当前位置:文档之家› 空气压缩机热能回收原理及应用效果_陆振乾

空气压缩机热能回收原理及应用效果_陆振乾

空气压缩机热能回收原理及应用效果_陆振乾
空气压缩机热能回收原理及应用效果_陆振乾

空气压缩机热能回收原理及应用效果

陆振乾 生兆昆

(盐城工学院) (江苏常州出入境检验检疫局)

摘要: 探讨空气压缩机热能回收的原理及应用效果。介绍了空气压缩机热回收的优点、能量回收的方

法,并对具体项目的改造方案设计、采用的技术设备以及节能效益进行了论述。针对空气压缩机大量冷却余热散失的现状,提出了一种废热回收利用方案。实践证明,空气压缩机热量回收改造投资少见效快,整个项目一次投资后,其回收期约为6个月,具有较好的节能效果和经济效益。

关键词: 空气压缩机;热回收;节能;冷却水;余热

中图分类号:TS108

.6+1 文献标志码:B 文章编号:1001 7415(2011)02 0011 03Pri nci ple and Appli cati on E ffect of A ir Co mpressor H eat Recovery

Lu Zhenqi a n Sheng Zhaokun

(Y ancheng Instit u te o f T echno logy ) (Ji angsu Changzhou Entry ex it Inspection and Q ua ranti ne Bureau) Abstract P ri nc i ple and applica ti on effect o f air com pressor heat recove ry were discussed .A ir com pressor heat re covery advantages and energy recov ery m ethods w ere i ntroduced .T hen spec ifi c project m odifica ti on desi gn ,adopti ve techno logy equip m ent and energy sav i ng benefitw ere d i scussed .A cco rd i ng to t he status o f p lenty of a ir co m pressor coo l i ng heat l o ss ,waste heat recov ery case were proposed .T he practice s how s tha t invest m ent of a i r co m pressor heat recovery m od ifi cation is less wh ile the benefit i s faster .A fter one ti m e i nvest m en t for w ho le project ,the recovery per i od is about 6m onths ,the energy sav i ng effect and econo m i c benefits are better .

K ey W ords A ir Co m pressor ,H eat R ecovery ,Energy sav i ng ,Coo ling W ater ,W aste H eat

随着现代纺织技术的不断发展,压缩空气在纺织工业得到了广泛应用,主要应用在纤维物料输送、轧辊加压、移动工位、喷射气流加工、射流自控技术、清洁部件机台和喷气织机引纬等方面。这些高压空气的产生就必须使用到空气压缩机。空气压缩机(以下简称空压机)是将原动机(通常是电动机)的机械能转换成气体压力能的装置。在机械能转换为气体压力能的过程中,空气被强烈地压缩,温度骤升,产生大量的热量,同时空压机机械部件高速运转也会产生大量的摩擦热,温度可以达到80 ~100 。这些热能普遍采用风冷或水冷方式被无端地废弃排往大气中。从节约资源、可持续发展以及低碳的角度来看,利用某些方法和装置将空压机产生的废热回收利用,既能解决空压机组的冷却问题,又能最大限度地利用能量,可以为纺织印染企业降低生产成本,具有一定的经济效益和社会意义。

作者简介:陆振乾(1980-),男,讲师,盐城,224051

收稿日期:2010 09 20

1 空压机余热回收技术的优点

安全环保高效节能。在不影响空压机工作的情况下,利用空压机余热回收制热,不消耗任何电能和燃料,不排放任何废气,不产生任何污染。

提高空压机的运转效率。安装余热回收装置的空压机组,可以提高产气量8%,空压机的原有散热风扇有时将停止运转,极大地降低了空压机的耗电量,可实现空压机的经济运转。

延长空压机使用寿命。安装空压机余热回收装置后,可显著降低空压机排气温度,减少机器故障,延长设备使用寿命,延长机油、过滤器、油气分离器更换时限,降低维护成本。

2 空压机的能量变化及冷却系统

2.1 空气在被压缩过程中的能量变化

静止的物体,其内部的分子、原子等微粒仍在不停地运动着,这种运动叫做热运动。物体因热运动而具有的能量叫做内热能。在热力学中把物

11 第39卷 第2期

2011年2月

Co tt on Textile Techno logy

79

体的内热能叫做内能,意味着是储存于物体内部的能量。气体在压缩过程中,外功和内能的变化以及系统和外界的热交换,应符合能量守恒定律。过程中可用以下公式来表示:

d w =d u +d q

式中:d w 表示外界所做的功,d u 表示压缩空气增加的内能,是正值,d q 表示压缩空气向外界散发的热量,是正值。

从公式可以看出,压缩过程中外界对压缩空气所做的功转化成两部分:内能和散热。这些热能的4%左右由压缩空气带走,2%左右通过机器及管道以辐射形式散发出去,而约94%都传给了冷却媒介。如对这部分能量进行回收利用,其效益十分可观,运行费用可大幅降低。2.2 空压机冷却系统

空压机的冷却方法有两种:空气冷却和水冷却。一般小型的空压机或缺少水源的场所,可选用空气冷却形式,风冷型冷却系统都是用风道把空压机组工作产生的热量全部排到室外。而大型空压站且有水源的场所则采用水冷形式较多。纺织厂特别是喷气织造厂需要的供气量较大,一般采用螺杆式和离心式空压机组同时配备水冷却系统。冷却水经过进水阀流入进水总管,然后流入中间冷却器、后冷却器和油冷却器等流入出口管道,经出口阀排出,再做冷却处理。

水冷却系统主要有三种形式:一次性通过系统、开环循环系统和闭环循环系统。一次性通过系统的冷却水来自河流、地下水或自来水,通过空压机后就直接排入下水道;开环循环系统是将由空压机来的热水送到冷却塔中,使水的温度降低再送回机内进行冷却处理;闭环循环系统的冷却水不与外界接触,来自空压机的热水流经一个热交换器后变成温度较低的冷却水,然后循环回到空压机内进行冷却处理。

3 能量回收方法及改造实施

3.1 能量回收方法

空压机余热回收充分利用热交换原理,将空压机的余热(冷凝热)进行回收。空压机的冷却方法不同,其冷却系统的装置也不同,能量的回收方法也会有所差别。对于空气冷却系统,热量回收方法通过对压缩机冷却产生的大量低温热气流

可以直接用作办公采暖或热交换器的预热。

对于水冷却系统的能量回收方法在空压机内部水路循环中串入一机外板式换热器,内部水先与来自软水箱的软水进行换热,既降低了内部水温,又提高了外部水温。然后再进入水冷却器或直接回流空压机内进行冷却。被加热的水在蓄热水箱处储存,最后再输送到热网。当热量被回收利用后,水冷却器的负荷大大降低,甚至不再需要冷却塔。

3.2 改造实施

以某纺织厂为例,采用阿特拉斯ZR400型水冷无油螺杆空压机,加装热回收装置核心为西门子公司的ER Z 5型板式热交换器和超声波热能表。空压机水路循环热交换改造方法见图1。在空压机的水路中接入热回收装置,热回收系统安装在空压机外部,通过水管以及连接件与空压机相连。随着添置内部水泵的循环,空压机的内部水通过板式热交换器与来自软水箱的软水换热,使内部水得到冷却而外部软水温度得到提升。

图1 压缩空气系统与热水系统结合示意图

改进后,冷却塔不再投入使用,但为了保证系统运行安全可靠,仍保留了冷却塔,只是在冷却塔的入口和出口管道上加装了处于常闭状态的膨胀阀门。膨胀阀门采用温度控制,一旦废热回收系统出现故障后,内部水温上升到限定温度,则阀门打开,使原有的冷却塔降温系统投入使用,确保了空压机能可靠冷却。

附属设施工程还包括在原有软水箱与空压机新装的热交换器之间进行管道连接,内部管路上串联一台循环水泵,软水箱和管道均加装保温材料。项目节点为由空压机至软水箱,不含由软水箱至各用水点部分。

4 能量回收计算

空压机轴功率为355k W,现场的超声波热能表上显示回收装置回收功率为347k W 。1k W h 电的热值为860kca l 理论上每天可回收的能量

12 Cott on Textile Techno logy

第39卷 第2期2011年2月

80

为:347 860 24=7 16 106

(kca l)。过热蒸汽其焓值约为:6 5 105

kcal/,t 本地区蒸汽价格为:185元/t 。经计算每年可节约能源(1年按350天计算):7.16 106

350/6 5 105

=3855 4(t)。可节省成本:3855 4 185=71(万元)。空压机热回收项目的热量回收装置及水循环系统的总投入约38万元,可以算出整个项目的一次投资后,其回收期约为6个月。

5 结语

回收空气压缩机废热加热生产、生活用水方案,既解决了空压机冷却散热的难题,又充分利用

了废热,为企业节约了一次能源,一次投资就可以源源不断地得到热水,节省了企业大笔的运营费用。空气压缩机热量回收改造投资少见效快,符合国家产业政策,利国、利民、利己,值得推广。参考文献:

[1] 张浩,闵圣恺.空气压缩机的热回收改造实践[J].

上海节能,2009(2):8 10.

[2] 潘荣昌,李海霞.纺织厂新建空气压缩站的节能措

施[J].棉纺织技术,2009,37(10):34.

[3] 李宗耀.纺织空压技术[M ].北京:中国纺织出版

社,2001:67 74.

[4] 周义德,李虹,樊瑞,等.喷气织机用压缩空气性能

分析研究[J].棉纺织技术,2008,36(3):19 22.[5] 许伟,王继业,马思军,等.降低纺织厂空气压缩机

能耗的几种方法[J].棉纺织技术,2010,38(6):12.

读者 作者 编者

棉纺织技术 期刊征稿启事

1 征稿内容

(1)配棉精细化、电子化的理论及实践;(2)高性能纤维的开发及应用;(3)防护用纺织品的研制;(4)医用纺织品的开发;(5)梳理技术的研究进展;(6)清梳联工艺的优化;(7)并粗新设备、新工艺的应用;

(8)传统纺纱与新型纺纱工艺技术进步及设备改造的研讨;

(9)新型专件、器材的使用体会;(10)织前和织造过程节气、节纱的技术改造;(11)新型上浆工艺及新型浆料的研制;(12)织造工艺技术创新及织机技术改造;(13)纺织工艺、设备及管理信息化建设的实践;(14)纺织企业节能降耗的有效措施。2 稿件文责

文责自负,来稿应符合国家标准和有关规定。涉及机密的稿件,作者投稿前应先征得有关单位同意。来稿如曾投某报刊,务请注明。3 稿件具体要求

(1)来稿要求内容翔实,数据准确,图文相符,文字精练,采用法定计量单位;

(2)来稿字数一般以5000字以下为宜,3000字以上的稿件请编写摘要。摘要字数以200字以内为宜,并按照 目的、方法、结果、结论 四项要求编写;

(3)论文中要有中、英文的题名、单位名称、

作者名、摘要、关键词,并提供第一作者简介(姓

名,出生年份,性别,职称,所在地,邮政编码)及项目来源(如:国家自然科学基金资助项目 ,纺织工业协会 十一五 技术攻关项目 ,省部级政府部门颁发或下达项目等)。获奖论文请注明获奖级别及获奖名次;

(4)中文题名不宜超过20个汉字;(5)译文、译编稿件请附原文复印件,供校对;(6)手写稿件请用钢笔(蓝黑墨水或碳素墨水)在非红色方格稿纸上书写整齐,复印件、复写件、传真件不能作为原始稿件,同时为防止学术不端行为,电子邮件和网上投稿后也请提供打印件;

(7)文中插图要精选。手绘图用白纸或描图纸单面绘制,图号、图名、图注写在稿中图的下方。电子图稿必须单独命名,分辨率在150dp i 以上,文件后缀是tif 、psd 或cdr 。文中表格要注明表号、表名,本刊采用三线表;

(8)图中、表中的物理量与单位符号之间用斜线 / 隔开;

(9)参考文献中各篇文献应按正文引用顺序编号,并在文中相应位置的右上角用方括号标出,再集中列于文末。4 稿件受理

本刊一般不退稿,请作者自留底稿。采用稿件(除短稿外)一般在4个月内给予答复。切勿一稿多投。所投寄的稿件一经录用,即根据文章的类别按相关规定支付稿酬。

棉纺织技术 编辑部

13 第39卷 第2期

2011年2月

Co tt on Textile Techno logy

81

132KW空压机热回收

洛阳X X有限公司 空压机热水机回收60% 可产55℃热水40吨 132KW空压机 方 案 设 计 公司名称:东莞启邦机电设备有限公司 日期: 2016年06月23日

目录 一:空压机热水机节能效果统计表 (3) 二:空压机热水机10大技术特点 (5) 三:空压机散热及热水机回收原理 (8) 四:空压机热水机热水方案设计 (10) 五:热水工艺流程图.... . (13) 六:空压机热水系统运行描述 (14) 七:经济效益和运行费用计算. (15) 八:各种供热方式运行费用比较. (16) 九:输送热水系统工程 (17) 十:质量保证标准程序和维护保养. ............ (19) 十一:空压机热水机电控原理 (21) 十二:报价单 . (23) 十三:客户案例 . (23) 十四:现场设备和水垢照片 . ... . (24) 十五:专利证书和公司资料 ... . (30)

1、全方位除垢技术:全自动干烧除垢、酸洗除垢,可彻底清除水垢,还有除 垢提醒功能,解决你的后顾之忧。 干烧除垢是通过压缩气体把换热器的水吹出机体,在水和气混合时,有冲涮旋转功能,能有效的剥离附着在管路表面的水垢,之后没有水的机体受热后,由于金属和水垢的膨胀系数不一样,水垢会膨胀开裂脱离,再冲水进去,水垢就会被带走,可以设定除垢时间和间隔时间,水垢更多的原因是长时间不清洗越积越多,到最后无法清洗。本系统自动除垢,正常设置为每天清洗一次,每次5分钟,根据各地的水质情况可调整。 经过多年的实验总结,水垢即使采用以上除垢,时间久了,在水质硬度较高的地区特别是东北、华北、西北、西南、山东等地区,水垢还是会产生,会影响的换热器的换热效果,水垢的最终解决方案只有一个,就是酸洗除垢,所有锅炉系统除垢都是酸洗除垢,因此选择特殊的换热器,采用某种特殊酸性材料,其酸性不会腐蚀换热器,而只对水垢进行反应,这可以有效的保护换热器同时又把水垢清除。 通过PLC自控技术和参考各种参数进行复杂运算,可达成除垢提醒功能,热水机的水垢达到一定程度,触摸屏有水垢报警提醒,提示需酸洗除垢,此时酸性除垢,可以很简单清洗换热器内的水垢,而不至于等到结垢很严重时才发现,影响换热效果。 只有通过以上方式的除垢,才能保护换热器,使其寿命延长,使换热寿命达到8~10年。

冷水机组的工作原理

冷水机组得工作原理 1、冷水机组得分类及优、缺点冷水机组得分类: 分类方式 种类 分类方式 种类 按压缩机形式分 活塞式螺杆式离心式 按燃料种类 燃油型(柴油、重油)燃气型(煤油、天然气) 按冷凝器冷却方式 水冷式风冷式 按能量利用形式 单冷型热泵型热回收型单冷、冰蓄冷双功能型 按冷水出水温度 空调型(7度、10度、13度、15度) 低温型(-5度~-30度) 按密封方式 开式半封闭式全封闭式 按载冷剂分 水盐水乙二醇 按能量补偿不同分 电力补偿(压缩式)热能补偿(吸收式) 按制冷剂分 R22R123 R134a 按热源不同(吸收式) 热水型蒸汽型直燃型 各种冷水机组得优缺点 名称 优点 缺点 活塞式冷水机组 1、用材简单,可用一般金属材料,加工容易,造价低 2、系统装置简单,润滑容易,不需要排气装置 3、采用多机头,高速多缸,性能可得到改善 1、零部件多,易损件多,维修复杂,频繁,维护费用高 2、压缩比低,单机制冷量小 3、单机头部分负荷下调节性能差,卸缸调节,不能无级调节 4、属上下往复运动,振动较大 5、单位制冷量重量指标较大 螺杆式冷水机组 1、结构简单,运动部件少,易损件少,仅就是活塞式得1/10,故障率低,寿命长 2、圆周运动平稳,低负荷运转时无“喘振"现象,噪音低,振动小 3、压缩比可高达20,EER值高

4、调节方便,可在10%~100%范围内无级调节,部分负荷时效率高,节电显著 5、体积小,重量轻,可做成立式全封闭大容量机组 6、对湿冲程不敏感 7、属正压运行,不存在外气侵入腐蚀问题 1、价格比活塞式高 2、单机容量比离心式小,转速比离心式低 3、润滑油系统较复杂,耗油量大 4、大容量机组噪声比离心式高 5、要求加工精度与装配精度高 离心式冷水机组 1、叶轮转速高,输气量大,单机容量大 2、易损件少,工作可靠,结构紧凑,运转平稳,振动小,噪声低 3、单位制冷量重量指标小 4、制冷剂中不混有润滑油,蒸发器与冷凝器得传热性能好 5、EER值高,理论值可达 6、99 6、调节方便,在10%~100%内可无级调节 1、单级压缩机在低负荷时会出现“喘振"现象,在满负荷运转平稳 2、对材料强度,加工精度与制造质量要求严格 3、当运行工况偏离设计工况时效率下降较快,制冷量随蒸发温度降低而减少幅度比活塞式快 4、离心负压系统,外气易侵入,有产生化学变化腐蚀管路得危险 模块化冷水机组 1、系活塞式与螺杆式得改良型,它就是由多个冷水单元组合而成 2、机组体积小,重量轻,高度低,占地小 3、安装简单,无需预留安装孔洞,现场组合方便,特别适用于改造工程 1、价格较贵 2、模块片数一般不宜超过8片 水源热泵机组 1、节约能源,在冬季运行时,可回收热量 2、无需冷冻机房,不要大得通风管道与循环水管,可不保温,降低造价 3、便于计量 4、安装便利,维修费低 5、应用灵活,调节方便 1、在过度季节不能最大限度利用新风 2、机组噪声较大 3、机组多数暗装于吊顶内,给维修带来一定难度 溴化锂吸收式冷水机组(蒸汽,热水与直燃型) 1、运动部件少,故障率低,运动平稳,振动小,噪声低 2、加工简单,操作方便,可实现10%~100%无级调节 3、溴化锂溶液无毒,对臭氧层无破坏作用 4、可利用余热。废热及其她低品位热能 5、运行费用少,安全性好 6、以热能为动力,电能耗用少 1、使用寿命比压缩式短

热回收技术应用原理

热回收技术应用原理 一、热回收原理 制冷机组经冷凝器放出的热量通常被冷却塔或冷却风机排向周围环境中,对需要用热的场所如宾馆、工厂、医院等是一种巨大的浪费,同时给周围环境也带来一定的废热污染。 热回收技术就是通过一定的方式将冷水机组运行过程中排向外界的大量废热回收再利用,作为用户的最终热源或初级热源。 制冷压缩机排出的高温高压气态制冷剂先进入热回收器,放出热量加热生活用水(或其它气液态物质),再经过冷凝器和膨胀阀,在蒸发器吸收被冷却介质的热量,成为低温低压的气态制冷剂,返回压缩机。图中热回收器便是热量回收的载体,起着热量回收和转移的作用。根据热力学第一定律可以得到如下关系式φ?k′+φ?R=φ0′+P?in′式中,P?in′—压缩机吸收并压缩制冷剂消耗的功率; φ0′—制冷剂在蒸发器吸收的热量,即制冷量; φ?R—制冷剂在热回收器中放出的热量,即热回收量; φ?k′—制冷剂在冷凝器中冷凝(或过冷)放出的热量。 雷诺威机房空调,雷诺威精密空调 二、热回收类别 针对热回收器回收热量的多少,热回收又可以分为部分热回收和全热回收。其中,部分热回收只能回收冷水机组排放的部分热量,全热回收基本回收了系统排入环境中的全部热量。 三、热回收器形式 根据使用场所的不同和用户终端的具体需求,热回收器可以采用多种不同的形式,如管壳式、板式、翅片管式、套管式等。 四、热回收技术在冷水机组上的一般应用 根据冷水机组通常的使用场所,一般以水作为热量回收的媒介,在此以制取免费卫生热水为例展开讨论。 五、热回收技术原理 热回收器里通过的是高温高压的气态制冷剂(温度约70℃—85℃),在高温高压制冷剂通过热回收器的同时,利用循环水泵将常温的水送入热回收器,在热回收器里水与高温制冷剂蒸气进行热交换,制冷剂被冷凝的同时将水温升高,然后返回热水储存箱,水泵再次从储存箱中将水送入热回收器进行循环加热,使热水温度进一步升高。储存箱中的水经热回收器多次热交换,最终达到客户要求的水温(55℃-60℃左右)。当热水温度达到设定值时,循环水泵停止工作。 通过热水阀自储存箱中提取卫生热水,一旦水箱中水位降低,补水装置自动补水,此时水温开始下降,当水温降到低于设定值时,热水循环泵自行启动运转,再次通过热回收器对储存箱的水进行循环加热(前提是冷水机组在运行中),这样就确保储存箱中的热水温度维持在相对恒定的范围内。

空压机余热回收装置现场安装规范及标准

空压机余热回收项目 现场安装验收标 准 河南蓝海节能技术服务有限公司

目录 一、空压机余热回收设备现场验收标准 ........ 错误!未定义书签。 1、主机验收 (3) 2、油路验收 (3) 3、水路验收 (3) 4. 控制系统验收 (3) 5. 不锈钢水箱验收 (4) 二、空压机余热回收系统验收标准 (4)

、空压机余热回收设备现场验收标准 1、主机验收 1.1每台余热回收设备的安装场地尺寸至少有4m K 2m距离,保证设备有足够的安装空间和检修空间。 1.2安装位置空间高度要比安装后设备高0.5m左右。 1.3地面平整、硬化。 1.4进水温度表、出水温度表、进水压力表、出水压力表等安装位置及安装方法显示正确无误。 1.5余热回收装置主机无渗漏现象。 2、油路验收 2.1油路管道组件与空压机余热回收主机连接完好,无漏油现象。 2.2安装完毕后保证空压机内部油位在正常刻度线。 3、水路验收 3.1进水球阀、过滤器、电磁阀、自力式温控阀按照顺序安装方法、位置正确。 3.2单台设备的进出水管道与循环管道干管以及水泵与水箱连接正确。 3.3管网必须进行水压试验,试验压力为工作压力的1.5 倍,但不得小于 0.6Mpa。 3.4给水管道在竣工后,必须对管道进行冲洗,饮用水管道还要在冲洗后进行消毒,满足饮用水卫生要求。

4、控制系统验收 4.1控制柜安装位置正确合理,方便柜门的开启。 4.2电线走向合理清楚明了。 4.3各项控制功能符合设计要求。 4.4箱体外部无掉漆,磕碰现象。 4.5控制箱面部显示控制元器件布局合理、美观、固定牢靠,标签整齐 4.6箱内布线排列整齐,避免交叉,接线编号清晰,工整,不易脱色。 4.7接线端子压接牢固,可靠,外围无导线毛刺及导线裸露部分,压线处导线 无损伤。 4.8随箱配有原理图,接线图各一份。 4.9控制箱门锁有效无松动。 5、不锈钢保温水箱验收标准 5.1 水箱满水实验,24 小时无渗漏现象。 5.2 管道连接处、阀门及相关附件有无渗漏水现象。 5.3水箱底座符合技术要求。 5.4水箱保温符合技术要求,外表美观。 5.5水箱爬梯焊接位置准确。 5.6水箱安装完成后清洗干净。 二、空压机余热回收系统验收标准 1、控制系统保证空压机余热回收系统与对应的空压机启停联动,保证空压机回油温度正常。

空压机热回收计算

空压机冷却器余热回收应用案例分析 作者:西安工程大学邓泽民 文章来源:本站原创 点击次数:44 时间:2014/12/24 14:01:50 摘要:在纺织厂中,由于无油螺杆空压机制得的压缩空气洁净无油,因此被大量应用,但是高温压缩空气中大量余热通过冷却塔被排放到大气中,不仅造成了能源的极大浪费而且产生了废热污染大气。为此,提出合理的改造方案来回收这部分余热,对其可行性和经济性进行分析,并对中间冷却器进行改造设计。此设计方案是在原有中间冷却器的基础上进行的合理改造,只需要投资4.75万元,每年就可以为该纺织厂节约洗浴用水所需要的8.03万元燃煤费,而且杜绝了燃煤产生的污染物。该方案可为空气压缩机余热回收利用技术在纺织厂的应用提供参考。 关键词:中间冷却器热回收改造节能 引言 纺织厂中,空压机作为动力源,用于气动加压、气动输送、气动引纬等方面。空压机将电动机的部分机械能转化成空气的压力能,在此过程中,会产生大量的热能。美国能源局的一项统计显示:压缩机运行过程中真正用于增加空气势能而消耗的电量仅占其总电耗的15%,其余的几乎都转化为热量[1]。为了保证空压机的正常运行,这部分热量主要通过空气冷却或水冷却排到大气中去,这样造成了能源的极大浪费而且产生了废热污染大气。当前,纺织工业“十二五”发展规划要求加快绿色环保、资源循环利用及节能减排等先进适用技术和装备的研发和推广应用。组织实施节能、降耗、减排的共性、关键技术开发和产业化应用示范[2]。为了响应国家节能减排的方针政策,对西安某纺织厂空压站提出可行的方法和合理的方案,对热量进行回收利用,达到节能减排的目的,提出了一种纺织厂余热回收的方案。 无油螺杆空压机工作原理 目前,该纺织厂采用的是AtlasZR5-53型无油螺杆空压机。冷却方式采用的是水冷却,

关于冷水机组热回收技术的说明

附件 关于冷水机组热回收技术的说明 1、热回收的原理及介绍 1.1背景资料 在酒店、宾馆、医院、浴足、桑拿等场所,既需要热水供应,又要制冷空调。一方面要用燃煤/燃气锅炉生产热水,另一方面要用冷却塔(或地下水、风冷风机等形式)把空调在制冷过程中产生的冷凝热散失到大气中,产生污染的同时浪费能源。热水与制冷空调两套方案相互独立,致使制冷空调的余热得不到充分利用,甚是可惜! 空调压缩机产生的冷凝热量等于空调系统从制冷空间吸收总热量加上压缩机的发热量,约为制冷量的115%以上。目前绝大部分的空调设计,这部分的热量不但没有利用,还要消耗水泵、冷却塔、风冷风机等动力电能,将这部分热量排到大气环境(或地下环境)中去。如果把这一部分热量利用起来,变废为宝,免费获取生活热水,实现空调系统的单向能耗,双向输出,在制冷的同时又产生热水,岂不美哉。 1.2冷水机组热回收技术介绍 常规制冷空调用压缩机的出口处的制冷剂温度在65℃~95℃之间,冷凝管的表面热的烫手,空调热回收技术就是利用这部分的冷凝废热资源,来产生热水的。 1.2.1部分热回收如下图: 热回收装 压缩 膨胀水水 水 水

部分热回收(100%+30%的换热铜管) 双管束换热器:制冷剂侧共用一个回路,水侧上下分层。 1.2.2全部热回收 全热回收(100 %+100%的换热铜管) 双管束冷凝器:制冷剂侧共用一个回路,水侧左右分层。 30℃ 45℃ 制冷剂

2、热回收量 热回收温度一般不高于60℃ 2.1对于水冷螺杆机组的部分热回收量 ① R22机组: 60度热水,回收量最大10%; 55度热水,回收量最大 15%;50度热水,回收量最大30%;45度热水,回收量最大50% 。 ② R134a 机组: 60度热水,回收量最大8%; 55度热水,回收量最 大14%; 50度热水,回收量最大29%;45度热水,回收量最大50%。 说明: ① 对于不同的热回收温度和热回收量,机组需要进行不同的设计和报 价。 ② 以上参数为公司提供的标准热回收产品的性能参数。 2.2对于水冷螺杆机组的全部热回收量 大约为标况下冷量的100±5% 3、热回收系统热水的用途建议 3.1一般的热回收热水有以下用途: 1) 用于洗澡的淋浴; 2) 用于的洗手; 3) 制备工艺热水 注:根据应用场合的实际需要,选择合适的机组制取满足要求的热水。 ℃ ℃ 冷却水

热回收技术原理及其在冷水机组上的应用

热回收技术原理及其在冷水机组上的应用 1.前言 本世纪头二十年,我国经济将继续保持平稳较快的增长态势,然而能源的相对短缺已越来越成为制约我国经济持续健康发展的瓶颈,这一矛盾在今后相当长的时期内将长期存在,并且有愈加明显的趋势,同时,经济的高速发展也是以牺牲环境为代价的,如今人们赖以生存的环境已不堪重负。为此,国家确立了“节约与开发并重,节约优先”的能源方针,并提出“科学发展观”,“构建社会主义和谐社会”的全新发展理念。随着生活水平的不断提高和生产条件的日益改善,人们对生产生活环境也提出了更加严格的要求,如今,各类冷水机组已成为重要的实现方式,但伴随的却是巨大的能源消耗。因此,节能降耗理应成为全社会共同的责任,更是摆在每一家空调制造企业面前重大的课题。 2.单级蒸气压缩式制冷循环 压缩机吸收来自蒸发器的低温低压气态制冷剂,压缩成高温高压的制冷剂蒸气排入冷凝器,冷凝为中温(30℃—50℃)高压的制冷剂液体,经膨胀阀节流降压为低温低压的液态制冷剂(实际为气液混合物),进入蒸发器吸收被冷却介质的热量,成为低温低压的气态制冷剂,回到压缩机,完成一个制冷循环。 由热力学第一定律可知,φk=φ0+Pin 式中,Pin—压缩机吸收并压缩制冷剂消耗的功率; φ0—制冷剂在蒸发器吸收的热量,即制冷量; φk—系统通过冷凝器放出的热量。 3.热回收技术 3.1热回收原理 机组经冷凝器放出的热量通常被冷却塔或冷却风机排向周围环境中,对需要用热的场所如宾馆、工厂、医院等是一种巨大的浪费,同时给周围环境也带来一定的废热污染。 热回收技术就是通过一定的方式将冷水机组运行过程中排向外界的大量废热回收再利用,作为用户的最终热源或初级热源。 压缩机排出的高温高压气态制冷剂先进入热回收器,放出热量加热生活用水(或其它气液态物

热回收空调原理、特点及优势

简介:简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。关键字:热回收 热回收空调原理 一、常规空调制冷系统中的能耗问题 业内人士都知道,“制冷”并不仅仅是一个简单的降温过程,与自然冷却相比,“制冷”的过程实际上是通过消耗一定的外界能量(如电能、热能、太阳能等),把热量从“低温热源”转移到“高温热源”的过程。因此,我们通过“制冷”把载冷剂的温度降低的同时,加上外功转化的热量,必然会产生比冷量更大的热量。目前绝大部分的空调设计,这部分热量不但没有利用,还要消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。我们如果能够把这部分热量利用起来,则可以实现单向能耗,双向输出,大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。 二、热回收原理 因此,基于以上系统能源再利用的出发点考虑,广州哈思空调有限公司研发生产的热回收空调技术,取得了很好的节能效果。其系统原理图及相关工作原理如下: 图3—1 热回收空调系统原理图 热回收空调原理及其节能效果 依上图(图3—1)所示,冷水水源直接进入热水器套管入水口,通过逆流循环吸收经过压缩后的高温高压的制冷剂释放出来的热量,不但可以提高冷凝系统的效率又达到加热冷水的目的。加热后的热水(55℃~60℃)直接进贮保温水箱,以备各项生活热水之用。整个空调系统是以电能来驱动工作,而非电能来制热。就节能方面同比之下,电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏;对于常规用燃油锅炉加热的方式,由于燃油的价格高,产生的效能并不高。因此,该热回收空调技术在节能方面的效果是相当显著的,而且该系统在夏季制冷时所产生的热水是完全免费的。 热回收空调特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。 一、热回收空调的特点 1、就空调系统而言,简约,可靠,无需增加其他电控系统,自动化程度高,运行稳定,无安全隐患。 2、热水系统出水温度恒定(不会有过冷、过热现象发生),能同时实现多点供水,可满足不同需要的生活热水需求。 3、安装容易简便,不受场所限制,安全,使用寿命长。

热回收空调原理

热回收空调原理 一、常规空调制冷系统中的能耗问题 业内人士都知道,“制冷”并不仅仅是一个简单的降温过程,与自然冷却相比,“制冷”的过程实际上是通过消耗一定的外界能量(如电能、热能、太阳能等),把热量从“低温热源”转移到“高温热源”的过程。因此,我们通过“制冷”把载冷剂的温度降低的同时,加上外功转化的热量,必然会产生比冷量更大的热量。目前绝大部分的空调设计,这部分热量不但没有利用,还要消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。我们如果能够把这部分热量利用起来,则可以实现单向能耗,双向输出,大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。 二、热回收原理 因此,基于以上系统能源再利用的出发点考虑,广州哈思空调有限公司研发生产的热回收空调技术,取得了很好的节能效果。其系统原理图及相关工作原理如下: 图3—1 热回收空调系统原理图

热回收空调原理及其节能效果 依上图(图3—1)所示,冷水水源直接进入热水器套管入水口,通过逆流循环吸收经过压缩后的高温高压的制冷剂释放出来的热量,不但可以提高冷凝系统的效率又达到加热冷水的目的。加热后的热水(55℃~60℃)直接进贮保温水箱,以备各项生活热水之用。整个空调系统是以电能来驱动工作,而非电能来制热。就节能方面同比之下,电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏;对于常规用燃油锅炉加热的方式,由于燃油的价格高,产生的效能并不高。因此,该热回收空调技术在节能方面的效果是相当显著的,而且该系统在夏季制冷时所产生的热水是完全免费的。 热回收空调特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。 一、热回收空调的特点 1、就空调系统而言,简约,可靠,无需增加其他电控系统,自动化程度高,运行稳定,无安全隐患。 2、热水系统出水温度恒定(不会有过冷、过热现象发生),能同时实现多点供水,可满足不同需要的生活热水需求。 3、安装容易简便,不受场所限制,安全,使用寿命长。 4、节能环保,运行费用省,经济效益高。 二、热回收空调的优势 1、热回收系统充分利用空调系统的废热,将空调系统中产生的低品位热量有效地利用起来,达到了节约能源的目的。 2、热加收系统减少了排到环境的废热;同时,由于取消冷却塔,减小了建筑物周围的噪音,有效地保护了建筑物周围的环境。 3、使用热回收系统,用户不再需要在家中设置热水器,这样就给用户带来方便与安全;同时,使用热回收系统,业主可以简化或者省去热水加热系统,从而也简化了系统的运行管理。使用热回收系统,是利用废热来回热生活热水,这样就降低了用户使用生活热

空压机余热回收方案

空压机余热利用中央热水系统设计案 致: 根据贵员工宿舍中央热水系统工程项目的邀请,设计施工市森茂节能环保工程有限公司,按贵要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水式为不定时不定量,热水温度在55℃以上。 1.2 工程总案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管

道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 在管路上水箱、水泵、换热器两头及各预留检修处,均安装铜制优质阀门,另在保暖水箱出口及换热器出口处安装水过滤器各1个。 1.2.2保暖水塔 贵司安装两个50吨保暖水箱,即可满足贵公司员工的用水要求。水箱材质为双层不锈钢,50mm厚聚脂泡沫保溫层,24小时温降5℃以。 1.2.3 换热装置 本工程将对13台螺杆式空压机加装余热利用装置,分两套系统,每小时分别可产水800L以上,10小时可产水160吨,完全可以满足员工的用水要求。 1.2.4 补水系统 补水系统使用水位开关、电磁阀、温度控制器控制

全热回收风冷模块机组在酒店中的应用分析

全热回收风冷模块机组在酒店中的应用分析 摘 要:本文首先阐述了全热回收风冷模块机组 的运行原理,同时简单分析了其特点,结合具体的工 程实例简述在酒店中使用全热回收风冷模块机组带来 的节能效果和经济效果,旨在为酒店的空调系统设计 提供一定的参考,实现酒店的可持续发展。 关键词:全热回收;风冷模块机组;酒店 引言:酒店作为能源消耗非常大的一类建筑,在 空调系统和热水系统中的能源消耗非常大,在空调的 热泵系统中采用冷凝热回收技术,不仅可以有效的节 约能源的消耗,同时还能有效的节约空间,不需要单 独设置热源,将其在酒店中使用具有非 意义。 一、全热回收风冷模块机组的原理 全热回收风冷模块机组是空调系统中 环节,首先增设一个热回收器,将空调系统运行过 程 中产生的大量热回收利用起来,从而增加能源的循环 利用。在系统中,热回收器是和风冷冷凝器采用并联 的方式设置的 [1] 。全热回收风冷模块机组在冬季和夏 季的工作原理是不一样的,在冬季的时候,可以选择 三种不同的运行模式,主要是通过四通换向阀来进行 切换的。全热回收常重要的现实 个重要的

风冷模块机组在冬季的运行模式如下图1 所示。三种不同的运行模式主要为制热模式、热泵热水器模式和混合模式。在制热模式中,制冷剂通过水侧热交换器C和风侧热交换器A来获取空调用的热水,这个热水的温度保持在45 度左右。在热泵热水器模式中,制冷剂则主要是通过热回收器换热器B 和风侧的热交换器A 工作,在这个模式中,水侧的交换器C 是不需要工作的,最终取得生活用的热水。在混合模式中,时间两种运行模式混合使用的一种全新的运行模式,但是需要采用一个先进的流量分配装置来实现混合运行。 在夏天,全热回收风冷模块机组的运行模式主要有两种,分别为制冷模式和制冷+热回收模式。运行的原理图如下图2 所示。如果采用制冷模式运行,则和普通的风冷热泵系统的运行是一样的,只是提供空调系统的用冷水,在节能环保方面并没有表现出优势。而在制冷+热回收模式中,又可以分为部分热回收和全热回收两种运行模式,一般在实际过程中更常使用的为全热回收模式。在这种运行模式下,制冷剂仅仅通过热回收器换热器B和水侧的热交换器C,风侧的热交换器A 水不需要工作的,如果生活热水的负荷为部分负荷,此时机组需要使用一套先进的流量分配装置对部分的热进行回收,而热交换器A 则需要根据热回收器换热器B 流量的变动来对散热量进行调整。

空压机热能回收数据

空压机热能回收数据 空压机消耗的电源以以下几种形式消耗 1、75%的电能转化成热能存在于热油之中,通过冷 却器冷却带走; 2、10%的电能转化为热能存在压缩空气中,通过冷 却器冷却带走; 3、10%的电能转化成热能后辐射损失及不可控的压 缩内耗损失; 4、5%的电能转化成马达热量损耗 空压机运行的油温度越高,浪费的有用功就越大,大约有75%的热能存储在热油回路中,所设计的热能回收装置正是为了在对压缩机性能不产生任何负面影响的前提下,以热交换产生热水的形式回收以上绝大部分的热能,回收率可达实际输入轴功率的65%~75%。我公司空压机运行的油温在80-90°c之间,热水温度可达50-80°C之间 我司目前安装了热能回收装置的空压机共有三台,总功率300KW,日常运行的有两台(两用一备),总功率200KW,按70%回收率、负荷率80%计算有112KW,共112×860=96320千卡(1KW=860千卡)。假如自来水温度按年平均15°C计算,热水温度按60°C计算,回收的热量每小时可以产生96320÷(60-15)=2140公斤的热水(一公斤水升高1°C需要1千卡的热量),每天可以产生2140×24=51371公斤温度达60°C的热水,按每人明天30公斤热水计算,可以满足1712个人的需要。另公司还安装了300平方米的太阳能热水设备,可以满足300-400人的热水需要,所以目前我们公司的热水设备共可以满足两千多人的需要。 明年杨丰公司即将搬迁进入科彩工业园,杨丰公司同样有一台装有热能回收设备的空压机,总功率为50KW,每天可以产生近13000公斤的热水,可以满足400人的需要(计算方法同上),由于杨丰的厂房靠近新的综合楼,所以我司已计划将这套热能回收设备用于新的综合楼。 锅炉热能回收数据 我司四号厂房新配置了一台2000000千卡的锅炉,这台锅炉的烟囱上也安装了烟气热能回收装置,正常生产时,每月大概需要消耗18000立方米的天然气(根据1号厂房锅炉的数据),平均每天600立方米,每立方米的天然气可以产生8500千卡的热量,600立方米的天然气可以产生600*8500=5100000千卡的热量,烟气热能回收装置的回收效率一般能达到1-3%,假如按平均2%计算,每天也可以

空压机余热回收技术方案

XXXX有限公司 XXX系统技术方案 一、概述 节能减排,降耗增效是当今每个企业所必须面对的话题,是关系到企业生存和发展的重中之重。能源的危机对于高能耗的企业,面临着严峻的考验和巨大的生存压力,现如今激烈的市场竞争,导致企业的利润空间已经大幅度下浮。只有在企业内部挖潜,在节能降耗上下功夫,不然企业无法生存。作为节能设备的制造企业,我们针对市场开发了适合于各种行业的空压机热能回收系列产品。本系统设计主要是提取空压机运行过程中浪费的热能,在回收热能的同时对空压机进行保护作用。从而达到节约能源与环保的作用。系统采用智能数字自动化控制,自动化程度高,可以完全不需要专人操作。 二、工程实施的意义 1、利用原本浪费的空压机热能进行回收,避免空压机房温度过高,空压机排气温度保持在750C到850C最好温度运行。 2.使空压机更省电,风扇不用开启,以贵公司76千瓦螺杆机为例风机为2.2千瓦,每小时可省约2.2度电,二十四小时可省52.8度电。 3、无需任何费用回收460C~480C热水,用于办公室或者车间供暖热源。 4、完全清洁无污染,安装方便,无需改变原有压缩机结构。 5、提高员工待遇(硬件设施),减少电费支出。

三、系统特点 系统采用全自动智能化控制, 无需专人看管。 回收热水温度可调 循环水箱自动补水 扬程水泵自动送水(达到设定的温度) 循环水箱水位控制 保温水箱水位控制 电脑检测循环水箱水位显示 电脑检测保温水箱水位显示 循环水自动循环加热 电脑系统自动检测故障源并显示在显示屏上

四、系统设计方案 (一)、根据贵公司提供的有关数据可以计算出供暖的面积:针对贵公司x台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收): 第一部分:空压机加载吸收的热量可转化中央空调供暖的功率为: 76×8×80%×80%=389千瓦 第二部分:空压机卸载吸收的热量可转化中央空调供暖的功率为: 76×8×20%×40%×80%=38.9千瓦 总共可以转化成中央空调供暖的功率为: 389+38.9=427.9千瓦 经过保温处理并考虑热量损失10%计算,可供中央空调供暖的总功率为:385千瓦 按照生活供暖加热到23摄氏度为例,每平方米面积所需供暖的功率为180W~200W左右,所以: 压缩机总体可以供暖的面积大致在2000个平方左右。(二)设计方案如下: 针对贵公司8台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收);

螺杆式热回收冷水机组应用的介绍

1.引言 随着经济的日益发展和人类生活水准的不断提高,空调的应用也越来越普及。而空调在适应经济发展和满足人类需求的同时,也给人类带来了巨大的能源消耗负担和其他如温室效应等负面影响,因此,减少空调的能源消耗,寻求空调可持续发展之路,已成为空调设计所面临的一个重要和首要的问题。在论述本文的内容以前,有必要对空调的能耗进行分类,并对已有的空调节能技术也作一些分类比较。 2.空调能耗的分类 空调制冷要使用电力或蒸汽;空调水、气输送要消耗电力;冬季空调要使用电力或油、煤等自然能源,不同的季节、不同的空调系统有不同的能耗。但就分类而言,可归结分为两类:电力消耗和热能消耗。而电力消耗最总仍可归结为热能消耗(自然能发电除外),因此,从环保的角度来看,空调的所有能耗均为热能消耗,都有CO2温室气体的排放代价。 具体来看,空调系统中,所有电力驱动设备,都存在电力消耗;各种锅炉、溴化锂冷水机组等则存在热能消耗,在一般情况下,夏季空调,除溴化锂制冷机组以外,均以电力消耗为主;冬季空调,则以热能消耗为主,但同时存在电力消耗。各种气源、水源、地源空调系统仅消耗电力。 3.空调节能技术分类和比较 作为对空调节能技术不断探索的回报,在空调设计中,已有很多成熟的技术和相关的产品可运用。具体可分为三种类型: 3.1 节省型:通过追求高效率,优化系统和加强自动控制的运用,来节省空调运行能耗, 减少或避免能源浪费,从而节省能源。如:选用高效率产品,优化系统配置,采用变风量或变水量、二次回风等节能系统及其他运行控制节能技术等。 就其节省的能耗而言,既节省空调动力消耗,也节省一些空调热能消耗。 3.2 自然能利用型:通过合理使用自然能,而减少空调能源消耗,如:新风供冷,冷却水供冷,气源,水源及地源供冷供热等自然能利用技术等。 自然能利用型主要节省空调热能消耗,值得注意的是,其节省的热能是相当可观的。此外,节省了空调热能消耗,也就减少了相应的CO2排放量,因而具有良好的环保优势和可持续发展特性。 3.3 热回收型:通过对热能的再回收,实现热能的二次利用,从而减少空调的能源消耗。如新排风热回收技术。根据产品的不同,又可分为:转轮式或固定板翅式全(显)热交换式热回收,盘管式热回收,热泵式热回收等方式。其他如冷水机组生活热水热回收等等。 就上述各热回收方式所节省的能耗来分析,夏季一般主要节省空调电力能耗,当采用溴化锂主机时,节省的是空调热能消耗。冬季一般主要节省空调热能消耗,当采用自然能利用型主机如气源热泵时,节省的是空调电力能耗。总之,同样具有良好的环保优势和可持续发展特性。 由于热回收型冷水机组在以前的应用中,较多采用串联型冷凝器,由于机组这样的结构设计的原因,热回收量一般最高仅为制冷负荷的30%至40%。而且,热回收量随着冷负荷的减少很快下降,不能相对稳

水冷冷水机组热回收介绍

水冷冷水机组热回收方式分类 目前水冷冷水机组有冷却水热回收与排气热回收两种方式。 1)冷却水热回收是在冷却水出水管路中加装一个热回收换热器,如图1所示。这样可以使“热水”从冷却水出水中回收一部分热量。虽然热水的出水温度小于冷却水的出水温度,但是冷水机组的制冷量与COP基本不变。 2)采用排气热回收的冷水机组通常采用增加热回收冷凝器,在冷凝器中增加热回收管束以及在排气管上增加换热器的方法。目前常见的是采用热回收冷凝器,如图2所示。从压缩机排出的高温、高压的制冷剂气体会优先进入到热回收冷凝器中将热量释放给被预热的水。冷凝器的作用是将多余的热量通过冷却水释放到环境中。值得注意的是热水的出水温度越高,冷水机组的效率就越低,制冷量也会相应地减少。 3热回收冷水机组关注点 1)最大热回收量

热回收冷水机组的热回收量在理论上是制冷量和压缩机做功量之和,某些机组最大热回收量可达总冷量的100%。在部分负荷下运行时,其热回收量随冷水机组的制冷量减少而减少。 2)最高热水温度 热回收冷水机组以制冷为主,供热为辅。热水温度越高,则冷水机组的COP越低,甚至会使机组运行不稳定。一般需加其他热源提高热水温度 3)热水温度/热量的控制 热水回水温度控制方案:机组在部分负荷下运行时,热回收量减少,热水的回水温度不变而出水温度降低,使热水(冷却水)的平均温度降低,减少冷凝器与蒸发器压差,冷水机组的COP相对较高。 热水供水温度控制方案:效果相反,可能导致冷水机组运行不稳定。 4热水回水/供水温度控制方案比较 如图3所示,比较热水回水/供水温度控制方案: 1)在100%负荷时,冷却水的供、回水温度为41OC和35OC,其温差为6OC,平均温度为38OC。 2)在50%负荷时,冷却水的流量不变,供、回水温差是100%负荷温差的50%,即为3OC。 3)热水回水温度控制方案:冷却水的回水温度恒定为35OC,由于供、回水温差为3OC,故冷却水的供水温度变为38OC,供、回水的平均温度为36.5OC,比100%负荷时低1.5OC。冷水机组COP相对较高,冷水机组运行稳定性好。 4)热水供水温度控制方案:冷却水的供水温度恒定为41OC,由于供、回水温差为3OC,故冷却水的回水温度变为38OC,供、回水的平均温度为39.5OC,比100%负荷时高1.5OC。冷水机组COP相对较低,可能导致冷水机组运行不稳定。 5排气热回收热量控制原理 图4为排气热回收冷水机组控制原理图,它利用从压缩机排出的高温气态制冷剂向低温处散热的原理,提高标准冷凝器的水温,促使高温气态制冷剂流向热回收冷凝器,将热量散给热回收冷凝器的水流中。通过

空压机余热回收方案设计

空压机余热利用中央热水系统设计方案 致: 根据贵方员工宿舍中央热水系统工程项目的邀请,设计施工方市森茂节能环保工程,按贵方要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计方案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计方案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单 1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计方案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。 1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造方式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水方式为不定时不定量,热水温度在55℃以上。 1.2 工程总方案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个周转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水

空压机热回收-制热水方案

空压机热回收-制热水方案作者:admin 日期:2011-04-30 点击数:278次1、现状 用水情况:员工人数800人,现为热泵加热水,冬天不够用,水箱10T两个,3T和2T各一个.水温50度。 设备情况:现有美国寿力空压机3台,24小时运行,75KW 两台(型号:LS16-100H,)37KW一台(型号:WS37080) 改造建议:改造一台37KW空压机,用于加热生产用纯水,现为电热管加热,纯水需加热到90度,每天用量约为3吨,改造后回收水温越高越好(接近90度),每天有3吨水即可.需加新的热水箱,用水点距离机房距离约100米。另外,改造一台75KW,用于员工生活用水,水温60度,现为热泵加热,但冷天不够用,机房距离突舍距离约400米。 2、概述 目前贵公司有寿力牌微油100hP空压机2台,利用一台节能改造,做热能回收利用于生产车间用热水,另外,改造一台75KW,用于员工生活用水;我们向贵公司推介“高效热回收器”,先利用现有的螺杆空压机,将空压机热能全部余热利用,转换成≥60℃热水,回收热能≥100%空压机作功功率。水温在55℃~80℃可调,不受白天黑夜影响、提升空压机运作能力、延长空压站各设备寿命、并能提升空压机产气量,为往后贵公司增添设备扩大生产供气有了更富余的空间。 3、节能分析 1、空压机产热水折合电能耗能情况: 寿力100HP/75KW空压机有两台,寿力50HP一台,并且3台中也会有卸载的可能性,我们以3台主用满负荷作功计算。 本地年均气温约23℃,平均水温以20℃计,产热水60℃温升40℃,1L水温升1℃需要1kcal(大卡)热能,1kw 热焓为860kcal,电热水器热效率80%(20%为损耗费),1kw工业电费1元计算; “高效热回收”器所回收热效率根据环境温度变化而变化(环境温度≥30℃,热能回收可≥110%,空压机环境温不同,热回收效率也不同,造热水量多少也不同),1L水从20℃温升40℃,需热能40kcal,按空压机90%有效功率计;以年均环境温度23℃计算,热能回收可≥100%。 75KW×100%×90%×860kcal×24h÷40kcal(1L温升)=34830L/天/台=34.8m3/天/台 34.8m3/天÷24天=1.45m3/台/h

空压机余热回收

空压机余热回收 空压机余热回收又叫空压机热能回收,该方式实现废热循环利用,有利于节能减排,保护环境,大幅降低企业消耗成本,为企业带来可观的经济效益! 空压机余热回收简介 空压机热能回收系统是通过空压机内部改造,增加热能回收器,将空压机运行的过程中产生的大量热量,通过CHR高效热能回收器进行回收利用,从而用于生活、生产。如,顺高余热回收系统将回收的热量用于液体介质的加热、锅炉补水的预加热、中央空调系统使用、生活用水及地暖用水、工业清洗和卫生设施清洁等方面。 余热回收特点 1、全优设计,高效节能 独特、新颖、高效的设计,延长空压机冷干机的“使用寿命” 2、零运行费用经济效益显著 不需要任何费用,可提高空压机的运行效率,节省空压机冷却风扇用电。

3、冷水直热、智能控制 采用独特、专利设计的直热方式可保持出水温度恒定,水位高低自动控制。 4简单、可靠、安全、维护少 延长空压机的“消耗品”的更换周期。 余热回收系统配置高端 1、专业的换热器设计 高效热能回收换热器,采用低阻力、高效率、高导热性技术设计,具有体积小、重量轻、阻力小、导热性强等特点。例,顺高余热回收时候的高效换热器采用不锈钢板材质,具有耐腐蚀、耐高温、耐高压等性能,极大地保障热能回收器效率同时保证了空压机系统的正常稳定的运行。 CHR高效热能回收换热器图示 2、高效热能回收器采用先进的智能化电气控制系统: 1.可与空压机实际运行情况进行联动工作. 2.可实现全天候无人值守. 3.可全面监控热回收系统各个物理参数 4.可在线统计热回收量,直观反映回收热量的经济效益 5.可控制冷却风扇运行以达到控制油温的目的

相关主题
文本预览
相关文档 最新文档