当前位置:文档之家› 球墨铸铁件皮下气孔缺陷的特征和形成原因

球墨铸铁件皮下气孔缺陷的特征和形成原因

球墨铸铁件皮下气孔缺陷的特征和形成原因
球墨铸铁件皮下气孔缺陷的特征和形成原因

球墨铸铁件皮下气孔缺陷的特征和形成原因

球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其是通过球化和孕育处理得到的球状石墨,综合性能仅次于钢,在后期的铸造生产中球墨铸铁的应用非常广泛。然而不管是哪种材质的铸件,其在生产过程中也都避免不了各种铸造缺陷的产生,球墨铸铁件在生产中也存在着诸如球化不良和球化衰退、缩孔和缩松、皮下气孔等缺陷,下面就皮下气孔缺陷分享下相关经验。

球墨铸铁件的生产过程中,在热处理、抛丸清理后或机加工时常会发现一些直径大约为0。5-3mm,形状为球形、椭圆状或针孔状内壁光滑的孔洞,这些孔洞一般在铸件表皮下2-3mm分布,这就是所谓的皮下气孔。

皮下气孔的形成是由于含镁铁液表面的张力大,容易形成氧化膜,这对阻碍析出气体和入侵气体的排出有一定影响,这些气体滞留于皮下就会形成气孔。另外,球墨铸铁糊状凝固特点使气体通道较早被堵塞,也会促进皮下气孔缺陷的形成。

皮下气孔缺陷的存在可对球墨铸铁件质量形成不同程度的影响,在生产中,企业要尽量的控制该缺陷的产生,以提升球墨铸铁件质量。

球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其是通过球化和孕育处理得到的球状石墨,综合性能仅次于钢,在后期的铸造生产中球墨铸铁的应用非常广泛。然而不管是哪种材质的铸件,其在生产过程中也都避免不了各种铸造缺陷的产生,球墨铸铁件在生产中也存在着诸如球化不良和球化衰退、缩孔和缩松、皮下气孔等缺陷,下面就皮下气孔缺陷分享下相关经验。

球墨铸铁件的生产过程中,在热处理、抛丸清理后或机加工时常会发现一些直径大约为0。5-3mm,形状为球形、椭圆状或针孔状内壁光滑的孔洞,这些孔洞一般在铸件表皮下2-3mm分布,这就是所谓的皮下气孔。

皮下气孔的形成是由于含镁铁液表面的张力大,容易形成氧化膜,这对阻碍析出气体和入侵气体的排出有一定影响,这些气体滞留于皮下就会形成气孔。另外,球墨铸铁糊状凝固特点使气体通道较早被堵塞,也会促进皮下气孔缺陷的形成。

皮下气孔缺陷的存在可对球墨铸铁件质量形成不同程度的影响,在生产中,企业要尽量的控制该缺陷的产生,以提升球墨铸铁件质量。

铸造缺陷-气孔的描述及分析

铸造缺陷-----气孔的概述以及分析 一、术语含义:金属液在凝固过程中陷入金属中的气泡,在铸件中形成的孔洞,称为气孔。还有气眼、气泡、呛火、呛等非正规名称,是孔壁光滑的孔洞类铸造缺陷。 二、目视特征:是指肉眼看到的铸件缺陷的形态特征,是区分气孔、缩孔、砂眼、加渣及确定气孔种类性质的依据。 1、形状:一般为球形或近似于球形、泪滴形、梨形、蠕虫状、长针形等气孔孔洞。 2、表面面貌:在肉眼观察下,气孔孔壁是平滑的,表面颜色有的发亮,有的金属本色,有的发蓝,灰铸铁孔洞表面有的附着一层碳膜。 3、尺寸:由于形成气孔原因复杂,尺寸变动是无规律的,有的大到10至20几毫米,有的小到不到1毫米。 4、部位:是指孔洞在铸件截面中的位置,一般可分为表面气孔,一落砂就可发现,内部气孔只有在机加工后才能显示出来,有的皮下气孔在喷砂后或机加工去除表面硬皮后才能发现。多出现在浇注位置的上面。 5、危害性:气孔是铸件常见和多发性缺陷,一般情况下,气孔使铸件报废数量约占铸件废品率的25%-80%。 6、气孔种类:从气孔形成原因、形成过程、形成机理来分类,气孔可分为5种,及侵入气孔、裹挟气孔、析出气孔和内外反应气孔。 下面先说一说最常见、发生最多的侵入型气孔。 一、从浇注到铸件凝固成壳期间,砂型、砂芯发生的气体侵入金属液

时产生的气孔称为侵入性气孔。 1、它的形状特征:团球形、梨形、泪滴形,小头所指是气体来源的方向。 2、表面面貌:孔壁平滑,铸件侵入气体主要成分是CO时,孔壁呈蓝色;是氢气时,孔壁是金属色,发亮;是水蒸气时,孔壁是氧化色,孔壁发暗,灰色。 3、一般尺寸较大,在几毫米以上。 4、部位:按浇注位置来说,常处于铸件上表面,去掉浇冒口或气针后可看到,有的粗加工后表现出来。 5、分布:大多情况下是单个或几个聚集的尺寸较大的气孔,很少成为弥散性气孔或针孔。 二、形成机理: 1、砂型:砂型中的气体侵入金属液,分为两种:①不润湿型:组成砂型型砂粒度细、强度高、紧实度大(硬),如静压线造型。高温铁水遇到湿砂型,表面水分极度气化膨胀,在砂型毛细管内形成较高压力,一部分向外透过砂型排入大气,一部分因压力大,超过铁水静压力,克服表面张力,便进入铁水中,关系式为:P A>P o+P M+P N P A——表示气体侵入压力 P o——型腔中气体压力,即标准大气压 P M——金属液静压力 P N——金属液表面阻力(表面张力和粘度)

侵入气孔、析出气孔、针状气孔产生的原因有哪些

侵入气孔、析出气孔、针状气孔产生的原因有哪些? 侵入气孔产生的原因是:型砂中的水分与粘结剂中的挥发物,都会因受热变成气体。如果型砂(或芯砂)透气性差,或浇注系统设计不合理,或砂型紧实度过高.或砂型排气不良以及气道堵塞,都会使铸型中所产生的气休(浇注时)不能及时排出,就可能冲破金属表面凝固膜,而钻进铁水里去,若不能上浮排出,便留在铸件中形成气孔。因此应尽量减少铸型中的气体来源和增加铸型的排气能力。其具体措施有: (1)严格控制型砂的水分,同时起膜与修型时,不宜刷水过多。煤粉等加入量不宜过多,从而减少发气量。一般型砂中水<6%,煤<7%。 (2)干型要保证烘干的质量,烘干后停放时间不宜过长,以免返潮。 (3)适当地提高浇注温度,浇注时缓慢平稳,保征型腔内原有气体来得及排出。 (4)铸型紧实度要适当,保持良好的透气性。同时还要开气冒口,扎气眼;泥芯要有通气道等。 (5)浇注系统的设置要合理,要考虑型腔内排气畅通及金属液平稳地流入铸型。 (6)合箱时要注意封死芯头间隙,以免铁水钻入而堵塞通气道。 (7)对于大平面铸件,最好采用倾斜浇注,出气孔处高势,以利排气。 (8)泥芯撑和冷铁必须干净无锈 (9)适当减少粘结剂,可附加一些透气性材料,如木屑等。 (10)可选用圆性砂粒,增加型砂的透气性。 析出气孔产生的原因是:气体在金属中的溶解度随温度下降而急剧减少。在熔炼过程中,金属吸收了较多的气体,而在冷却凝固过程中,析出的气体若不能排出型外,则留在铸件中成为气孔。因此,要尽量减少铁水在熔炼和浇注时的吸气和减少铁水的粘度,以便气泡上浮排除。其具体措施有: (1)使用干燥炉料,并限制含气量较多的回炉料的用量。对锈蚀严重成表面有油的炉料要经过热处理后再使用,对本身含气量高的炉料,应重熔再生后再使用。 (2)尽量减少炉料与炉气接触:在金属液表面复盖溶剂,采用快速熔炼工艺,严格控制风量和风压等。 (3)浇包要完全烘干。 (4)进行脱气处理:方法是加入合金不溶性气体,把溶于金属液中的气体带出。如炼钢中加铁矿石沸腾而除去氢气、氮气等。 (5)采用真空熔炼,以清除金属液中气体或使用金属液在压力下结品,使已溶于金属的气体未来得及析出就已凝固。 (6)增加型砂的透气性:紧实度要合适,扎气眼,水分适宜。 (7)适当提高浇注温度,以降低金属液枯度。让气体易于排除。 (8)炉缸、前炉和铁水包需烘干后再使用。 (9)浇注时要避免断流,从而做到连续浇注。 (10)浇注时,必须点火引气。 针状气孔小,细而长,如针状,主要由氢和氧生成。其中氢可能以分子状态存在,也可能以原子状态存在。以分子状态存在时,如钢中有足够的氧化亚铁,则氢与氧化亚铁中的氧化合而成水蒸气,这种水蒸气可以直接生成针孔,也可以作为针孔的核心,周围的氢向其扩散,聚集而长大,终于生成针孔。以原子状态存在时,则熔解于钢水(或铁水)中,随着温度下降,氢被析出,并迅速扩散,或扩散到已有核心处,聚集长大,或扩散到已有析出氧的地方,与氧化合而成水蒸汽,从而生成针孔。在所有情况下,氢的扩散都要受到相邻金属品粒的阻碍,被迫向细长方向发展而成为针状。氧多以分子状态存在,并

铝压铸件产生气孔的可能原因

铝压铸件产生气孔的可能原因(供参考) 一. 人的因素: 1. 脱模剂是否噴得太多? 因脱模济发气量大,用量过多时,浇注前未燃尽,使挥发气体被包在铸件表层。所以在同一条件下,某些工人操作时会产生较多的气孔的原因之一。 选用发气量小的脱模济,用量薄而均匀,燃净后合模。 2 未经常清理溢流槽和排气道? 3 开模是否过早? 是否对模具进行了预热?各部位是否慢慢均匀升温,使型腔、型芯表面温度为150℃~200℃。 4 刚开始模温低时生产的产品有无隔离? 5 如果无预热装置时是否使用铝合金料慢速推入型腔预热或用其它方法 加热? 6 是否取干净的铝液,有无将氧化层注入压室? 7 倒料时,是否将勺子靠近压室注入口,避免飞溅、氧化或卷入空气降 温等。 8 金属液一倒入压室,是否即进行压射,温度有无降低了?。 9 冷却与开模,是否根据不同的产品选择开模时间? 10 有无因怕铝液飞出(飞水),不敢采用正常压铸压力?更不敢偿试 适当增加比压。? 11 操作员有无严格遵守压铸工艺? 12 有无采用定量浇注?如何确定浇注量? 二. 机(设备、模具、工装)的因素: 主要是指模具质量、设备性能。 1 压铸模具设计是否合理,会否导致有气孔? 压铸模具方面的原因: 1.浇口位置的选择和导流形状是否不当,导致金属液进入型腔产生正面撞击和产生旋涡。(降低压射速度,避免涡流包气) 2.浇道形状有无设计不良? 3.内浇口速度有无太高,产生湍流? 4.排气是否不畅? 5.模具型腔位置是否太深? 6.机械加工余量是否太大?穿透了表面致密层,露出皮下气孔? 压铸件的机械切削加工余量应取得小一些,一般在0.5mm左右,既可减轻铸件重量、减少切削加工量以降低成本,又可避免皮下气孔露出。余量最好不要大于0.5mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。 2 排气孔是否被堵死,气排不出来? 3 冲头润滑剂是否太多,或被烧焦?这也是产生气体的来源之一。 4 浇口位置和导流形状,有无金属液先封闭分型面上的排溢系统? 5 内浇口位置是否不合理,通过内浇口后的金属立即撞击型壁、产生涡 流,气体被卷入金属流中? 6 排气道位置不对,造成排气条件不良?

铸造缺陷总结

铸造缺陷 一、孔眼类 气孔,缩松,缩孔,渣(脏)眼,砂眼,铁豆 气孔:在铸件内部、表面或近于表面处有大小不等的光滑孔眼,为白色或带一层暗色 缩松:在铸件内部聚集在一处或多处微小而不连贯的缩孔 缩孔:在铸件厚断面内部,两交界面的内部及厚断面和厚断面交接处的内部或表面,形状不规则,孔内粗糙不平 渣眼:孔眼形状不规则,不光滑、里面全部或局部充塞着渣 砂眼:在铸件内部或表面有充塞着型砂的孔眼 铁豆:是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。铁豆的特征是:孔眼比较规则、孔眼内包含着金属小珠、常发生在铸铁件上。 二、表面缺陷类 夹砂,粘砂,结疤,冷隔 夹砂:在铸件表面上,有一层金属瘤状或片状物。在金属瘤片和铸件之间夹有一层型砂 粘砂:在铸件表面上、全部或部分覆盖着金属(或金属氧化物)与砂(或涂料)的混合物(或化合物),或一层烧结的型砂·致使铸件表面粗糙 结疤:在铸件表面上,有金属夹杂或包含型砂或渣的片状或瘤状物 冷隔:在铸件上有一种未完全融合的缝隙或洼坑,其交接边缘是圆滑的 三、裂纹类 热裂,冷裂,温裂 热裂:铸件上有穿透或不穿透的裂纹,呈弯曲形,开裂处表面氧化 冷裂:铸件上有穿透或不穿透的裂纹,呈直线形,开裂处表面未氧化。 温裂:温裂又称热处理裂纹由切割、焊接或热处理不当引起。特征是:铸件上有穿透或不穿透的裂纹,开裂处金属表面氧化。 四、铸件形状、尺寸和重量不合格类 浇不足,落砂,抬箱,错箱,偏芯,变形,多肉,损伤,形状尺寸不合格 浇不足:由于金属液未完全充满型腔而产生的铸件缺肉 落砂:由于砂型或泥芯大块脱落产生的,铸件产生多肉或缺肉 抬箱:由于金属液的压力,使上下型分离而造成的铸件外形及尺寸与图样不符 错箱:铸件的一部分与另一部分在分型面上错开,发生相对的位移 偏芯:由于泥芯的位置发生了不应有的变化,而引起的铸件形状与尺寸与图样不符 变形:由收缩应力引起的铸件外形和尺寸与图样不符 损伤:在打箱、搬运或清理时,损坏了铸件的完整性 五、铸件成分组织性能不合格类 化学成分不合格,金相不合格,偏析,过硬,物理机械性能不合格 偏析:同一铸件上化学成分、金相组织和性能不一致,多发生在有色金属件和厚壁钢铸件上 过硬:(白口)铸件全部或局部过硬,有时断面呈白色,使铸件难以加工。多发生在铸铁件上 物理机械性能不合格:铸件的物理机械性能如强度、硬度、延伸率、冲击值以及耐热、耐磨、耐蚀等性能不合技术条件

铸铁件氮气孔产生的原因分析及特征

铸铁件氮气孔产生的原因分析及特征 特征:枝晶间裂隙状氮气孔 这种缺陷呈裂隙状多角形或断续裂纹状,跟其它的气孔类缺陷大不相同,从外观上看没有明显的气体痕迹,但能明显看到粗大的树枝晶,跟缩孔、缩松缺陷有点类似,所以在有些较厚大件上,经常被误认为是缩孔、缩松。值得一提的是,这种气孔在铸件断面上呈大面积分布,有的也分布在较大的平面处,在铸件最后凝固如冒口附近,热节中心最为密集,这类气孔常发生在同一炉或同一浇包浇注的全部或大部分铸件中。由于是在凝固过程晚期形成的,因而气孔孔洞形状不是圆球形的,而改变为多角形或枝晶间裂隙状的,这说明气泡生成及长大时,其周边被固体的枝晶壁所包围,而不能形成圆球形的气孔。 来源:液态金属所吸收的氮来自多种途径,主要有两大类,一是浇注前金属液本身所含的氮;二是树脂砂中所含的氮。 对于冲天炉熔炼的灰铸铁,炉料中的废钢是氮的重要来源,碱性电弧炉废钢,其含氮量可达 60ppm~140ppm,废钢多于35%,就有可能产生氮气孔,树脂砂中所含的氮来源于树脂及固化剂、再生砂中积累的氮、型砂中的含氮附加物及涂料中的氮沥青焦炭含氮量高,作为增碳剂使用时容易产生氮气孑L,必须引起高度重视。而电极电墨作为增碳剂,则由于其含氮量低而不容易发生氮气孑L。此外,在熔炼过程中即使加入含氮量高的增碳剂,如沥青焦炭,也只有在刚加入铁液时含氮量急剧增加,当铁液保温十多分钟后,含氮量逐渐恢复到加增碳剂前的水平。 机理: 用树脂砂生产铸铁件更容易产生氮气孔,这是因为当铁液浇人铸型后,含N的树脂受热分解出NH3,NH3又在金属液表面离解,NH3一[N]+3/2H2,[N]原子相当一部分进入铸型金属界面尚处于熔融

焊接的六大缺陷,产生原因、危害

焊接的六大缺陷,产生原因、危害、预防措施都在这了 一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。C、凹坑

凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。 防治措施:选用较小电流并配合合适的焊接速度,减小装配间隙,在焊缝背面加设垫板或药垫,使用脉冲焊,能有效地防止烧穿。 F、其他表面缺陷 (1)成形不良指焊缝的外观几何尺寸不符合要求。有焊缝超高,表面不光滑,以及焊缝过宽,焊缝向母材过渡不圆滑等。 (2)错边指两个工件在厚度方向上错开一定位置,它既可视作焊缝表面缺陷,又可视作装配成形缺陷。 (3)塌陷单面焊时由于输入热量过大,熔化金属过多而使液态金属向焊缝背面塌落, 成形后焊缝背面突起,正面下塌。 (4)表面气孔及弧坑缩孔。 (5)各种焊接变形如角变形、扭曲、波浪变形等都属于焊接缺陷O角变形也属于装配成形缺陷。 二、气孔和夹渣

球墨铸铁常见缺陷的分析与对策

球墨铸铁件常见缺陷的分析与对策 一、常见的缺陷及分析 球墨铸铁件常见缺陷的分析与对策 (1) 球铁是近40年来我国发展起来的重要铸造金属材料。由于球状石墨造成的应力集中小,对基体的割裂作用也较小,故球铁的抗拉强度,塑性和韧性均高于其他铸铁。与相应组织的钢相比,塑性低于钢,疲劳强度接近一般中碳钢,屈强比可达0 7~0 8,几乎是一般碳钢的2倍,而成本比钢低,因此其应用日趋广泛。当然,球铁也不是十全十美的,它除了会产生一般的铸造缺陷外,还会产生一些特有的缺陷,如缩松、夹渣、皮下气孔、球化不良及衰退等。这些缺陷影响铸件性能,使铸件废品率增高。为了防止这些缺陷的发生,有必要对其进行分析,总结出各种影响因素,提出防止措施,才能有效降低缺陷的产生,提高铸件的力学性能及生产效益。本文将讨论球铁件的主要常见缺陷:缩孔、缩松、夹渣、皮下气孔、石墨漂浮、球化不良及球化衰退。 1 缩孔缩松 1.1影响因素 (1)碳当量:提高碳量,增大了石墨化膨胀,可减少缩孔缩松。此外,提高碳当量还可提高球铁的流动性,有利于补缩。生产优质铸件的经验公式为C%+1/7Si%>3 9%。但提高碳当量时,不应使铸件产生石墨漂浮等其他缺陷。 (2)磷:铁液中含磷量偏高,使凝固范围扩大,同时低熔点磷共晶在最后凝固时得不到补给,以及使铸件外壳变弱,因此有增大缩孔、缩松产生的倾向。一般工厂控制含磷量小于0 08%。 (3)稀土和镁:稀土残余量过高会恶化石墨形状,降低球化率,因此稀土含量不宜太高。而镁又是一个强烈稳定碳化物的元素,阻碍石墨化。由此可见,残余镁量及残余稀土量会增加球铁的白口倾向,使石墨膨胀减小,故当它们的含量较高时,亦会增加缩孔、缩松倾向。 (4)壁厚:当铸件表面形成硬壳以后,内部的金属液温度越高,液态收缩就越大,则缩孔、缩松的容积不仅绝对值增加,其相对值也增加。另外,若壁厚变化太突然,孤立的厚断面得不到补缩,使产生缩孔缩松倾向增大。 (5)温度:浇注温度高,有利于补缩,但太高会增加液态收缩量,对消除缩孔、缩松不利,所以应根据具体情况合理选择浇注温度,一般以1300~1350℃为宜。 (6)砂型的紧实度:若砂型的紧实度太低或不均匀,以致浇注后在金属静压力或膨胀力的作用下,产生型腔扩大的现象,致使原来的金属不够补缩而导致铸件产生缩孔缩松。 (7)浇冒口及冷铁:若浇注系统、冒口和冷铁设置不当,不能保证金属液顺序凝固;另外,冒口的数量、大小以及与铸件的连接当否,将影响冒口的补缩效果。 1.2 防止措施 (1)控制铁液成分:保持较高的碳当量(>3 9%);尽量降低磷含量(<0 08%);降低残留镁量(<0 07%);采用稀土镁合金来处理,稀土氧化物残余量控制在0 02%~0 04%。 (2)工艺设计要确保铸件在凝固中能从冒口不断地补充高温金属液,冒口的尺寸和数量要适当,力求做到顺序凝固。 (3)必要时采用冷铁与补贴来改变铸件的温度分布,以利于顺序凝固。 (4)浇注温度应在1300~1350℃,一包铁液的浇注时间不应超过25min,以免产生球化衰退。 (5)提高砂型的紧实度,一般不低于90;撞砂均匀,含水率不宜过高,保证铸型有足够的刚度。 2 夹渣 2 .1 影响因素 (1)硅:硅的氧化物也是夹渣的主要组成部分,因此尽可能降低含硅量。 (2)硫:铁液中的硫化物是球铁件形成夹渣缺陷的主要原因之一。

浅谈铸件砂眼气孔缺陷及预防措施_杨建林

浅谈铸件砂眼气孔缺陷及预防措施 杨建林 上汽依维柯红岩商用有限公司铸造厂 摘要:本文介绍了用湿型砂生产铸钢件对预防砂眼、气孔的措施提供了宝贵的经验供同行参考。关键词:铸钢件砂眼气孔 铸件在生产过程中经常会发生各种不同的铸造缺陷,如何预防这些缺陷,一直是铸件生产厂家关注的问题。本文主要介绍了笔者在这方面的一些认识和实践经验。我车间主要采用传统湿型砂铸造工艺生产铸钢件,在长期的生产中,发现铸钢件主要出现以下铸造缺陷,砂眼,粘砂,气孔,缩孔,夹砂结疤,胀砂等等。现主要谈谈砂眼和气孔。 1 砂眼 2.1 特征 铸件上表面附近出现的形状不规则的,而且往往呈现紧实状态的型砂夹杂物。往往在铸件的毛坯面上就能看出砂眼来,但有的可能要在切削加工后才露出来。一般来说,铸件的其他部位上有大块的金属凸起物。此外,如上述的缺陷,还带有2~6毫米深的凹孔,这类凹孔又或多或少地露出铸件表面。且近邻处伴有夹砂。那么,这一缺陷总是与夹砂结疤同时发生。砂眼是一种常见的铸造缺陷,往往导致铸件报废。 2.2 缺陷原因 1) 砂型或砂芯上有砂块脱落; 2) 造型时不谨慎,散落砂落入型腔; 3) 冲砂或合型压坏; 4) 由于型砂膨胀,造成型壁表层脱落。2.3 砂眼的预防措施: (1) 严格控制型砂性能,提高砂型芯的表面强度和紧实度,减少毛刺和锐角,减少冲砂。 (2) 合箱前把型腔和砂芯表面的浮砂处理干净,平稳合箱,如果是明冒口或贯通出气眼,应避免散砂从中掉人型腔,合箱后要尽快浇注。 (3) 设置正确合理的浇冒系统,避免金属液对型壁和砂芯的冲刷力过大。 (4) 浇口杯表面要光滑,不能有浮砂。2 气孔 2.1 特征 在铸件内部,表面或近于表面处,有大小不等的光滑孔眼,形状有圆的,长的及不规则的,有单个的,也有聚集成片的。颜色有白色的或带一层暗色,有时覆有一层氧化皮。 2.2 缺陷原因: 气孔和针孔是由于在凝固过程中滞留在金属中的气体形成的。然而,除气孔之外,这些气体还可能引起其他缺陷。 1) 熔炼方面的原因 (1) 熔池中的液态金属含有大量气体,溶解的气体在凝固时析出; (2) 钢和铸铁件:碳和氧发生反应生成一氧化碳,并以气态或氧化物形式存在,一氧化碳形成的气孔可能因氢或氮的扩散而体积增加; 2) 造型或制芯材料产生气体 (1) 铸型或砂芯中水分过高 (2) 砂芯粘结剂的发气量大 (3) 含碳氢化物的附加量过多 (4) 涂料的发气量过大 3) 卷入的气体 (1) 型腔内的气体和空气未能及时排除 (2) 砂型和砂芯的透气性差 (3) 液态金属在浇注系统中产生紊流,卷入气体 2.3 气孔的预防措施: (1) 采用洁净干燥的炉料,限制含气量较多的炉料的使用,降低熔炼时金属的吸气量;浇包要烘干烫包;可以适当提高浇注温度以利于气体扩散。 (2) 浇注时控制好压头和速度,保证钢水平稳充填砂型型腔,避免产生紊流,防止卷入气体。 (3) 减少发气量,控制型(芯)砂水分及发气原料的含量,减少砂型在浇注过程中的发气量,不

气孔类别

本文从铝合金铸件气孔类别分析入手,指出铝合金铸件气孔可分为点状针孔、网状针孔、综合性针孔三类;氢是造成铝合金铸件针孔的主要原因,而氢的主要来源则是由于水蒸气分解所产生的。因此,铝合金在熔炼过程中造成水蒸气产生的原因,也就是直接影响针孔形成的主要因素。由于铝合金铸件气孔对铸件的品质尤其是对其力学性能产生不良的影响,作者在文中论述了铝合金铸件气孔形成的主要因素,并针对铝合金铸件气孔形成的主要因素提出了相应的预防措施,文章最后扼要总结了预防铝合金铸件针孔必须遵守的“防”、“排”、“溶”工艺原则。 引言: 在纯铝中加入一些金属或非金属元素所熔制的铝合金是一种新型的合金材料,由于其比重小,比强度高,具有良好的综合性能,因此被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器具制造等方面。随着国民经济的发展以及经济一体化进程的推进,其生产量和耗用量大有超过钢铁之势。 加强对铝合金材料性能的研究,保证铝合金铸件具有优良品质,既是我们每一个科技工作者义不容辞的责任,也是同我们的日常生活息息相关的头等大事。本文结合作者铝合金铸件生产实践经验谈谈铝合金铸件气孔与预防问题。 1.气孔类别 由于铝合金具有严重的氧化和吸气倾向,熔炼过程中又直接与炉气或外界大气相接触,因此,如熔炼过程中控制稍许不当,铝合金就很容易吸收气体而形成气孔,最常见的是针孔。针孔(gas porosity/pin-hole),通常是指铸件中小于1mm的析出性气孔,多呈圆形,不均匀分布在铸件整个断面上,特别是在铸件的厚大断面和冷却速度较小的部位。根据铝合金析出性气孔的分布和形状特征,针孔又可以分为三类①,即: (1) 点状针孔:在低倍组织中针孔呈圆点状,针孔轮廓清晰且互不连续,能数出每平方厘米面积上针孔的数目,并能测得出其直径。这种针孔容易与缩孔、缩松等予以区别开来。 (2) 网状针孔:在低倍组织中针孔密集相连成网状,有少数较大的孔洞,不便清查单位面积上针孔的数目,也难以测出针孔的直径大小。 (3) 综合性气孔:它是点状针孔和网状针孔的中间型,从低倍组织上看,大针孔较多,但不是圆点状,而呈多角形。 铝合金生产实践证明,铝合金因吸气而形成气孔的主要气体成分是氢气,并且其出现无一定的规律可循,往往是一个炉次的全部或多数铸件均存在有针孔现象;材料也不例外,各种成分的铝合金都容易产生针孔。 2.针孔的形成 铝合金在熔炼和浇注时,能吸收大量的氢气,冷却时则因溶解度的下降而不断析出。有的资料介绍②,铝合金中溶解的较多的氢,其溶解度随合金液温度的升高而增大,随温度的下降而减少,由液态转变成固态时,氢在铝合金中的溶解度下降19倍。(氢在纯铝中的溶解度与温度的关系见图1③)。因此铝合金液在冷却的凝固过程中,氢的某一时刻,氢的含量超过了其溶解度即以气泡的形式析出。因过饱和的氢析出而形成的氢气泡,来不及上浮排出的,就在凝固过程中形成细小、分散

球墨铸铁件的检验

球墨铸铁的检验 常见的球墨铸铁缺陷有:气孔,夹砂,夹渣,疏松或缩孔等宏观缺陷以及球化不良,晶粒过大等微观缺陷。 球墨铸铁的工序:铸造(造型-浇铸)-去砂-打磨-喷丸-检验。 铸造------型砂的要求是粘土和树脂砂混合。不能太干也不能太湿。太干造成模具不好脱落路,太湿容易脱落。型砂造型后,在内部表面要用涂沫剂烘干以避免铁水冲 击砂型而造成砂泥进入铸铁内部。烘干涂抹剂的方式一般采用点燃烘干(因为 涂抹剂中含有酒精)。有些砂型中会添加冷铁,冷铁的作用是加速冷却,减少 缩孔的产生。所以一般冷铁放在厚壁处。 浇铸------包子中的铁水通过过滤网过滤后进入砂型中。 喷丸------喷丸机的结构有吊抛和固定式。一般喷丸机有5-7个喷嘴,每个喷嘴连着一个马达,马达高速转动时会带动在边上的钢丸运动而加速抛向被检工件,然后通 过下面的钢丸收集装置把收集起来的钢丸送向各个马达口。 球墨铸件的检验包括外观检验,磁粉检验以及超声波检验。 其中外观检验是球墨铸铁中最繁重的工作,其中需要大量的打磨的配合。一般而言外观检验要求要达到以下几点: 1.无裂纹,无焊接,无表面非金属夹杂和加砂。 2. 表面清洁度:Sa 2.5 (可参考标准:ISO 8501-1) 2.表面粗糙度:A2或者其他 3.气孔:C2或者其他 4.冷隔:D1或者其他 5.机械划痕:H1或者其他 其中2-5的要求可根据英国铸造发展中心的SCRATA对比试块进行对比检验。 在外观检验中特别要注意的是表面气孔与表面砂眼的区别。表面气孔一般而言内壁光滑,较规则;而表面砂眼比较不规则,内部含有较多的灰尘或者其砂等非金属家杂物。如果表面凹处缺陷为气孔的话,可根据SCRATA试块进行对比检验;但如果判断为表面砂眼时,一般要进行打磨修补,因为大多数砂眼的根部还会向金属内部延伸。 外观检验时还要注意喷丸的效果,在喷丸效果不好时,会造成粗糙度达不到要求。铸件表面存留氧化皮,以及存留涂抹剂等较难打磨的大面积表面缺陷时,应该考虑进行重新喷丸或者打磨。因为这类缺陷会影响外观检验,特别容易产生表面砂泥的漏检。 磁粉检验,一般对球墨铸铁的磁粉检验用的是:荧光磁粉探伤,由于铸件表面本身的粗糙度不是很高,使用荧光磁粉探伤可以减少表面状态对探伤灵敏度的影响。我们做了一组对比试验,在有金属氧化物夹渣的位置,我们先用非荧光水基磁悬液加反差增强剂,然后用砂轮机打磨掉缺陷痕迹,直到最后没有缺陷痕迹。然后我们用荧光磁粉探伤,还是发现有大量的非金属夹渣物的磁痕存在。相对于油基磁悬液而言,水基磁悬液更加适合铸件表面的磁粉探伤。干磁粉同样适用于铸件的表面探伤。由于表面粗糙度对磁粉探伤的影响很大,在条件允许的情况下,可以先打磨表面以提高检测灵敏度。一般铸件的交冒口位置容易出现疏松或缩孔等缺陷,有时也会出现皮下气孔,所以在做磁粉探伤的时候要特别注意。其次还要注意冷铁的位置的检验,该位置也极易出现裂纹。此外还有试块切割的位置,由于有些工厂采用的是火焰切割而导致容易出现热裂纹。

焊缝气孔缺陷的形成原因及防治措施参考模板

焊缝气孔缺陷的形成原因及防治措施 姓名: 单位:丹东黄海汽车有限责任公司 地址:丹东黄海大街542号 电话:6273189 邮编:118000

目录 一摘要 (2) 二关键词 (2) 三前言 (3) 四 1、焊缝气孔的类型及形成条件 (3) 2、焊缝气孔的防治措施 (6) 五结束语 (10)

【摘要】焊接制造技术是一门理论性和实践性较强的综合性技术。论述焊缝气孔缺陷的类型及形成条件,如何限制 熔池溶入或产生气体以及排除熔池中存在的气体,选 用与母材匹配的焊接材料,制定并控制焊接工艺条 件,可以有效的控制焊接工程中的气孔缺陷的产生。【关键词】气孔;气孔类型;防治措施;工艺条件

焊缝气孔缺陷的形成原因及防治措施 高强 前言 焊接制造技术是一门理论性和实践性较强的综合性技术,焊接施工中焊接质量始终与缺陷有联系,焊接缺陷往往影响焊接产品的质量。严重的会造成焊接件报废,所以须根据焊接连接特点来分析焊接过程中缺陷出现的条件及防治对策。防治焊接缺陷首要的条件是掌握缺陷的形成条件及其影响因素,以制定合理的焊接工艺,并在生产制造中严格工艺要求,认真贯彻执行。 焊缝气孔是典型的焊接冶金缺陷,气体的存在是形成气孔的先决条件。形成气孔的气体有二类:来自外部的溶解度有限的气体(H、N)和熔池内产生的冶金反应产物(CO、H20等)。焊接熔池吸收的气体因过饱和以致形成气泡,又不能及时排除而残留于焊缝之中,即为气孔。1.焊缝气孔的类型及形成条件。 1.1气孔形成的一般条件气孔的形成必然与气体有联系。气孔实质是在金属凝固期间未能及时浮出而残留于金属中的气泡。气泡的形成包括形核与稳定成长两个过程,其稳定存在的条件为:

气孔形成的原因

气孔形成的原因及解决的措施 杨群收汇编在工厂的生产实践中,人们对气孔的叫法不一样。有的叫气眼、气泡、气窝,丛生气孔,划为一体统称为“气孔”。 气孔是铸件最常见的缺陷之一。在铸件废品中,气孔缺陷占很大比例,特别是在湿模砂铸造生产中,此类缺陷更为常见,有时会引起成批报废。球墨铸铁更为严重。气孔是在铸件成型过程中形成的,形成的原因比较复杂,有物理作用,也有化学作用,有时还是两者综合作用的产物。有些气孔的形成机理尚无统一认识,因为其形成的原因可能是多方面的。 各类合金铸件,产生气孔缺陷有其共性,但又都是在特定条件下生成的,因此又都具有特殊性。所以要从共性中分析产生气孔的一般规律,也要研究特性中的特有规律,以便采取有效的针对性措施,防止气孔缺陷的产生。 一、气孔的特征 气孔大部分产生在铸件的内表面或内部、砂芯面以及靠近芯撑的地方。形状有圆形的、长方形的以及不规则形状,直径有大的、小的也有似针状丛生孔形。气孔通常具有干净而光滑的内孔面,有时被一层氧化皮所覆盖。光滑的孔内颜色一般是白色,或带有一层暗蓝色,有的气孔内壁还有一个或几个小铁豆豆,常把这种气孔称作“铁豆气孔”。距铸件表面很近的气孔,又叫“皮下气孔”,往往通过热处理、清滚或者机械加工后才被发现。还有一种常见

的气孔,叫做“气缩孔”,是气体和铸件凝固时的收缩而共同促使其产生的,形状又有其特殊性。铸钢和高牌号铸铁都常出这种名称的缺陷,但形成的机理有所差异。 气孔和缩孔是可以区别开的,一般说来气孔是圆形或梨形的孔洞,内壁光滑。而不像缩孔那样内表面比较粗糙。 二、气体的来源 各类铸造合金在熔炼及成型过程中,总要和气体相接触的,气体就会进入并以各种形式存在于合金中,气体来源是多方面的,归纳起来,主要来自以下几个方面: 1、原材料带进的。各种铁类、铁合金、燃料、熔剂等,自身就含有气体,有的带有雨雪潮湿,有的锈蚀,有的带有浊污,在熔炼过程中都有可能产生气体,其中一部分就会滞留在合金液中。有人提出:炉料上带的雨水、雪湿、浊污随炉料进入炉内,在炉料还是固态仅发红时,它们就已蒸发或烧掉,怎么会留存在铁水里呢?在资料里,用语言详细解释的不多,但在实践中,只要炉料(生铁、废钢、回炉料)受雨雪淋湿,湿着入炉,铁水一定会氧化,这确是事实。潮湿炉料在炉内的变化是无法看到的,但是废钢、生铁夏天被雨淋后,其表面很快就会有一层黄色的锈,这则是常见的!这层黄色的锈就是铁氧化的象征。 [Fe]+[H2O]——[FeO]+2[H]↑ 另外我们还会常见到这种现象,露天堆放的生铁、废钢经雨雪淋后,冬天生锈发黄的时间慢,夏天生锈发黄的时间快,夏天经雨淋后

球墨铸铁缺陷分析

大批量生产球墨铸铁金相缺陷分析及其对策 李明宽 摘 要:通过对石墨变异的各种特征的观察,分析形成缺陷的原因,提出防止缺陷产生的措施,有效地控制和减少 废品的产生,提高了铸件合格率。 关键词:蠕虫状石墨 爆炸性石墨 粗短型石墨 钉状石墨 石墨漂浮 表面片状石墨 列队石墨球 铸造缺陷 1. 问题的提出 在大批量球铁生产中,往往因过程及原材料等原因,会使铸件产生各种金相组织缺陷,从而影响铸件的内在质量,降低铸件的力学性能。笔者就多年来在球铁金相分析中所观察到的蠕虫状石墨、爆炸性石墨、粗短型石墨、钉状石墨、石墨漂浮、表面片状石墨和列队石墨球七种缺陷并作相应的分析,提出防止缺陷产生的办法,以减少废品,提高铸件合格率。 2. 蠕虫状石墨 (1) 特征 短而粗、呈卷曲的厚片状端部较钝常与球状石墨联结在一起。如图 1 图1 QT450-12球铁蠕虫状石墨显微组织 100× (2) 原因分析 形成蠕虫状石墨的主要原因是球化反应时中间合金数量不够所造成A 合金加 入量少;B 球化剂数量合适,但铁水中含硫量高;C 铁水被氧化致使镁量烧损而造成球化剂含量不足,D 温度过高或停留时间过长,E 铁水中钛和铝过量等原因。 (3) 生产中防止蠕虫状石墨应采取的措施 A 球化剂要有足够的加入量;B 在球化处理时,应尽量防止镁的烧损,提高球化剂吸收率;C 严格控制原铁水含硫量,应选用低硫生铁;C 铁水温度应控制在工艺要求范围内(1510±10℃),铁水温度过高会产生球化剂烧损过多,缩短浇注时间,D 钛含量控制在≤0.05%,铝含量≤0.06%。 3. 爆炸性石墨 (1) 特征 爆炸性石墨由球状石墨爆裂而成,外形如花瓣,常出现在强过共晶球铁中,在厚大断面或石墨飘浮区内。如图 图2 QT450-10球铁中爆炸性石墨 100× (2) 原因分析 产生爆炸性石墨的主要原因为:A 碳硅当量过高(碳当量>4.6%,B 稀土量过多,尤其是中频炉熔炼。 (3) 防止爆炸性石墨应采取的措施 A 严格控制碳硅当量,碳不应超过3.8%,硅不应超过3%,厚大铸件的碳硅量应更低;B 加入少量强烈阻止石墨化的元素,如加入钼可防止爆炸性石墨;C 严格控制稀土元素残留量。 4. 粗短型石墨 (1) 特征 粗短型石墨呈现粗短的条状形常出现在厚大断面的中心或铸件的热节处.如图 3 图3 QT450-10球铁粗短型石墨 100×

压铸件气孔的成因和解决办法

压铸件气孔的成因和解决办法 铝压铸是将铝液快速高压充填到模具型腔的铸造。铝液充填压铸模型腔的时间极短,一般为百分之几秒或千分之几秒。压铸过程中形成的气孔有光滑的表面,形状多为圆形或椭圆形,其多存在于铸件的表面或皮下针孔,也可能在铸件内部。气孔的来源主要为压铸过程中卷入的气体或铝液析气。 一、压铸过程中卷气。 1、压铸机压铸现在基本上采取三级压射,在第一级压射时,压射冲头以较慢的速度推进(通常在0.3m/s以内),这有利于将压室中的气体挤出;第二级压射则是按压铸件的结构、壁厚选择适当的流速,内浇口速度极快(一般冲头速度为1~6m/s,薄壁件、高气密性件、镁合金件有可能达到8m/s以上的速度),将铝液把型腔基本充满。这一级是压铸件产生气孔的关键,速度越高越易产生涡流而形成气孔。这一过程里,控制压铸件气孔主要通过控制一、二级压射速度和一、二级切换点来实现。一、二级速度尽量低一点(但太低会影响铸件成型或表面质量,要根据实际情况而定);二级压射的起点可选择在不允许有铸件气孔的部位之后,不同的铸件我们可选择不同的起点。同时随着压铸机射出速度、增压建压时间、提速时间等工作性能的不断提高和完善,铸件气孔将会越来越少。 2、一套好的压铸模应具备良好的浇注系统、排溢系统。在压铸过程中要尽量使多股浇道,铝液流与铸件方向保持一致,尽量不互相碰撞而产生涡流及因充填混乱造成卷气;另外使多股浇道充填型腔要注意做到同时填充,不能让一股或几股铝液先到最后端死角后再返回产生涡流。压铸模上的集渣包和排气道分布要合理。 3、压铸模具的温度对铸件的质量和气孔也有着关键的影响。当模温过高时,脱模剂在高温下挥发不能形成致密的皮膜,易造成粘膜;而模温过低,则脱模剂形成的皮膜有未挥发的水分,使脱模效果差,导致铸件气孔。通常模具预热温度为150℃~180℃,工作保持温度为220℃~280℃。 4、涂料产生的气体 a、首先是涂料的性能:挥发点太高,发气量大对铸件气孔有直接影响。 b、从喷涂工艺上看:喷涂使用量过多,喷涂时间过长,易造成气体挥发量大,还会使模具表面温度过低,模具表面水气一时无法蒸发,合模后型腔产生大量气体。生产过程中我们要选择性能好的涂料,挥发点要低,产生气体量要小。 5、最后由于压铸的特点是以很快的速度充填型腔,铝液在模具内快速凝固形成产品,所以铸件内部一定会有因铝液卷气产生的气孔。但铸件表层也会因快速凝固形成细晶粒的致密层,这些细晶粒具有较高的机械性能,只要铸件的加工余量尽量小一点,铸件的物理性能也可以得到保证。过大的加工余量就会把表面致密层加工掉,从而引起内部气孔暴露,铸件的物理性能降低。 下面举例说说我们生产的铝不粘锅的工艺: 1、产品名称:铝不粘锅,铸件轮廓尺寸为Φ250×180的圆锅,壁厚2.5mm。 2、材料:ADC12。 3、压铸机:650T。 4、产品要求:表面质量要求光滑,需在430℃高温下进行特氟隆处理,如果铸件有气孔,表面会鼓包,因此铸件不能有气孔、缩松、夹杂。

铸钢件常见铸造缺陷及预防措施

铸钢件常见铸造缺陷及预防措施 铸钢件在生产过程中经常会发生各种不同的铸造缺陷,如何预防这些缺陷,一直是铸件生产厂家关注的问题。本文主要介绍了笔者在这方面的一些认识和实践经验。 我车间主要采用传统湿型砂铸造工艺生产铸钢件,在长期的生产中,发现铸钢件主要出现以下铸造缺陷,砂眼,粘砂,气孔,缩孔,夹砂结疤,胀砂等等。 1.砂眼及其预防措施 砂眼缺陷处内部或表面有充塞着型(芯)砂的小孔,砂眼是一种常见的铸造缺陷,往往导致铸件报废。砂眼是由于金属液从砂型型腔表面冲下来的砂粒(块),或者在造型,合箱操作中落人型腔中的砂粒(块)来不及浮入浇冒系统,留在铸件内部或表面而造成的。 砂眼的预防措施: 1.1严格控制型砂性能,提高砂型芯的表面强度和紧实度,减少毛刺和锐角,减少冲砂。 1.2合箱前把型腔和砂芯表面的浮砂处理干净,平稳合箱,如果是明冒口或贯通出气眼,应避免散砂从中掉人型腔,合箱后要尽快浇注。 1.3设置正确合理的浇冒系统,避免金属液对型壁和砂芯的冲刷力过大。 1.4浇口杯表面要光滑,不能有浮砂。 2.粘砂及其预防措施 在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙,难于清理。粘砂多发生在型、芯表面受热作用强烈的部位,分机械粘砂和化学粘砂两种。机械粘砂是由金属液渗入铸型表面的微孔中形成的,当渗入深度小于砂粒半径时,铸件不形成粘砂,只是表面粗糙,当渗入深度大于砂粒半径时,就形成机械粘砂,化学粘砂是金属氧化物和造型材料相互进行化学作用的产物,与铸件牢固地结合在一起而形成的。 粘砂的预防措施: 2.1选用耐火度高的砂,以提高型砂,芯砂的耐火度,原砂的SiO2含量在96%(质量分数)以上,而且砂粒应对粗些。铸钢件的浇注温度越高,壁厚越厚,对原砂中SiO2含量的要求越高。

浅析焊缝气孔缺陷的主要成因及防治措施

浅析焊缝气孔缺陷的主要成因及防治措施 焊接制造技术具有比较强的理论性、综合性和实践性。本文在简要分析焊缝气孔的类型以及缺陷主要成因的基础上,着重论述了焊缝气孔缺陷的主要防治措施。 标签:气孔类型;缺陷;成因;防治措施 焊接制造实际上是一门实践性、理论性和综合性都比较强的技术,而在焊接过程中出现的缺陷会对整个焊接质量造成很大的影响,严重时甚至会致使焊接件直接报废。因此,要正确分析好造成缺陷的主要原因,并根据这些原因采取有效的防治措施。目前在金属的焊接过程中最常出现的就是焊缝气孔这一缺陷,而这一缺陷主要是由两种情况造成的:一是在熔池内产生的一氧化碳和和水等冶金反应产物;二是氢气和氮气等来自外部的溶解度非常有限的气体。气泡主要是由于焊接的熔池里面吸收的气体出现饱和而形成,而这些气泡因为在焊接过程中不能及时地排出去而残留在焊缝里面,最终形成了气孔缺陷。 1 焊缝气孔的类型 焊缝气孔会根据不同的特征分为不同的类型。例如,根据气孔的分布区域可以把它们分为匀布状气孔和孤立气孔;再比如,根据气孔的形态的不同又可以把它们分为条形气孔和球形气孔。而本文在此主要是根据它的气体类型的联系进行区分的,具体可分为应用型气孔和反应型气孔。 2 焊缝气孔的形成原因 气孔的形成主要是由于气体的存在造成的,这两者具有了必然的联系。而气孔实际上就是气泡在金属凝固的时候不能及时排除而残留在金属中造成的。而形成气泡的过程主要包括两个方面,即形核和稳定成长。而在这两个过程中,焊缝最终是否会形成气孔,主要是由金属凝固速度和气孔的逸出速度两者间的对比关系所决定的,并且当气泡逸出的速度小于金属的凝固速度时,焊缝就会比较容易产生气孔。而影响这两者的速度比例的具体又可以分为以下这些因素。 2.1 影响气泡浮出速度的因素 2.1.1 气泡的尺寸 气泡尺寸的大小会影响气泡的浮出速度进而影响到焊缝气孔的产生。气泡的半径越大,则气体浮出的速度就会变快。也就是说,当原始的气体数量很多却可以让气泡的半径不断增大直至完全逸出的时候,产生气泡的可能性相对会比较小,而当原始气体的数量很少无法增大气泡的半径时,那么产生气孔的可能性反而比较大。例如,刚被涂压过后但还没有被烘干的焊条,在进行焊接的时候焊缝产生气孔的可能性很小,而在烘干这道程序上,如果没有完全烘干,则焊缝很容

铸造铸件常见缺陷分析

铸造铸件常见缺陷分析 工艺过程复杂,影响铸件质量的因素很多,常见的铸件缺陷名称、特征和产生的原因,见表。 1

常见铸件缺陷及产生原因 缺陷名称特征产生的主要原因 气孔 在内部或表面 有大小不等的 光滑孔洞①炉料不干或含氧化物、杂质多;②浇注工具或炉前添加剂未烘干;③型砂含水过多或起模和修型时刷水过多;④型芯烘干不充分或型芯通气孔被堵塞;⑤春砂过紧,型砂透气性差;⑥浇注温度过低或浇注速度太快等 缩孔与缩松缩孔多分布在 铸件厚断面 处,形状不规 则,孔内粗糙①铸件结构设计不合理,如壁厚相差过大,厚壁处未放冒口或冷铁;②浇注系统和冒口的位置不对; ③浇注温度太高;④合金化学成分不合格,收缩率过大,冒口太小或太少 2

砂眼 在铸件内部或 表面有型砂充 塞的孔眼①型砂强度太低或砂型和型芯的紧实度不够,故型砂被金属液冲入型腔;②合箱时砂型局部损坏;③浇注系统不合理,内浇口方向不对,金属液冲坏了砂型;④合箱时型腔或浇口内散砂未清理干净 粘砂铸件表面粗 糙,粘有一层 砂粒①原砂耐火度低或颗粒度太大;②型砂含泥量过高,耐火度下降;③浇注温度太高;④湿型铸造时型砂中煤粉含量太少;⑤干型铸造时铸型未刷涂斜或涂料太薄 夹砂铸件表面产生 的金属片状突 起物,在金属 片状突起物与 铸件之间夹有①型砂热湿拉强度低,型腔表面受热烘烤而膨胀开裂;②砂型局部紧实度过高,水分过多,水分烘干后型腔表面开裂;③浇注位置选择不当,型腔表面长时间受高温铁水烘烤而膨胀开裂;④浇注温度过高,浇注速度太慢 3

一层型砂 错型铸件沿分型面 有相对位置错 移①模样的上半模和下半模未对准;②合箱时,上下砂箱错位;③上下砂箱未夹紧或上箱未加足够压铁,浇注时产生错箱 冷隔铸件上有未完 全融合的缝隙或洼坑,其交接处是圆滑的①浇注温度太低,合金流动性差;②浇注速度太慢或浇注中有断流;③浇注系统位置开设不当或内浇道横截面积太小;④铸件壁太薄;⑤直浇道(含浇口杯)高度不够;⑥浇注时金属量不够,型腔未充满 浇不足 铸件未被浇满 裂纹铸件开裂,开 裂处金属表面①铸件结构设计不合理,壁厚相差太大,冷却不均匀;②砂型和型芯的退让性差,或春砂过紧;③落 4

相关主题
文本预览
相关文档 最新文档