当前位置:文档之家› 石家庄岩土热响应试验报告

石家庄岩土热响应试验报告

石家庄岩土热响应试验报告
石家庄岩土热响应试验报告

石家庄文化园

岩土热响应试验报告

河北省地矿局第三水文工程地质大队河北省地热资源开发研究所

2011年11月

目录

1、概况 (2)

2、主要规范、标准 (2)

3、试验目的 (2)

4、试验原理 (3)

5、成孔及地层情况 (4)

6、试验内容及结果分析 (6)

7、结论 (11)

1、概况

测试时间:2011年8-9月、11月

测试地点:位于石家庄

测试对象:针对3个试验孔进行岩土热响应试验。试验孔及埋管参数见下表:

1#孔2#孔3#孔

钻孔深度120m116m104m

孔径150mm110mm110mm

下管深度120m116m104m

埋管形式双U型单U型单U型

管材

De32

HDPE100

De32

HDPE100

De32

HDPE100

回填材料岩粉岩粉岩粉试验内容:土壤原始温度测试和夏季排热工况测试。

2、主要规范、标准

规范、标准名称编号《地源热泵系统工程技术规范》GB50366-2005(2009年版)《埋地聚乙烯给水管道工程技术规程》CJJ101-2004

《室外给水设计规范》GB50013-2006

《岩土工程勘察规范》GB50021-2001(2009年局部修订)《给水排水管道工程施工及验收规范》GB50268-2008

《供水水文地质钻探与凿井操作规程》CJJ13-87

3、试验目的

(1)通过钻凿试验孔,记录试验孔的成孔情况,确定换热孔的钻进难度和适宜的钻井工具;

(2)通过地层编录和物探测井两种方法获得项目所在地的地质资料,绘制项目场区钻孔测井曲线图;

(3)通过进行热响应试验获得当地岩土体的热物性参数、换热孔的延米换热量等参数;

(4)根据现场钻凿试验孔的过程和热响应试验结果,确定该项目土壤换热器适宜的设计深度。

4、试验原理

土壤换热器测试土壤原始温度时,将仪器的水路循环部分与所要测试换热孔内的HDPE管路相连接,形成闭式环路,通过仪器内的微型循环水泵驱动环路内的液体不断循环,这时仪器内的加热器不开启。当数据采集系统采集到的供、回水温度达到稳定状态时,所得的温度即为地下土壤的平均温度。

土壤换热器测试简单模拟地源热泵空调系统夏季制冷的运行模式时,将仪器的水路循环部分与所要测试换热孔内的HDPE管路相连接,形成闭式环路,通过仪器内的微型循环水泵驱动环路内的液体不断循环,同时仪器内的加热器不断加热环路中的液体。该闭式环路内的液体不断循环,加热器所产生的热量就不断通过换热孔内的换热管释放到地下。在闭式环路内的液体循环的过程中,将供、回仪器的温度、流量和加热器的加热功率进行采集记录,来进行分析计算土壤的热物性参数。原理如下图:

图1测试原理图

5、成孔及地层情况

试验孔采用潜孔锤进行钻孔,3个试验孔成孔深度分别为120m、116m和104m。本次1#孔钻孔由于对详细地层情况掌握的不够充分,火山岩地层构造裂隙发育,同时由于遇到雨天施工,使得该孔的成孔时间较长,成孔时间约为3天;2#孔和3#孔的实际钻探时间均为24h左右。

通过该试验孔知道,该项目所在地在钻孔深度范围内为第四系和火山岩地层。第四系厚度约为24米左右,以下地层为侏罗系火山岩。该区在20-40米区间第四系与火山岩地层接触带部位有孔隙水,60-80米侏罗系地层构造裂隙发育,有较丰富的构造裂隙水,岩层较为破碎,钻探过程中有坍塌掉块、卡钻、别钻等情况发生,钻探难度较大。在下管前,要进行扫孔,确保安全后方能下管,成孔难度大。

成孔过程中记录地层情况,并在钻孔结束后进行视电阻率测试,得到该地详细的地层情况。下图2和图3分别为现场测试图片和通过进行视电阻测井得到的测井曲线图:

图2现场测试图片

图3视电阻率法测井曲线图

6、试验内容及结果分析

首先对土壤原始温度进行测试,然后对土壤换热器进行夏季排热工况测试。

土壤原始温度测试的时间是从8月28日11:12至8月29日12:20,测试持续时间约为25小时;

1#孔排热工况测试时间是从8月29日13:12至9月1日10:20,测试持续时间约为69小时;

2#孔排热工况测试时间是从11月10日17:06至11月13日12:22,测试持续时间约为67小时;

3#孔排热工况测试时间是从11月14日14:10至11月17日17:50,测试持续时间约为75小时。

6.1、土壤原始温度测试

试验结果如下:

图4土壤原始温度测试地埋管供、回水温度变化曲线

6.2、夏季排热工况测试

6.2.1、1#孔夏季工况

试验结果如下:

图5排热工况测试地埋管供、回水温度、流量及温差变化曲线

6.2.2、2#孔夏季工况

试验结果如下:

图6排热工况测试地埋管供、回水温度、流量及温差变化曲线

6.2.3、3#孔夏季工况

试验结果如下:

图7排热工况测试地埋管供、回水温度、流量及温差变化曲线

6.3、试验工况下换热孔的换热量和综合换热系数

1#试验孔夏季排热工况测试每延米换热量及换热孔的综合换热系数计算结果如下图所示:

图81#试验孔每延米换热量及换热孔综合换热系数变化曲线

图92#孔每延米换热量及换热孔综合换热系数变化曲线

图103#孔每延米换热量及换热孔综合换热系数变化曲线

6.4、设计工况下换热孔的换热量

计算结果见下表。

6.5、土壤热物性参数

1#孔

本项目采用定功率法进行试验,1#孔定加热功率约为Q=7.14kW,埋管深度H=120m,管内流体平均温度与时间对数进行线性拟合的结果见下图:

图111#孔平均温度线性拟合曲线

2#孔

2#定加热功率约为Q=6.4kW,埋管深度H=116m,管内流体平均温度与时间对数进行线性拟合的结果见下图:

图122#孔平均温度线性拟合曲线

3#孔

3#定加热功率约为Q=5.71kW,埋管深度H=104m,管内流体平均温度与时间对数进行线性拟合的结果见下图:

图133#孔平均温度线性拟合曲线

可见该处土壤具有很好的吸热和释热作用,通过换热模型计算得到的土壤导热系数较通过物理方法得到的数值稍微偏大,这主要是由于该区地下土壤含有较为丰富的地下水,有利于地埋管换热器与周围土壤之间换热过程的进行。

本报告通过换热模型计算得到土壤导热系数为考虑了地下水流动对换热影响后得到的数值。

7、结论

(1)通过钻凿试验孔知道,本项目适宜使用潜孔锤钻机进行成孔。

(2)通过3个试验孔的钻探,建议该地区换热孔以100米深度为宜。

(3)项目所在地,在钻孔深度范围内地层以侏罗系火山岩为主,岩层较为破碎,钻探过程中有坍塌掉块、卡钻、别钻等情况发生,钻探难度较大。

(4)通过土壤原始温度的测试,本项目室外岩土体的原始温度为15℃。

(5)通过对岩土体热响应测试数据的分析整理,确定:

双U型室外换热孔综合换热系数参考值为4.18W/(m·℃);设计工况下土壤换热器的换热能力:夏季工况,延米排热量参考值为73.1W/m;冬季工况,延米取热量参考值为39.68W/m。

单U型室外换热孔综合换热系数参考值为3.29W/(m·℃);设计工况下土壤换热器的换热能力:夏季工况,延米排热量参考值为57.60W/m;冬季工况,延米取热量参考值为31.27W/m。

(6)通过采用简化后的传热模型计算得到该地土壤的热物性参数,土壤导热系数约为2.61(w/(m·k))。

建议:

1)换热孔采用潜孔锤钻机进行钻孔,孔深设计以100米为宜;

2)由于该地区岩层较为破碎,钻探过程中有坍塌掉块、卡钻、别钻等情况发生,在钻探过程中应时时注意钻探风险并采取相应的保护措施。

热响应测试报告

石家庄地源测试项目岩土热响应研究测试报告 天津大学环境学院 2010年11月21日

石家庄地源测试项目 岩土热响应研究测试报告 测试人员: 编制人: 审核人: 测试单位:天津大学环境学院 报告时间: 2010年11月21日 目录 一、项目概况......................................................... 二、地埋管换热器钻孔记录............................................. 钻孔设备.............................................. 钻孔记录.............................................. 三、测试目的与设备................................................... 四、测试原理与方法................................................... 岩土初始温度测试...................................... 地埋管换热器换热能力测试.............................. 五、测试结果与分析................................................... 测试现场布置......................................... 测试时间............................................. 夏季工况测试......................................... 冬季工况测试......................................... 稳定热流测试.........................................

热工测试--简答题总结说课讲解

热工测试--简答题总 结

#1.检测仪表的组成及其作用? 答:(1)传感器:感受被检测的变化并产生一个与被检测量成某种函数关系的输出信号;(2)变送器:将敏感元件输出信号变换成既保存原始信号全部信息又更易于处理、传输及测量的变量;(3)显示仪表:将测量信息转变成人感官所能接受的形式,是实现人机对话的主要环节;(4)传输通道:为各个环节的输入、输出信号提供通路。 #1-1. 检测及仪表在控制系统中起什么作用?两者的关系如何? 答:任何一个工业控制系统都必然要应用一定的检测技术和相应的仪表单元,检测仪表控制系统结构如图所示。其中,检测指完成对各种被控参数测量 型的单元式组合仪表就是输出/ 的统一制式仪表。 #1-2.偏差式、零位式与微差式测量的工作原理和特点? 答:偏差式测量:指在测量过程中,利用仪表指针相对于刻度线的位移来直接指示被测量的大小的方法,该类仪表测量方式直观,测量过程简单、迅速,但是测量精度较低;零位式测量:在测量过程中,用指零机构的零位指示,检测测量系统的平衡状态,通过比较被测量与已知标准量差值或相位,调节已知标准量大小,是两者达到完全平衡或全部抵消,从而得出测量值的大小;微差

式测量:综合了以上两种测量的优点,通过将被测量与已知标准量取得差值,再用偏差法测得此差值。 #2.热电偶测温原理(热电效应)? 答:两种不同的导体或半导体材料A和B所构成的回路,两个结点处的温度不同,则回路就会产生电流,也就是回路中存在电动势,这种现象叫做热电效应,也是热电偶测温的原理。 #3.热电极材料的要求? 答:(1)两种材料所组成的热电偶应输出较大的热电势,热电势和温度之间尽可能地呈线性函数关系;(2)能应用于较宽的温度范围,物化性能、热电特性都较稳定;(3)有较高的导电率和较低的电阻温度系数;(4)具有较好的工艺性能,便于成批生产;(5)具有满意的复现性,便于采用统一的分度表。#4.热电偶冷端补偿的原因和方法? 答:(1)热电偶的测温原理:E(T, T0) = E(T) - E(T0) ,只有T0稳定不变,才能测得T;(2)用热电偶的分度表查毫伏数-温度时,必须满足t0 = 0;(3)在实际测温中,冷端温度常随环境温度而变化,这样t0不但不是0?C,而且也不恒定,因此将产生误差;(4)一般情况下,冷端温度均高于0?C,热电势偏小,应想办法消除或补偿热电偶的冷端损失。 方法:冰点法、热电势修正法、冷端补偿器法、补偿导线法。 #5.非标准型热电偶(特殊热电偶) 答:(1)铠装式热电偶(又称套管式热电偶)它是由热电偶丝、绝缘材料,金属套管三者拉细组合而成一体;特点:热响应时间少,减小动态误差;可弯曲安装使用;测量范围大;机械强度高,耐压性能好; (2) 钨铼热电偶一种较

环境工程实习报告模板

环境工程实习报告模板 实习报告是在实习的基础上完成的书面资料。下文是环境工程实习报告模板,希望可以帮到你们。 篇【1】:环境工程实习报告模板一、见习目的 通过这次的实习,将课堂的理论知识与实际操作的实践相结合,加强我们对环境工程专业的认识和了解其实际应用。初步掌握污水、固体废弃物的处理工艺,以及环境检测的相应仪器。同时开阔视野,增长见识,为我们以后更好把所学的知识运用到实际工作中打下坚实的基础。 二、见习项目安排 20XX年10月29日红树林保护区(上午) 亚龙湾污水处理厂(下午) 20XX年10月30日红沙污水处理厂(上午) 鹿回头污水处理厂(下午) 20XX年11月 1 日环境检测站(上午) 小结 20XX年11月 2 日气象站(上午) 荔枝沟污水处理厂(下午) 20XX年11月 3 日固体废弃物填埋厂(上午)总结 三、见习内容

1、了解各单位概况、处理工艺; 2、了解常用处理设备、工作原理及主要构筑物构造、布局; 3、掌握处理工艺流程、处理技术。 四、见习内容详述 1、实地检测 10月29日上午,我们来到红树林河滩进行实地检测,有三个项目,具体是硫化氢的测定、溶解氧的测定、水样色度的测定。 (1)硫化氢的测定: 我们先将装有硫化氢吸收液的采样管和CD1型大气采样器组装好,然后设定速率为每分一升,设定时间为60分钟。通过上述操作来固定空气中的硫化氢。固定好后的溶液导入具塞比色管,贴上标签。标签要写明采样时间、地点、项目、环境。然后待回到实验室用分光光度法测定硫化氢的浓度。 (2)溶解氧的测定: 我们用采样瓶表层水采样,加入碱性碘化钾1毫升,硫酸锰2毫升。摇匀,盖塞,贴标签保存。待回到实验室进行硫代硫酸钠滴定计算溶解氧的量。带队老师告诉我们取样时

地源热泵系统岩土热响应试验

地源热泵系统岩土热响应试验 地源热泵技术是绿色环保、节能高效的能源利用技术。地源热泵系统是一种利用地下浅层地热资源,既能供热又能制冷的环保型空调系统,通过输入少量的电能,即可实现能量从低温热源向高温热源的转移。结合相关规范,指出岩土热响应试验在地源热泵项目中应用的问题、岩土热响应试验方法及关键参数、钻孔内热阻和热扩散率的计算方法以及《规范》中地埋管换热器设计计算与热响应试验间的关系进行探讨。 标签:地源热泵;岩土;热响应试验 岩土热响应试验是地埋管地源热泵系统实施的前提,通过该试验可获得现场地质情况和岩土体热物性参数,用于指导地埋管换热系统的设计,目前该观点正逐步被业主和设计人员接受[1]。通过热响应试验,了解项目所在区域岩土的基本物理性质,在此基础上,掌握岩土体的换热能力,为地源热泵系统设计人员结合建筑结构、负荷特点等设计系统优化方案提供基础数据,以保障系统长期运行的高效与节能。 一、岩土热响应试验在地源热泵项目中应用的问题 近年来岩土热响应试验在实际地源热泵项目应用中仍存在一些问题,主要表现在以下几个方面。 (一)有些热响应测试单位技术力量不足,对热响应测试理论和《规范》的理解不充分,测试报告中仅给出导热系数和单位井深取放热量,忽略了热响应测试应得到的其他关键参数。甚至有设计者将恒热流测试时施加于地埋管换热器的电加热量直接作为地埋管换热器的设计放热量值[2]。 (二)为获得项目的设计地埋管换热器数量或地埋管换热器总长度,设计师常用单位井深取放热量作为设计依据[3],未正确使用岩土热响应试验结果,使热响应试验仅成为界定设计责任的依据。 (三)不同项目中,地下岩土体热物性参数、地埋管换热器的设计进出口温度、系统运行时间等参数可能不同,设计人员普遍反映仅依靠单一的单位井深取放热量值无法找到合理的设计依据,无法根据不同的项目情况选择合理的设计参数,并计算合理的地埋管换热器数量[4]。 (四)地源热泵动态耦合计算理论体系不完善,仅依靠现有的一些地源热泵动态耦合设计软件,这类软件的使用对设计人员的要求很高,需要同时考虑建筑的动态负荷、地源热泵主机的动态性能、输配系统的动态性能、地埋管换热的动态变化。设计人员若能正确使用以上软件进行动态耦合设计,仅应用软件所花费的时间就会远长于地源热泵图纸的设计时间。

矿山岩体力学教学大纲

本科《矿山岩体力学》课程教学大纲 课程中英文名称:矿山岩体力学,Mine Rock Mechanics 课程编码:011046 课程性质:学科基础必修课 适用专业:采矿工程 学时数:48 ;其中:理论学时:40 ;实践学时:8 ;机动学时:0 ;学分数:3 ; 编写人:;审定人:; 一、课程简介 (一)课程教学目的与任务 本课程是采矿工程专业的主要学科基础课,是关于岩石物理、力学性质及其试验方法的一门课程。通过课堂教学,使学生掌握岩石力学的基本知识(基本原理、基本方法与实验方法);结合采矿工程专业特点,使学生得到矿山开采和岩层控制基本理论和试验技能的训练,从而具有从事矿山生产和管理的基本能力,为从事矿山开采和设计奠定专业理论基础。 (二)课程教学的总体要求 通过本课程的学习,使学生掌握岩石物理力学性质、岩体结构面特征及强度特征;岩石的基本力学实验研究方法、岩体的质量评价及其分类理论方法、地应力及其测量理论和方法、岩石的流变理论和强度理论、岩石地下工程围岩压力与控制理论和方法、岩石地基承载能力与稳定性。在学生掌握岩石力学基础理论知识、基本实验技能和基本研究方法的基础上,培养和激发学生创新意识和创新能力,使学生具有发现问题、分析问题和解决岩石工程实际问题的综合能力。 (三)课程教学内容 第一章岩石物理力学性质 第二章岩体力学性质 第三章地应力及其测量 第四章岩石本构关系与强度理论 第五章岩石力学数值分析方法 第六章岩石地下工程 第七章岩石地基工程 第八章岩石力学研究新进展 (四)先修课程及后续课程 先修课程:《材料力学》、《弹性力学》等; 后续课程:《矿山压力与岩层控制》、《煤矿开采学》等。 二、课程教学总体安排 (一)学时分配建议表 学时分配建议表

热电偶插入深度和响应时间

热电偶测温元件要与被测对象达到热平衡,因此,在测温时需要保持一定时间,才能使两者达到热平衡。而保持时间的长短,同测温元件的热响应时间有关。为了提高测量精度,减少测量误差,延长热电偶使用寿命,要求使用者不仅应具备仪表方面的操作技能,而且还应具有物理、化学及材料等多方面知识。 热电偶插入深度的影响:热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使热电偶与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应该深一些(约为直径的15—20倍),陶瓷材料绝热性能好,可插入浅一些(约为直径的10-15倍)。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入深度可以浅一些,具体数值应由实验确定。 热电偶响应时间的影响:而热响应时间主要取决于传感器的结构及测量条件,差别极大。对于气体介质,尤其是静止气体,至少应保持30min以上才能达到平衡;对于液体而言,最快也要在5min以上。对于温度不断变化的被测场所,尤其是瞬间变化过程,全过程仅1秒钟,则要求传感器的响应时间在毫秒级。因此,普通的温度传感器不仅跟不上被测对象的温度变化速度出现滞后,而且也会因达不到热平衡而产生测量误差。最好选择响应快的传感器。对热电偶而言除保护管影响外,热电偶的测量端直径也是其主要因素,即偶丝越细,测量端直径越小,其热响应时间越短。测温元件热响应误差可通过下式确定[1]。Δθ=Δθ0exp(-t/τ) (2—1) 式中t—测量时间S,Δθ—在t 时

土力学实验报告

土力学 实验报告 姓名 班级 学号

含水量实验 一、实验名称:含水量实验 二、实验目的要求 含水量反映了土的状态,含水量的变化将使土的一系列物理力学性质指标 也发生变化。测定土的含水量,以了解土的含水情况,是计算土的孔隙比、液性指数、饱和度和其他物理力学性质指标不可缺少的一个基本指标。 三、试验原理 土样在100~105℃温度下加热,途中自由水首先会变成气体,之后结合水也会脱离土粒的约束,此时土体质量不断减少。当图中自由水和结合水均蒸发脱离土体,土体质量不再变化,可以得到固体矿物即土干的重。土恒重后,土体质量即可被认为是干土质量m s ,蒸发掉的水分质量为土中水质量m w =m-m s 。 四、仪器设备 烘箱、分析天平、铝制称量盒、削土刀、匙、盛土容器等。 五、试验方法与步骤 1.先称量盒的质量m 1,精确至0.01g 。 2.从原状或扰动土样中取代表性土样15~30g (细粒土不少于15g ,砂类土、有机质土不少于50g ),放入已称好的称量盒内,立即盖好盒盖。 3.放天平上称量,称盒加湿土的总质量为m 0+m ,准确至0.01g 。 4.揭开盒盖,套在盒底,通土样一样放入烘箱,在温度100~105℃下烘至质量恒定。 5.将烘干后的土样和盒从烘箱中取出,盖好盒盖收入干燥器内冷却至室温。 6.从干燥器内取出土样,盖好盒盖,称盒加干土质量m 0+m s (准确至0.01g ) 。 六、试验数据记录与成果整理 含水量试验(烘干法)记录 计算含水量:%100) () ()(000?++-+= s s m m m m m m w 实验日期 盒质量 m 0/g 盒+湿土质 量(m 0+m )/g 盒+干土质 量(m 0+m s ) /g 水质量/g 干土质量m s /g 含水量w/% 1 2 3 4=2-3 5=3-1 4/5

土壤热响应测试

土壤热响应测试 土壤热响应测试的主要目的是了解岩土体的基本物理性质,在此基础上,掌握岩土体的换热能力,为地源热泵系统设计人员结合建筑结构、负荷特点等设计系统优化方案提供基础数据,以保障系统长期运行的高效与节能。 如果物性参数不准确,则设计的系统可能不能满足负荷需要,也可能规模过大,从而大大增加初投资。国外学者Kavanaugh的研究结果表明,当地下岩土的导热系数或导温系数发生10%的偏差,则设计的地下埋管长度偏差为4.5%~5.8%。 目前土壤的导热特性主要有三种获得方式:利用简化模型数值计算、利用经验估算、做土壤热特性测试。单纯的按照简化模型计算往往误差过大;经验的估计值在方案分析阶段有一定的参考价值,但一直以来设计人员只能在某种土壤或岩石导热系数范围内保守取用较低值,导致设计钻孔的数量比实际需要的多,从而增加了项目投资成本;只有在地源热泵规划施工场所现场进行土壤热特性测试才能够获得完整和准确的土壤数据。 土壤热响应测试装备包括构件: 1. 试压、保压后的成井 2. 岩土热物性测试仪及其配套软件,由IGSHPA (国际地源热泵协会)推荐,美国原装进口 3. 数据采集仪:土壤导热能力测试数据采集记录仪HOBO FlexSmart Logger;目前采用HOBOware Pro version2.3.1,由美国Onset Computer Corporation 开发提供 4. 模拟量输入输出模块 5. 进出水温度、流量、电流、电压传感器 6. 电脑及其显示设备 7. 信号、电源连接线 8. 稳定的单相交流电源 现场测试装备总图

土壤热响应测试原理 如图所示,由于泵的作用,流体由A口进入,传感器采集信号。流体通过泵后,由电加热器加热,加热的流体温度信号由传感器采集,然后流体从B口流出,输入到埋置于深层岩土中的PE管内,导管内加热的流体与深层岩上进行热交换后,又从A口返回到仪器内,形成封闭的循环。将在一定时间内连续采集到的功率、温度等参数作为测量数据,再由线热源理论公式求出岩土的平均导热系数,继而对地埋管进行换热计算,达到检测目的。 数据输出通过专用程序软件来实现,将采集到的数据以特殊的格式存储在控制柜中的电脑里,也可转移到其他计算机中;根据所收集数据通过专业数据分析软件进行数据分析。 测试具体步骤 第一步,保证在整个试验过程中都必须有足够的电来供应,将实验平台与控制柜通电; 第二步,将适配器(测试设备的一种部件)安装在地下换热器上; 第三步,将准备好的绝缘软管与试验设备连接起来,将软管保温,避免受外界环境影响(如太阳下直射等因素),有必要用帐篷进行遮盖,以免影响试验效果。 第四步,通过注水管向试验系统中注水,保证系统运行的注水压力。 第五步,在将试验系统中的空气排尽后启动循环泵,当流速稳定趋于恒定后,开启电加热器,正式开始测试实验,进行数据采集。在数据采集过程中,必须保证电源的稳定,使数据能够连续不间断采集。采集数据包括:孔径、孔深、大地初始温度、连续测试时间的地下温度等。 第六步,数据采集时间:分别于08-3-3下午16时至08-3-4下午15时,共计23小时的时间连续对试验孔进行现场数据采集,在测试过程中每隔1.5分钟进行一次数据采集。开启电加热前后分别记录地下环路中水与土壤换热的数据情况。 如下图所示,为地下换热器内进出水温度随加热时间变化全过程曲线:曲线最后慢慢趋于稳定,可作为分析计算依据。

温度传感器热响应时间测试方法

泰索温度测控工程技术中心 文件名称温度传感器热响应测试方法文件编号TS-QMSS-TW-026 制定部门中心实验室 生效日 期 2012.11.15 版本号A/0 工位或工序名称测试室 使用的工具、仪器、 设备或材料试验装置、干式炉、精密温度仪表、计时器、传感器 作 业 方 法 试验装置 示图注释: 2-固定托架;3-摆动气缸;4-旋转臂;5-直行气缸; 6-传感器夹持器;7-干式炉;11-导向堵头; 12-计时启动(位置)开关;26-被测传感器;27-温度显示仪表。1.温度传感器时间常数定义 温度传感器的时间常数是指被测介质温度从某一温度t0跃变到另一温度t x时,传感器测量端温度由起始温度t0上升到阶跃温度幅度值t n的63.2%所需的时间。热响应时间用τ表示。 2.测试和试验步骤 2.1将自控温管式电炉温度事先恒定在(建议:热电阻推荐300℃;热电偶推荐600℃)预定温度,待测样品安装在检定炉夹具上置于室温下等温30分钟以上(若传感器提前两小时放置在实验室,便不需要等温过程)。 2.2连接传感器与精密温度仪表测量线路,在将传感器置于温场前,接通电源,观察精密温度仪表显示的室温t s(t s=t0)并记录。 2.3提前计算以下有关数据 2.3.1阶跃温度(幅度)值:对于热电阻t n=300-t s;对于热电偶t n=600-t s。 2.3.2记时掐表温度值t'=63.2%t n+ t s,对应时间为热响应时间τ。 2.4试验操作 2.4.1以上准备就绪,将温度显示仪表上限报警值设为:6 3.2%t n+ t s作为计时终止信号,以便自动的控制计时器工作。 2.4.2接通气源,按动摆动气缸电磁阀按钮,旋转臂摆动旋转至干式炉炉口上方(保持同一轴线),大约5秒后直行气缸电磁阀动作,将温度传感器垂直插入干式炉(深度大约180mm)。此时,计时开关已经打开并开始计时。 2.4.3注意观察精密温度仪表显示温度值迅速变化,待温度显示值达到报警值6 3.2%t n+ t s瞬间,报警常闭接点断开,此刻计时器当前示值即为实际时间常数τ。 2.4.4重复以上步骤,对逐个不同规格型号及编号的温度传感器进行试验,准确记录下对应数据,填写试验报告。 作业标准1.按不同类型传感器设置和恒定炉子试验温度。 2.按规定对被测样品在实验室进行等温和正确连接测量电路。 3.正确记录精密温度仪表显示的室温和计算试验所需数据。 4.严格按操作步骤进行试验作业,保持装炉和记时操作动作协调一致。 5.准确记录数据和填写试验报告。 备注温度传感器热响应测试驱动装置请参见该实验装置的详细说明书。

环境工程专业实习报告

环境工程专业实习报告 实习目的:借助老师的讲解、操作指导下结合实地的参 观演练,让我们对小型污水处理池的方法掌握,对污水处理 的各种方式有所了解并将所学到的知识加以运用。从污水的 概括、污水源、以及各种污染物和污染指标的分析;掌握处理的原理及处理污水的各种指标,以及对污水处理的各种分 析和讨论。 实习的内容和经过:学校的污水主要是食堂产生的废水, 主要是食堂的废水;比如洗碗筷后,带有一定的洗洁精的废 水;尤其是油污较多的废水要进行除油和生化处理,从而达 到亲固变成亲水的目的。 废水处理流程:隔油池——>后续处理——>洗菜——>污水井——>调节池——>排水管网——>总排水口——>总排水管网(市政)。 在北群楼实验室2楼,通过老师讲解原理,巩固和加深 对地下水赋存的场所和运移的通道的理解,了解地下水的分 布、埋藏和运动特征。通过本次实验使我们加深对孔隙度、 给水度和持水度的了解,掌握室内测定基本方法,在实验过 程中认真观察和记录,分析本次实验后面的相关问题,写出 实验报告,相见报告。 在主楼微生物实验室,实习的主要内容是亲手制作民心 河水样中的浮游生物,就包括利用压滴法制作标本片,观察

微生物的个体形态,进一步熟悉和掌握显微镜的操作方法。 中间夹杂着培养基的配制和灭菌,要求熟悉玻璃器皿的洗涤 和灭菌前的准备工作,加深对平板的制作和平板的划线法的 掌握。 在惠馨楼前林荫道,实习的主要内容是整个专业学生组 织的关于第34届“世界环境日”的环保教育宣传活动,通过这个活动加深我们对世界环境的认识,也是加深广大师生 对现今世界地球环境的现状的认识。这次活动的主题定为 “节能减排关爱地球让我们行动起来”,旨在让大家通过身边的一些小事达到环境保护的目的。我们通过挂出多幅关于 环境保护的图片,拉条幅,发传单,现场签名等形式的活动 来感召大家行动起来。由于活动准备不是很充分,在活动形 式上有袭旧的缺陷,新颖性不是太好。但是我想通过这次活 动的举行,将此次世界环境日的社会影响力更加扩展。我们 相信,环保警钟之声已响彻于师生之心,只要大家积极的参与,从身边小事做起,创建绿色家园不再是梦想,实现“节 能减排,关爱地球让我们行动起来”的目标不再遥远,让我 们共同努力,为建设美好校园而奉献自己的力量。 在校园内,实习主要内容是岩土力学强度实验和轻型动 力初探实验。这两个实验全是土木工程专业的基础实验,作 为环境工程专业的学生只要掌握其基本原理和过程,学会使 用点荷载仪和轻型动力初探装置的使用,在实验过程中认真

×××××××××公司地埋管地源热泵系统岩土热响应试验及评价报告2

xxxxxxX公司地埋管地源热泵岩土热响应试验及评价报告 XXXXXXXXXXX XXX X年X月X X日

目录 1. 工程概况....................................................... 2 . 2. 试验测试目的 .................................................. 2... 3. 场地气象条件、测试孔及地层条件简介 ............................. 3.. 4. 现场使用的岩土热物性测试仪器及测试方法简介 ..................... 4. 4.1 岩土热物性测试仪简介................................................................... 4.. . 4.2 测试过程简介................................................................... 6.. . 4.3 测试理论 .................................................... 7 . 5. 土壤的初始平均温度T 的测定..................................... 9.. 6.岩土比热容计算................................................................... 1.. 0. 7. 测试孔测试结果分析................................................................... 1.. 0 7.1 供电电压、循环液流流量、压力损失与加热时间的关系曲线 (10) 7.2 载热流体温度与加热时间的关系曲线 ............................ 1. 1 7.3 测试孔土壤平均热传导系数的确定 .............................. 1.2 7.4 测试孔钻孔热阻的计算................................................................... 1.. 3. 8. 场地浅层地热能换热量预测................................................................... 1..

光电探测器光谱响应度和响应时间的测量(刘1)

光电探测器光谱响应度的测量 光谱响应度是光电探测器的基本性能之一,它表征了光电探测器对不同波长入射辐射的响应。通常热探测器的光谱响应比较平坦,而光子探测器的光谱响应却具有明显的选择性。一般情况下,以波长为横坐标,以探测器接受到的等能量单色辐射所产生的电信号的相对大小为纵坐标,绘出光电探测器的相对光谱响应曲线。典型的光子探测器和热探测器的光谱响应曲线如图1-1所示。 一、实验目的 (1)加深对光谱响应概念的理解; (2)掌握光谱响应的测试方法; (3)熟悉热释电探测器和硅光电二极管的使用。 二、实验内容 (1)用热释电探测器测量钨丝灯的光谱辐射特性曲线; (2)用比较法测量硅光电二极管的光谱响应曲线。 三、基本原理 光谱响应度是光电探测器对单色入射辐射的响应能力。电压光谱响应度()λV ?定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,用公式表示,则为 ()()() λλλP V V = ? (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示 ()()() λλλP I i = ? (1-2) 式中, P (λ)为波长为λ时的入射光功率;V (λ)为光电探测器在入射光功率P (λ)作用下的输出信号电压;I (λ)则为输出用电流表示的输出信号电流。为简写起见,()λV ?和()λi ?均可以用()λ?表示。但在具体计算时应区分()λV ?和()λi ?,显然,二者具有不同的单位。 通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长辐射照射下光电探测器输出的电信号V (λ)。然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率P (λ)需要利用参考探测器(基准探测器)。即使用一个光谱响应度为()λf ? 的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。由参考探 测器的电信号输出(例如为电压信号)()λf V 可得单色辐射功率()()()λλλ?=f V P ,再通过(1-1)式计算即可得到待测探测器的光谱响应度。 本实验采用图1-2所示的实验装置。用单色仪对钨丝灯辐射进行分光,得到单色光功率P (λ)。 图1-2 光谱响应测试装置图 这里用响应度和波长无关的热释电探测器作参考探测器,测得P (λ)入射时的输出电压为()λf V 。若用 f ?表示热释电探测器的响应度,则显然有

环境工程实习报告5000字

环境工程实习报告5000字 ,我们将时间为大家提供关于XX年实习报告的信息,敬请期待! 点击查看:实习报告网 相关推荐:实习报告范文| 实习报告模板| 会计实习报告 | 大学生实习报告 | 顶岗实习报告 | 金工实习报告| 毕业实习报告 | 土木工程实习报告 | 生产实习报告 |实习周记 | 3000字范文 环境工程实习报告范文5000字 实习对象:环境工程专业实习生 实习地点:旧食堂西侧食堂污水处理池 实习时间:20XX年6月2日--20XX年6月10日 实习目的:借助老师的讲解、操作指导下结合实地的参观演练,让我们对小型污水处理池的方法掌握,对污水处理的各种方式有所了解并将所学到的知识加以运用。从污水的概括、污水源、以及各种污染物和污染指标的分析;掌握处理的原理及处理污水的各种指标,以及对污水处理的各种分析和讨论。 实习的内容和经过:学校的污水主要是食堂产生的废水,主要是食堂的废水;比如洗碗筷后,带有一定的洗洁精的废水;尤其是油污较多的废水要进行除油和生化处理,从

而达到亲固变成亲水的目的。 废水处理流程:隔油池——>后续处理——>洗菜——>污水井——>调节池——>排水管网——>总排水口——>总排水管网(市政)。 在北群楼实验室2楼,通过老师讲解原理,巩固和加深对地下水赋存的场所和运移的通道的理解,了解地下水的分布、埋藏和运动特征。通过本次实验使我们加深对孔隙度、给水度和持水度的了解,掌握室内测定基本方法,在实验过程中认真观察和记录,分析本次实验后面的相关问题,写出实验报告,相见报告。 在主楼微生物实验室,实习的主要内容是亲手制作民心河水样中的浮游生物,就包括利用压滴法制作标本片,观察微生物的个体形态,进一步熟悉和掌握显微镜的操作方法。中间夹杂着培养基的配制和灭菌,要求熟悉玻璃器皿的洗涤和灭菌前的准备工作,加深对平板的制作和平板的划线法的掌握。 在惠馨楼前林荫道,实习的主要内容是整个专业学生组织的关于第34届“世界环境日”的环保教育宣传活动,通过这个活动加深我们对世界环境的认识,也是加深广大师生对现今世界地球环境的现状的认识。这次活动的主题定为“节能减排关爱地球让我们行动起来”,旨在让大家通过身边的一些小事达到环境保护的目的。我们通过挂出多幅关于

×××××××××公司地埋管地源热泵系统岩土热响应试验及评价报告 2解读

×××××××公司地埋管地源热泵岩土热响应试验及评价报告 ××××××××××× ××××年×月××日

目录 1.工程概况 (3) 2.试验测试目的 (3) 3.场地气象条件、测试孔及地层条件简介 (4) 4.现场使用的岩土热物性测试仪器及测试方法简介 (5) 4.1岩土热物性测试仪简介 (5) 4.2测试过程简介 (7) 4.3测试理论 (8) 的测定 (10) 5.土壤的初始平均温度T 6.岩土比热容计算 (11) 7.测试孔测试结果分析 (11) 7.1 供电电压、循环液流流量、压力损失与加热时间的关系曲线 (11) 7.2 载热流体温度与加热时间的关系曲线 (13) 7.3测试孔土壤平均热传导系数的确定 (13) 7.4测试孔钻孔热阻的计算 (14) 8.场地浅层地热能换热量预测 (15) 9.结论和建议 (17) 10.勘察资质证书和仪器校正证书 (18)

×××××××公司地埋管地源热泵 岩土热响应试验及评价报告 1. 工程概况 拟建项目位于××××××××××××××,主要由加工车间和办公楼组成,总建筑面积×××平方米,拟采用节能环保的地埋管地源热泵供热与制冷。 在进行地埋管地源热泵空调系统设计前在现场布设了一眼地埋管现场热响应试验钻孔,钻孔直径为150mm,深度为100m,埋设了Dn32单U形PE 管,×××××××××(勘测单位)对地埋管试验孔进行了现场热响应试验。 2. 试验测试目的 (1)通过试成孔和埋管,获得施工场地的地层分布知识,寻求合适的施工方法。 (2)通过现场测试及室内分析,提供满足设计施工所需的场地岩土热物性参数,确定岩土层换热能力,预测浅层地热能换热量。 (3)根据工程场区初始地温测试结果,综合考虑场区地形地貌、地层结构、地质构造等因素,给出建议地层平均初始温度。 (4)根据工程场区勘查测试成果,评价场区浅层地温资源状况。 (5)指出施工中和系统运行后应注意的事项。

中和反应反应热的测定实验报告

《中和反应反应热的测定》实验报告 班级姓名组别 [基础知识] 中和反应:酸和碱生成盐和水的反应。(放热反应)实质是酸电离产生的H + 和碱电离产生的 OH -结合生成难电离的H 2O 。强酸和强碱反应的离子方程式多数为H ++OH -=H 2O 中和热:在稀溶液中,强酸和强碱发生中和反应,生成1mol 液态水时的反应热,叫中和热。 任何中和反应的中和热都相同。但是不同的中和反应,其反应热可能不同。 有弱酸弱碱参加的中和反应,生成1mol 液态水时的放出的热量小于57.3kJ,因为弱酸弱碱电 离时吸收热量。 一、实验目的 测定强酸与强碱反应的反应热。(热效应) 二、实验用品 大烧杯(500mL)、小烧杯(100mL)、温度计、量筒(50mL)两个、泡沫塑料或纸条、泡沫塑料板或纸条、泡沫塑料板或硬纸板(中心有两个小孔)、环形玻璃搅拌棒。 0.50mol/L 盐酸、0.55mol/LNaOH 溶液。 三、实验原理 1、0.50mol ·L -1盐酸和0.55mol ·L -1NaOH 溶液的密度都约为1g ·cm -3,所以50mL0.50mol ·L -1 盐酸的质量m 1=50g ,50mL0.55mol ·L -1NaOH 溶液的质量m 2=50g 。 2、中和后生成的溶液的比热容c=4.18J ·(g ·℃)-1,由此可以计算出0.50mol ·L -1盐酸与0.55mol ·L -1NaOH 溶液发生中和反应时放出的热量为(m 1+m 2)·c ·(t 2-t 1)=0.418(t 2-t 1)kJ 又因50mL0.50mol ·L -1盐酸中含有0.025molHCl ,0.025molHCl 与0.025molNaOH 发生中和反应,生成0.025molH 2O ,放出的热量是0.418(t 2-t 1)kJ ,所以生成1molH 2O 时放出的热量即中和热为△H=-025 .0) (418.012t t kJ/mol

中国石油大学固结实验报告

中国石油大学海洋岩土力学实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 刘志慧 同组者: 具体实验内容:格式样板如下,字体均用宋体。 固结实验报告 一、实验目的 测定试样在侧限与轴向排水条件下,变形和压力,孔隙比和压力,变形和时间关系,计算土的压缩系数v a ,压缩指数c c ,压缩模量s E 。 二、实验原理(35) 土在外载荷作用下,其空隙间的水和空气逐渐被挤出,土的骨架颗粒之间相互挤紧,封闭气泡的体积也将缩小,从而引起土体的压缩变形。 三、实验仪器设备 固结剪切仪 环刀 凡士林 滤纸 天平 土样 刮刀 钢丝锯 毛玻璃 四、实验步骤 1.将环刀内外涂抹凡士林之后,取土样 2.称取土样的质量 3.将滤纸放在透水石上方,将透水石放入剪切盒中(注意滤纸在透水石上方,将与土壤接触) 4.将滤纸放置在土样上方,将透水石放置在土样上 5.将环刀放置在剪切盒上方,轻轻向下压透水石,将土样放置于剪切盒中 6.拿掉环刀,将剪切盒上盖(传压板)盖在透水石上方 7.将上顶头对准传压板,调整上压头螺钉,使杠杆处于水平或稍微上翘的位置 8.施加100kPa 的力,并按照数据表要求读数 9.待固结稳定之后在第二三四组施加200kPa 的力,并按要求读数 10.待固结稳定之后在第三四组施加300kPa 的力,并按要求读数 11.待固结稳定之后在第四组施加400kPa 的力,并按要求读数 五、实验数据处理(60)(根据实验数据画图p e i -,p e i lg -,计算土的压缩系数v a ,压缩指数c c ,压缩模量s E ) 环刀截面积30cm 2 环刀高度:2cm 土粒比重:2.65 含水率:30% 1.密度试验 环刀质量 环刀土质量 土质量 试样体积 密度g/cm 3 43.13g 159.10g 115.97g 60cm 3 1.93 2.固结实验记录表

岩土热响应测试报告(DOC)

XX省XX市学院片区地源热泵工程岩土热响应测试报告 XX省XX大学地源热泵研究所 二〇一四年五月

岩土热响应测试报告 一、工程概况 该项目为XX省XX市学院片区(XX市学院、新华苑)地源热泵工程,位于XX省省XX市市。本工程拟采用节能环保的土壤源热泵系统,作为空调系统的冷、热源。我所对该工程地埋管场地进行了深层岩土层热物性测试。本次试验进行了1个孔的测试。报告时间:5月10日~5月11日。 二、测试概要 1、测试目的 地埋管换热系统设计是地埋管地源热泵空调系统设计的重点,设计出现偏差可能导致系统运行效率降低甚至无法正常运行。拟通过地下岩土热物性测试并利用专业软件分析,获得地埋管区域基本的地质资料、岩土的热物性参数及测算的每延米地埋管换热孔的换热量,为地热换热器设计、换热孔钻凿施工工艺等提供必要的基本依据。 2、测试设备 本工程采用XX省建筑大学地源热泵研究所自主研制开发的型号为FZL-C(Ⅲ)型岩土热物性测试仪,如图1所示。该仪器已获得国家发明

专利(ZL 2008 1 0238160.4)。并已广泛应用于北京奥林匹克公园、网球场馆、济南奥体中心等一大批地源热泵工程中的岩土层热物性测试。见附件3。 3、测试依据 《地源热泵系统工程技术规范》GB50366-2005 ( 2009年版)。 测试原理见附件2。 图1 FZL-C(Ⅲ)型岩土热物性测试仪 三、测试结果与分析 1、测试孔基本参数 表1 为测试孔的基本参数。 表1 测试孔基本参数 项目测试孔项目测试孔 钻孔深度(m)100 钻孔直径(mm)150

埋管形式双U型埋管材质PE管 埋管内径(mm)26 埋管外径(mm)32 钻孔回填材料细沙主要地质结构粘土与玄武岩 2、测试结果 测试结果见表2。循环水平均温度测试结果与计算结果对比见图2。测试数据见附件1。 初始温度:16.2℃; 导热系数:1.66W/m℃; 容积比热容:2.1×106J/m3℃。 3、结果分析 钻孔结果表明:该地埋管区域地质构造以粘土为主。具体地质构造见表2。测试结果表明:埋管区域的平均综合导热系数为1.66W/m℃,数值中等;平均容积比热为2.1×106J/m3℃,数值较大;岩土体平均初始温度16.2℃,数值偏低,有利于夏季向地下放热。

浅析热电偶的热响应时间

浅析热电偶的热响应时间 摘要:温度出现阶段变化时,热电偶的输出变化至相当于该阶段的某个规定百分数所需的时间称为热电偶的响应时间。测量热电偶的热响应时间比较复杂,不同的实验条件会有不同的测量结果,这是因为它受热电偶与周围介质的换热率影响,换热率高,则热响应时间就短。 关键词:热电偶的结构尺寸热惰性热响应时间 工业用热电偶在温度出现阶段变化时,热电偶的输出变化至相当于该阶段的某个规定百分数所需的时间称为热电偶的响应时间。 热电偶在测量温度时,其插入到被测介质部分包括:保护管、绝缘管、空气隙、热电板等。它们都具有一定的热容量和热传导的电阻,所以当热电偶插入阶段变化的温度场中,热电偶指示的温度不会产生突然的变化,而是按指数规律逐渐上升或下降。这是因为热电偶首先要吸收热量使其温度升高,同时还要通过热传导将热量传递到热电偶的测量端,测量端受热后温度升高,热电偶回路才有热点势产生,仪表才能指示出温度来,这个过程需要一段时间,这就是热电偶的热惰性。由于热惰性的存在,热电偶插入被测介质后,其稳定的温度指示值不能立即指示出来,而是逐渐上升,直到测量端吸热放热达到平衡后,才能具有稳定的温度指示值。在热电偶插入被测介质后到指示值稳定以前的整个不稳定过程中,热电偶的瞬时指示值与稳定后的指示值存在偏差,这个偏差称热电偶动态响应误差。 理论和实践证明,热电偶的热惰性愈小则动态响应速度愈快,动态误差就愈小。所以热响应时间是表示热电偶动态响应快慢的一个重要性指标。 一、影响热电偶响应时间的因素有 1.材料不同,导热性能也不同,如金属保护管比瓷保护导热好,热惰性小,热电偶达到的稳定时间就短、即响应时间短。 2.热电偶的结构、尺寸。热电极、保护管的直径电极、保护管的直径愈粗,惰性愈大;管壁愈厚,惰性也愈大,这样热电偶达到稳定的时间就愈长,即响应时间长。 3.响应时间还随着工作状况的变化而不同,就是说相同结构的热电偶,在不同的热交换条件下,其响应时间是不同的。 二、热电偶的热响应时间测量 测量热电偶的热响应时间比较复杂,不同的实验条件会有不同的测量结果,这是因为它受热电偶与周围介质的换热率影响,换热率高,则热响应时间就短。

热工测试--简答题总结(NJ)

#1.检测仪表的组成及其作用? 答:(1)传感器:感受被检测的变化并产生一个与被检测量成某种函数关系的输出信号;(2)变送器:将敏感元件输出信号变换成既保存原始信号全部信息又更易于处理、传输及测量的变量;(3)显示仪表:将测量信息转变成人感官所能接受的形式,是实现人机对话的主要环节;(4)传输通道:为各个环节的输入、输出信号提供通路。 #1-1.检测及仪表在控制系统中起什么作用?两者的关系如何? 答:任何一个工业控制系统都必然要应用一定的检测技术和相应的仪表单元,检测仪表控制系统结构如图所示。其中,检测指完成对各种被控参数测量的单元,如温度、压力、流量的测量等,包括直接检测方法和通过数据运算处理的见解检测方法;仪表通常涉及测量、记录、显示以及调节和执行单元,典型的单元式组合仪表就是输出/输入信号统一规定为4~20mA DC #1-2.偏差式、零位式与微差式测量的工作原理和特点? 答:偏差式测量:指在测量过程中,利用仪表指针相对于刻度线的位移来直接指示被测量的大小的方法,该类仪表测量方式直观,测量过程简单、迅速,但是测量精度较低;零位式测量:在测量过程中,用指零机构的零位指示,检测测量系统的平衡状态,通过比较被测量与已知标准量差值或相位,调节已知标准量大小,是两者达到完全平衡或全部抵消,从而得出测量值的大小;微差式测量:综合了以上两种测量的优点,通过将被测量与已知标准量取得差值,再用偏差法测得此差值。 #2.热电偶测温原理(热电效应)? 答:两种不同的导体或半导体材料A和B所构成的回路,两个结点处的温度不同,则回路就会产生电流,也就是回路中存在电动势,这种现象叫做热电效应,也是热电偶测温的原理。 #3.热电极材料的要求? 答:(1)两种材料所组成的热电偶应输出较大的热电势,热电势和温度之间尽可能地呈线性函数关系;(2)能应用于较宽的温度范围,物化性能、热电特性都较稳定;(3)有较高的导电率和较低的电阻温度系数;(4)具有较好的工艺性能,便于成批生产;(5)具有满意的复现性,便于采用统一的分度表。 #4.热电偶冷端补偿的原因和方法? 答:(1)热电偶的测温原理:E(T,T0)=E(T)-E(T0),只有T0稳定不变,才能测得T;(2)用热电偶的分度表查毫伏数-温度时,必须满足t0=0;(3)在实际测温中,冷端温度常随环境温度而变化,这样t0不但不是0°C,而且也不恒定,因此将产生误差;(4)一般情况下,冷端温度均高于0°C,热电势偏小,应想办法消除或补偿热电偶的冷端损失。 方法:冰点法、热电势修正法、冷端补偿器法、补偿导线法。 #5.非标准型热电偶(特殊热电偶) 答:(1)铠装式热电偶(又称套管式热电偶)它是由热电偶丝、绝缘材料,金属套管三者拉细组合而成一体;特点:热响应时间少,减小动态误差;可弯曲安装使用;测量范围大;机械强度高,耐压性能好;(2)钨铼热电偶一种较好的高温热电偶,可使用在真空惰性气体介质或氢气介质中,但高温抗氧能力差。(3)快速反应薄膜热电偶(表面热电偶)特别适用于对壁面温度的快速测量。安装时,用粘结剂将它粘结在被测物体壁面上。测温范围在300℃以下;反应时间仅为几ms。(4)薄膜式热电偶适用于壁面温度的快速测量,基板由云母或浸渍酚醛塑料片等材料做成。 #6.补偿导线的作用? 答:①用廉价的补偿导线作为贵金属热电偶的延长导线,以节约贵金属热电偶;②将热

相关主题
文本预览
相关文档 最新文档