 2.2从保温箱中取出蜡缸,装在压蜡机上,放出上部混有空气的蜡料。 2.3 将模具放在压蜡机工作台面上,调整射蜡嘴使之与模具注蜡口高度一致,检查模具所有芯子活块位置是否正确,模具开合是否顺利。 2.4打开模具,喷上微薄一层分型剂。合型,对准射蜡嘴。 2.5双手按动工作按钮,压制蜡模。 2.6抽出芯子,打开模具,小心取出蜡模。按要求放入冷却水中或放入存放盘中冷却。并检查有下列缺陷的蜡模应报废: (1)有严重气泡的蜡模;(2)棱角不清晰的蜡模; (3)变形不能修复的蜡模;(4)尺寸不符号规定的蜡模。 2.7清除模具上残留的蜡料,注意只能用压缩空气吹净模具分型面、芯子上的蜡屑、脱模剂,不准用金属刀具去铲刮型腔、抽芯。慎防损害模具型腔部位。 2.8按以上各条进行下一次压制蜡模,以后往复循环生产。 2.9及时将蜡模从冷却水中轻轻取出,用压缩空气吹净蜡屑及水珠,并进行自检,将合格蜡模正确放入存放盘中。 2.10每班下班或模具当班生产完毕后,应用软布等清理模具。如发现模具有损伤应立即报告领班,由领班处理。并清扫压蜡机、工具及现场,做到清洁、整齐。 3 注意事项 3.1压制蜡模时,首先必须进行首件检查,确认合格后,方可进行操作。压制过程中不能轻易变动压制参数。 3.2使用新的模具时,务必弄清模具组装、拆卸顺序,蜡模取出方法。 3.3蜡模存放时,应注意搁置方向,防止变形。需要时可采取卡具等措施,以避免蜡模变形。

硅溶胶制造工艺中的涂料配制工艺

硅溶胶制造工艺中的涂料配制工艺 硅溶胶是一种优质硅溶胶模铸造用水基粘结剂,生产用于所有层(面层和背层)。硅溶胶易配制成高粉液比的优质涂料。涂料稳定性好。用硅溶胶制成的壳体不需要化学硬化,型壳制造过程无空气污染。 2.2.1 硅溶胶涂料的配比原则 控制涂料粘度以达到稳定制壳质量的目的,配制时按当时的实际情况,当零件壁薄、复杂或带有深陷时,涂料粘度取下限,反之取上限。 1.配制工艺 按涂料的配方取一定量的耐火材料、润湿剂、消泡剂,先将润湿剂及消泡剂加入涂料桶中,然后加入硅溶胶,开始搅拌,在不断搅拌过程中加入耐火材料,待全部加入完后,继续搅拌6h~12h,稳定后测其粘度,过高加硅溶胶稀释,过小则加入一定量的耐火粉料补充,直至粘度合格为止。 2. 硅溶胶涂料液的制壳工艺 3.制壳场地工艺参数 涂料间温度:22℃~25℃;相对湿度45%~65%;通风条件:良好。 4.涂料工艺过程 将清洗好的蜡模(要求干燥后)慢慢浸入L型涂料搅拌桶中,并转动上下移动,让涂料充分并均匀湿润模组后,取出慢慢转动至无涂料堆积、滴落现象时再挂砂,使砂粒均匀附于涂料之上,每层涂料的粘度、撒砂粒度要求(见表3)。面层涂料时要用专用筛网过滤涂料中的砂粒等杂质,以防止模壳中产生砂粒等脱落而造成铸件夹灰夹砂。 表3 硅溶胶涂料的性能要求 5.硅溶胶铸造每层型壳的干燥过程 硅溶胶在干燥过程中必须严格控制温度,相对湿度及空气流速等,具体工艺参数(见表4)如下。 表4 硅溶胶型壳工艺参数

当环境温度和相对湿度不易调整时,可控制为一定相对稳定额数值:温度为22℃~25℃;湿度45%~65%。 6.模壳脱蜡工艺 采用水浴脱蜡,水温90℃~95℃,脱蜡时间≥20min,以防止水沸腾造成砂粒或涂料进入模壳中。 7.模壳的自检 模壳的自检由操作工自己完成,当有分层、走泡、开裂、烂头者为不合格,浇口中有多余的涂料,不均匀附着者必须除去,否则为不合格。 8.脱模槽清理 每次脱模结束后将蜡水放出浇成蜡锭,浇蜡锭时要用要用160目~200目的筛网过滤去除蜡液中渣滓,并将槽中的水全部放掉并将脱蜡槽打扫干净,下次脱蜡时重新加入清洁的水。 9.焙烧工艺 9.1 单壳焙烧 模口朝下,放置于炉膛内,焙烧温度900℃~1050℃,到温后保温1h~2h后开始取出浇注;当需要装箱时待小于450℃出炉、装箱。 9.2 装箱焙烧 认真仔细检查模壳质量,凡有型腔开裂、剥落、起皮等现象不予装箱。清除浇口翻边及浮砂,模壳口朝下,四周均匀拍摆模壳,清除夹灰、夹砂及型腔表面的浮尘。用压缩空气吹净型腔内夹灰及其表面浮尘100%进行清水清洗模壳型腔,去除内部渣滓。再次轻轻拍摇模壳后装箱,填砂后用石棉板盖住浇口并用两半缺口的石棉板盖住砂箱上口(石棉板大小保证盖满整个砂箱上口并伸出挡砂箱爆皮的边沿),以防止焙烧至浇注过程中砂箱爆皮落入模壳中而造成铸件夹灰。如有浇口损坏,杯口有砂粒外露者,则停止使用,经修补并经检验合格后方再次使用。小于450℃装箱,箱式电阻焙烧炉焙烧至900℃,保温2h后方可浇注。 10.结束语 精密铸造硅溶胶模壳制造工艺能满足优质铸件的生产要求。多年来的生产实践充分证明精密铸造硅溶胶模壳制造工艺是成熟的,为生产合格模壳和精密铸件提供技术保障。 国际铸业网

硅溶胶水玻璃复合型壳制壳工艺

硅溶胶水玻璃复合型壳 制壳工艺 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

硅溶胶-水玻璃复合型壳制壳工艺 1、原辅材料 含量为30%,密度1.19~S830、S1430单质硅硅溶胶SiO 2 1.20g/cm3; ≥65%,<0.045mm(325目); 锆英粉含量为:ZrO 2 锆英砂:ZrO ≥65%,0.150mm(100目); 2 莫来石砂:无细粉,熟料,0.600~0.250mm(30~60目); 匣钵粉:0.075mm(200目); 匣钵砂:0.850~0.425mm(20~40目); 表面湿润剂:J.F.C; 长效消泡剂; 硅油类; 结晶氯化铝; 水玻璃:模数3~3.4。 2、操作工艺 2.1制蜡模时采用硅油脱模;蜡模必须逐个检查,尽量不修补;模组焊接时小件采用粘结蜡;中大件采用焊刀焊接;间距适当,将带有内腔、孔、槽时,使其向外,有利于制壳、脱蜡和浇注;对带有文字、狭缝、凸缘、弯部应保持轮廓清晰;蜡模组制壳前应先吹去蜡屑、再经清洗液清洗,晾干后制壳。 2.2 涂料的配制

面层采用S830单质硅硅溶胶与锆英粉,新料配制时粉液比1∶3.3,流杯粘度为40-45s,6h以后测粘度,若≥50s,逐步加硅溶胶;若粘度 ≤40s,逐步加入锆英粉;JFC和消泡剂在搅拌后期加入,JFC加入量为加入硅溶胶质量的0.3%-0.5%,可通过涂料的涂挂性的优劣调整;消泡剂加入量为JFC加入量的一半,并按泡多少适当地调整。 2.3 面层的配制及操作工艺: 2.3.1 整个配料过程是在L型搅拌机连续运转条件下进行的,L型叶片必须超过中心,且叶片与筒边、筒底间隙约5mm;过大,在配料过程中会出现沉淀; 2.3.2 先加入硅溶胶,再逐步均匀、缓慢地加入锆英粉。如加入10包锆英粉,加入总时间必须>2时,加完后连续搅拌8-9h,然后用流杯粘度计测粘度,直至粘度达到要求后,接着测定密度; 2.3.3 测定粘度值的确定,是在筒中心、筒边分别取料,然后取其平均值; 2.3.4 用玻璃片沾上涂料,对光观察,如无颗粒点则确定涂料搅拌已均匀;一般认为:每加2-3kg锆英粉;涂料粘度可提高5s左右;每加 0.5kg硅溶胶,涂料粘度可降低5s左右;根据这个小规律适当加以调整; 2.3.5 涂料配好以后,接着将准备好的模组进行最后检查,(如检查模头上的记号与铸件材质是否一致等。)待涂挂; 第一层

硅溶胶水玻璃复合型壳制壳工艺-精品

硅溶胶水玻璃复合型壳制壳工艺-精品 2020-12-12 【关键字】方法、条件、质量、继续、保持、规律、关键、方式、逐步、调整、提高、中心1、原辅材料 S830、S1430单质硅硅溶胶SiO2含量为30%,密度1.19-1.20g/cm3;锆英粉含量为:ZrO2≥65%,<0.045mm(325目);锆英砂:ZrO2≥65%,0.150mm(100目);莫来石砂:无细粉,熟料;0.600-0.250mm(30-60目);匣钵粉:0.075mm (200目);匣钵砂:0.850-0.425mm(20-40目);表面湿润剂:J.F.C;长效消泡剂;硅油类;结晶氯化铝;水玻璃模数3-3.4。 2、操作工艺 2.1制蜡模时采用硅油脱模;蜡模必须逐个检查,尽量不修补;模组焊接时小件采用粘结蜡;中大件采用焊刀焊接;间距适当,将带有内腔、孔、槽时,使其向外,有利于制壳、脱蜡和浇注;对带有文字、狭缝、凸缘、弯部应保持轮廓清晰;蜡模组制壳前应先吹去蜡屑、再经清洗液清洗,晾干后制壳。 2.2 涂料的配制 面层采用S830单质硅硅溶胶与锆英粉,新料配制时粉液比1:3.3,流杯粘度为40-45s,6h以后测粘度,若≥50s,逐步加硅溶胶;若粘度≤40s,逐步加入锆英粉;JFC和消泡剂在搅拌后期加入,JFC加入量为加入硅溶胶质量的0.3%-

0.5%,可通过涂料的涂挂性的优劣调整;消泡剂加入量为JFC 加入量的一半,并按泡多少适当地调整。 2.3 面层的配制及操作工艺: 2.3.1 整个配料过程是在L型搅拌机连续运转条件下进行的,L型叶片必须超过中心,且叶片与筒边、筒底间隙约5mm;过大,在配料过程中会出现沉淀; 2.3.2 先加入硅溶胶,再逐步均匀、缓慢地加入锆英粉。如加入10包锆英粉,加入总时间必须>2时,加完后连续搅拌8-9h,然后用流杯粘度计测粘度,直至粘度达到要求后,接着测定密度; 2.3.3 测定粘度值的确定,是在筒中心、筒边分别取料,然后取其平均值; 2.3.4 用玻璃片沾上涂料,对光观察,如无颗粒点则确定涂料搅拌已均匀;一般认为:每加2-3kg锆英粉;涂料粘度可提高5s左右;每加0.5kg硅溶胶,涂料粘度可降低5s 左右;根据这个小规律适当加以调整; 2.3.5 涂料配好以后,接着将准备好的模组进行最后检查,(如检查模头上的记号与铸件材质是否一致等。)待涂挂; 2.3.6 模组顺转向缓慢进入面层预湿浆中,稍等片刻,缓慢升起;在转筒上方停留滴去多余涂料,顺便观察字迹、小孔是否清晰,并用微弱的压缩空气吹去小气泡,再缓慢进入面层浆中,操作同上,滴去多余涂料,模组即作左右、上下

铸造用硅溶胶

铸造用硅溶胶一般二氧化硅30%: A.台湾荣祥工业 基本物理化学 矽溶胶/矽酸胶 性质主要成份 其他成份有机补强剂 二氧化硅含量25% 粒径7~8 mm pH at 25°C 9~10.5 比重 1.17 黏度<10 cps 氧化钠含量0.4% 带电性负电 颜色白色 规格RS-PⅡ、RS-P、RS-E型硅溶胶应用在精密铸造业简介 一种添加树脂增加湿态强度、乾燥速度。增效型的硅溶胶!为奈米级的有无机复合材料! PⅡ/P/E依序通常用于面层/2、3层/背层,树脂量由高而低。 PⅡ/P/E型硅溶胶是一种复合型的硅溶胶,为一综合有机/无机黏结剂优点为一身的新型黏结剂。适用于各种精密铸造的应用,使用P型硅溶胶会有下列几项优点: *良好的润湿性 *较低沙浆黏度 *较短滴滞时间 *降低壳模材料的使用量 *缩短壳模的乾燥时间 *更佳的湿态强度 *更薄的壳模厚度 实际的效果会因壳模的种类、大小、应用而有所不同的表现。 典型的沙浆调制(10公升) 64.5%耐火材料(耐火材料约63.0~66.0%) RS-PⅡ型硅溶胶:5.92 KG 120~200MESH熔融石英:5.38 KG or 140MESH熔融石英:10.75 KG 黏度:14~18 sec 3号詹氏杯 浆密度:1.65~1.69 g/ml *以上仅供参考,各厂应视各家的需求,自行调配比例。 使用建议: a. 使用前,请先搅拌。关于简易型的活动搅伴叶片,请洽本公司服务部。 b 泡新浆时建议不用再加水了,但补充自浆桶散失的水份是必要的。 .

c. pH维持在9.0~10.5之间。 d . 维持固定的粉液比。 e. 浆桶的温差不要超过±3°C,沾浆室的温差不要超过±6°C。 f. 壳模乾燥室的温度要维持定温,相对湿度可以降低至20%~60%,风速可提高 至1.3~2.0 m/s,减少乾燥的时间。 g . 若使淋砂机和RS-PⅡ/P时,砂子的粒径要小于30MESH,附着力才会好。 h . 若用压力锅脱腊时,用乾蒸气升压至 5.5bar(80psi) 要在10sec内完成;降压时,时间要超过 2 min。 硅溶胶RS-PⅡ,RS-P,RS-E型是一种添加树脂,在精密铸造行业中,常当做优质的粘结剂。大量使用,所制的壳模具有高温强度高、光洁度好、尺寸精度高等优点。本公司生产的硅溶胶中约有60%应用于此行业,通常使用产品为RS-30/RS-30S和快乾型FS-30A/FS-25B硅溶胶。 本公司精密铸造专用硅溶胶分有面层RS-30S和背层RS-30硅溶胶。面层硅溶胶粒径较小,有利于提高浆料的粉液比和致密性,能有效提高铸件表面品质;而背层硅溶胶则粒径稍大,更注重强度性能。经专家测定,其高温强度明显高于国内其他厂家所生产的产品,和美国Nyacol、日本Nisson公司等产品相仿。 B.精密铸造专用硅溶胶 一、应用领域 本品是为精密铸造专业设计的一款硅溶胶产品,特别适合于面层。用其制备的型壳具有表面光洁度高、高温强度高等优点,显著提高铸件的良品率。 二、性能指标 指标名称标准 SiO2含量(重量) 25-28% 粒径10-15nm 外观透明液体 pH值9-10 保质期(月) ≥12 三、使用说明 在搅拌桶中先加入润湿剂和消泡剂,然后加入硅溶胶,搅拌均匀,然后在不断搅拌中加入耐火粉,继续搅拌至体系充分稳定,测量其粘度,若体系粘度过高,则加硅溶胶稀释;若体系粘度过低,则加适量耐火粉,直至粘度适合。 四、包装及储存 1.采用聚乙烯塑料桶包装,主要包装规格有25Kg、250Kg。 2.贮存时应避免曝晒,贮存温度为0-40℃。低于0℃则产生冻胶失效。 3.避免敞口长期与空气接触。 一、当前国内精密铸造面临的机遇和挑战 中国精密铸造业从20世纪90年代初起,进入了一个飞速发展的时期.经过十几年的稳步发展现已成为亚洲地区生产规模最大,专业化程度最高,辅助材料最为齐全的精铸产品生产基

硅溶胶溶模铸造工艺

硅溶胶溶模铸造工艺 熔模铸造的基本特征是采用易熔材料为模样,以耐火材料为铸型,浇注前熔出模样而形成铸型空腔。早在3000年前,该工艺已经被用来铸造工艺品。第二次世界大战期间,由于军事工业的需要,美英等国用熔模铸造的方法生产涡轮喷气发动机的静叶片,从而将该工艺推向工业领域,并在半个多世纪里得到不断发展和提高。熔模铸造的生产工序繁多,从蜡模、型壳、浇注,一直到清理,是一个紧密的链条,任何环节出现问题都直接影响到最终铸件的成形和质量,需要特别加强工艺的控制与研究。 1.制壳工艺的重要性 所有生产工序中,蜡模制造和型壳制造是反映熔模铸造自身特色的两个工艺环节,需要在工艺研究中特别给予关注。 近些年来,世界范围的熔模铸造工艺在蜡模制造方面取得了长足的进步,生产者可以通过选择合适的模料和采用现代化的工艺装备保证蜡模的尺寸精度和表面质量。同时,与熔模铸造的后续制造过程相比,蜡模制造相对独立,可以通过外观检查和尺寸测量等手段筛除不合格品,避免继续生产而增加损失。 进入到型壳制造环节,与铸件最终质量相关的表面质量和尺寸精度等信息则被隐藏起来,直到铸件被清理出来之前,型壳内腔质量的变化可以看成一个“黑箱”,制造环节中无法直接观察其尺寸及质量的变化,只有对型壳的制造工艺与缺陷的关系了解得更加清楚,才能保证整个生产流程的可控性。更为重要的是型壳作为铸件成形的直接型腔,其性能最终影响液态金属的成形质量。因此,人们非常关注熔模铸造的制壳过程。在国际重要的熔模铸造专业会议——美国熔模铸造协会ICI每年一度的技术会议上,型壳研究始终是受关注的热点,有1/3左右的论文与型壳有关,说明型壳制造技术发展对熔模铸造的重要性。 在国际上通用的熔模铸造制壳工艺中,硅溶胶型壳由于环保优势占据了主导地位,但其同样需要面对激烈市场竞争的挑战:一方面是要适应航空航天及军工领域提出的更大、更薄、更复杂铸件的质量要求;另一方面对于大量民用产品而言,缩短生产周期,提高市场反应能力也成为当务之急。 2.型壳技术的发展对新型硅溶胶研制提出的要求 2.1满足复杂熔模铸件对硅溶胶型壳的要求 要制造出大型、薄壁、复杂铸件的型壳,一方面需要解决型壳制造能力的问题,比如适合大型型壳操作的装备,包括制壳机械手、脱蜡设备等。 另一方面,最终型壳在强度、抗变形能力和尺寸精度等性能方面有更高的要求,特别是型壳的强度和抗变形能力是浇铸大型熔模铸件的基础。只有在保证型壳这方面的性能要求,使铸件正确成形,才能进一步提到铸件尺寸精度问题。 硅溶胶型壳的强度按照其所受热作用不同,可以分为常温强度、高温强度和残留强度。常温

制壳工艺守则

宁夏朗盛精密制造技术有限公司 文件编号QB/JZ-007 版本号/修订状态:A/3 制壳工艺守则 (试用)

2013年10月发布2013年11月实施吴忠仪表宁夏朗盛精密制造技术有限公司 前言 本守则在原《熔模铸造工艺操作规程》(WYZZ-JS/WJ-12-2006)的基础上,参照相关标准制定。本守则对原规程进行了细化,使其更具有指导性。 本标准由吴忠仪表宁夏朗盛精密制造技术有限公司技术部出并归口。 本标准由吴忠仪表宁夏朗盛精密制造技术有限公司技术部负责制定。 原标准《熔模铸造工艺操作规程》(WYZZ-JS/WJ-12-2006)起草人:党李燕。 本守则修订人:闫文学。 本守则发布以后,原标准自行作废。

制壳工艺守则 1 范围 本守则为精铸制壳技术操作的一般性规定。 本守则是精铸制壳操作和技术检查的依据。 操作人员须遵守安全操作规程以及佩戴相关劳保用品。 2 一般蜡模的制壳流程 一般蜡模的制壳程序如下: 清洗蜡模→面层→风干→过渡层→风干→加固层→硬化→挂架 3. 制壳用原材料及技术条件 耐火材料:见表1 风干 沾面层涂料撒面层砂沾过渡层涂料撒过渡层砂 风干 沾加固层涂料 撒加固层砂 硬化 清理冒口砂 制好的壳挂架 将蜡模放入 水中清洗

表 1 耐火材料理化指标 加固层水玻璃()要求干净无杂质。 模数:M=~(冬季取上限、夏季用下限)。 比重:d=~外购水玻璃如果d太高必须进行稀释处理,加水量计算如下 (do-d)m X= do(d-1) 式中:do——原水玻璃比重d——要求的水玻璃比重 m——处理水玻璃总量 冬天为使涂料温度不至过低,可用热水稀释水玻璃。 面层硅溶胶:技术要求见表2一般使用830胶核对参数

硅溶胶精密铸造的工艺

焦作市恒辉精密制造有限公司企业标准 特种合金熔模铸造工艺守则 工艺流程QQ/HH C4.1-2013 1 适用范围 1.1 本守则适用于特种合金硅溶胶熔模铸造。 1.2 其它合金硅溶胶熔模铸造可参照执行。 2 特种合金熔模铸造工艺流程图 3 控制要求 3.1 制模、组合、制壳、脱蜡、熔炼浇注、清理、热处理及精修为特种合金熔模铸造生产工序,应制定各工序的通用工艺守则。检验纳入检验规范。熔炼浇注确认为特殊过程。 3.2 对于每一种铸件,均要求编制工艺规程。 3.3 铸件的整个生产过程应严格按照工艺守则及工艺规程的要求进行生产。实施过程控制,并按照工艺守则要求做好工序原始记录。

焦作市恒辉精密制造有限公司企业标准 特种合金熔模铸造工艺守则 蜡模制作QQ/HH C4.2-2013 1 蜡料处理工艺操作守则 1.1 蜡料处理流程: (静置桶中)静置脱水→(除水桶中)搅拌蒸发脱水→(静置桶中)静置去污 1.2 工艺参数 a. 静置桶静置温度85-90℃ b. 静置时间6-8h c. 除水桶搅拌温度110-120℃ d. 搅拌时间10-12h e. 静置桶静置温度80-85℃ f. 静置时间>12h g. 保温箱保温温度54±2℃保温时间>24h 1.3 操作程序 1.3.1 检查设备、温控仪表是否处于正常工作状态。 1.3.2 将脱蜡釜回收的旧蜡液倒入过滤槽中过滤;再送到静置桶中,在低于85-90℃之间静置6-8h。 1.3.3 静置完毕把沉淀水放掉后,将蜡液倒入除水桶中。 1.3.4 除水桶中的蜡液,在110-120℃保温并搅拌,使残留水分蒸发,到目视蜡液表面无泡沫为止。 1.3.5 将除完水的蜡液,经过<60目筛网过滤再放入70℃—90℃的静置桶中,保温静置12h 以上。 1.3.6 各除水桶、静置桶应定期性的放掉其底部的残留水和脏杂物。 1.3.7 把静置桶中处理好的回收蜡液送到模头压蜡机保温桶中,用于主产模头(浇道)。 1.3.8根据旧腊料性能和腊料消耗情况,不定期的在静置桶中适量加新蜡,一般在3%-5%左右。 1.3.9将合格的蜡液灌入保温箱内的蜡缸中,为减少蜡缸内蜡液中的气体,先保持一段高温时期80℃/2h后降至54℃。在54±2℃下保温24h后,方可用于压制蜡模。 1.4 注意事项 1.4.1 除水桶,静置桶均应及时排水、排污。 1.4.2 经常检查各设备温控仪表的工作状况,防止失控,尤其应防止温度过高造成蜡料老化。 1.4.3 每月检查一次蜡处理设备各导热油的液面位置,油面应距设备顶面200㎜左右,防止油溢出。并注意检查设备有无渗油现象。 1.4.5 经常检查环境状态,避免灰尘及外来物混入蜡料中。 2 压制蜡模工艺操作守则 2.1 工艺要求 室温24±3℃蜡缸温度48±2℃(大件应根据工艺要求设定)射蜡嘴温度50-55℃压射压力

硅溶胶-水玻璃复合型壳制壳工艺

硅溶胶-水玻璃复合型壳制壳工艺 1、原辅材料 含量为30%,密度1.19~1.20g/cm3; S830、S1430单质硅硅溶胶SiO 2 ≥65%,<0.045mm(325目); 锆英粉含量为:ZrO 2 ≥65%,0.150mm(100目); 锆英砂:ZrO 2 莫来石砂:无细粉,熟料,0.600~0.250mm(30~60目); 匣钵粉:0.075mm(200目); 匣钵砂:0.850~0.425mm(20~40目); 表面湿润剂:J.F.C; 长效消泡剂; 硅油类; 结晶氯化铝; 水玻璃:模数3~3.4。 2、操作工艺 2.1制蜡模时采用硅油脱模;蜡模必须逐个检查,尽量不修补;模组焊接时小件采用粘结蜡;中大件采用焊刀焊接;间距适当,将带有内腔、孔、槽时,使其向外,有利于制壳、脱蜡和浇注;对带有文字、狭缝、凸缘、弯部应保持轮廓清晰;蜡模组制壳前应先吹去蜡屑、再经清洗液清洗,晾干后制壳。 2.2 涂料的配制 面层采用S830单质硅硅溶胶与锆英粉,新料配制时粉液比1∶3.3,流杯粘度为40-45s,6h以后测粘度,若≥50s,逐步加硅溶胶;若粘度≤40s,逐步加入锆英粉;JFC和消泡剂在搅拌后期加入,JFC加入量为加入硅溶胶质量的0.3%-0.5%,可通过涂料的涂挂性的优劣调整;消泡剂加入量为JFC加入量的一半,并按泡多少适当地调整。 2.3 面层的配制及操作工艺: 2.3.1 整个配料过程是在L型搅拌机连续运转条件下进行的,L型叶片必须超 过中心,且叶片与筒边、筒底间隙约5mm;过大,在配料过程中会出现沉淀; 2.3.2 先加入硅溶胶,再逐步均匀、缓慢地加入锆英粉。如加入10包锆英粉,加入总时间必须>2时,加完后连续搅拌8-9h,然后用流杯粘度计测粘度,直至粘度达到要求后,接着测定密度; 2.3.3 测定粘度值的确定,是在筒中心、筒边分别取料,然后取其平均值; 2.3.4 用玻璃片沾上涂料,对光观察,如无颗粒点则确定涂料搅拌已均匀;一般认为:每加2-3kg锆英粉;涂料粘度可提高5s左右;每加0.5kg硅溶胶,涂料粘度可降低5s左右;根据这个小规律适当加以调整; 2.3.5 涂料配好以后,接着将准备好的模组进行最后检查,(如检查模头上的记号与铸件材质是否一致等。)待涂挂; 第一层 2.3.6 模组顺转向缓慢进入面层预湿浆中,稍等片刻,缓慢升起;在转筒上方停留滴去多余涂料,顺便观察字迹、小孔是否清晰,并用微弱的压缩空气吹去小气泡,再缓慢进入面层浆中,操作同上,滴去多余涂料,模组即作左右、上下旋转,以便蜡模表面的涂料均匀覆盖,厚薄适中,避免局部涂料堆积或缺涂,注意在空气中停留时间不能太长,否则涂料会过份干燥;

相关主题
文本预览
相关文档 最新文档