当前位置:文档之家› 关于利用卷积和求离散时间线性时不变系统零状态响应的通俗理解

关于利用卷积和求离散时间线性时不变系统零状态响应的通俗理解

关于利用卷积和求离散时间线性时不变系统零状态响应的通俗理解

关于利用卷积和求离散时间线性时不变系统零状态响应的通俗理解一直被卷积的神秘面纱所困扰,尤其是用于求线性时不变系统的响应时更是抽象难懂。对于其概念的理解如今总算有了一点清晰的眉目,写出来,有不对的地方还望大家指正。

已知一个线性时不变系统的输入,要求该输入的响应,卷积的思想是把这个输入表示成一系列单位冲击信号经过加权后的线性组合,再利用系统的线性性和时不变性求其总的响应。对于离散信号而言,为了刻画一个线性时不变系统,假设有一种这样的投资模式:一个人在某一天投入了一个单位的资金,在接下来的三天时间里(从他投入资金的那天算起,该天称为0时刻),该投资模式规定他所能得到的单天利润分别是他投资额度的1倍,2倍,3倍(这相当于单位冲击响应)该投资模式还规定没有投资就没有利润(因果性),有投资就按规定的额度成比例地不变地进行利润支付(线性性和时不变性),且一天只能有一个人投资。为了得到一个离散的输入信号,假设一共只有4位投资人,分别在某一个月的1号到4号进行投资,且投资额度分别为2个单位,1个单位,2个单位,2个单位,之后再也没有人投资了。现在要求该投资模式在每一天能为各位投资人产生的总利润,即该线性时不变系统对4位投资人的投资这一离散时间信号的输出。

针对上述所输入的离散时间信号,首先,可以确定的是在1号之前和6号之后一定没有利润产生,更一般的解释就是,从输入离散信号的最后一个值以后的第三天(含第三天)起,这种投资模式就不会有任何的利润产生了。然后,再谈从1号到6号这6天时间里,这种投资模式在每天产生的单天总利润。一种普遍的思维方式就是以人为核心,把每位投资人在这6天所应得到的利润对应地加起来。而卷积的思想不是以人为核心,而是以某一天为核心,即:针对具体的某一天,这天的总利润值是这天之前的输入(包含当天)在这天的输出值的总和。拿上述投资模式而论,根据投资人的投资方式,这种投资模式在3号所能产生的总利润由三部分组成,①第1个投资人在3号应该得到的利润,②第2个投资人在3号应该得到的利润,③第3个投资人在3号应该得到的利润。那么第4个投资人呢?因为他还没有投资,根据规定他在这3天还没有利润可得。有两个关键字值得关注,“这天之前的输入”和“在这天的输出”。对这两个关键字的理解是:因为一般考虑因果系统,所以某一时刻的输入只会对该时刻以后的输出有贡献,而不会对之前的输出有影响,正如第4个投资人的投资对前面3天的利润总和没有贡献一样。而对于“在这天的输出“因为系统一般都存在有一定的惯性,不会对一个输入做瞬时的响应,因此一个时刻的输入会影响”多个时刻“的输出,这具体决定于系统本身的特性。

再仔细考虑该投资模式下具体某一天的总利润的计算方法,以5号的总利润为例,它的求法是:第4位投资人在他投资后的第1天得到单天利润,第3位投资人在他投资后的第2天得到单天利润,第2位投资人在他投资后的第3天得到单天利润,第1位投资人在他投资后的第4天得到单天利润这四者之和。这种计算方法相当于把投资模式规定的利润额度的图像表示(单位冲击响应的图像)进行翻转,然后再进行时移,要求第几天的利润总和,则向右平移几个单位。然后让时移后的信号与输入信号在对应时刻的值相乘后再相加,则得到该时刻的输出值,对每一个时刻都按照此方法计算则可以得到响应的图像表示。因此,可以理解为什么在卷积运算时要把一个信号做翻转然后再进行时移了。

自动控制原理例题详解线性离散控制系统的分析与设计考习题及答案

精心整理 ----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3 4.(x()∞5.(5解:(G 6.(5试用Z 解:二、( (i X s ) z 图1 1.(5分)试求系统的闭环脉冲传递函数 () () o i X z X z ; 2.(5分)试判断系统稳定的K 值范围。

解:1.101 1 1 1 11 1()(1)(1)11(1)1(1)()1e 11e 1e G G z z Z s s z Z s s z z z z z z z e z -------??=-??+????=--??+?? =-----=---= -1 1 010******* 1e ()()e 1e ()1()1e (1e )(e )(1e )(1e )e e o i K X z KG G z z X z KG G z K z K z K K z K K ------------== -++--=-+--=-+- 2.(5 三、(8 已知(z)1Φ=1.(3分)简述离散系统与连续系统的主要区别。 解:连续系统中,所有信号均为时间的连续函数;离散系统含有时间离散信号。 2.(3分)简述线性定常离散系统的脉冲传递函数的定义。 解:在系统输入端具有采样开关,初始条件为零时,系统输出信号的Z 变换与输入信号的Z 变换之比。 3.(3分)简述判断线性定常离散系统稳定性的充要条件。 解:稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(5分)设开环离散系统如图所示,试求开环脉冲传递函数)(z G 。

离散时间LTI系统分析讲义-学生

实验四 离散时间LTI 系统分析 实验目的 ● 学会运用MATLAB 求解离散时间系统的零状态响应; ● 学会运用MATLAB 求解离散时间系统的单位冲激响应; ● 学会运用MATLAB 求解离散时间系统的卷积和。 ● 学会运用MATLAB 求离散时间信号的z 变换和z 反变换; ● 学会运用MATLAB 分析离散时间系统的系统函数的零极点; ● 学会运用MATLAB 分析系统函数的零极点分布与其时域特性的关系; ● 学会运用MATLAB 进行离散时间系统的频率特性分析。 实验原理及实例分析 1 离散时间系统的响应 离散时间LTI 系统可用线性常系数差分方程来描述,即 ∑∑==-=-M j j N i i j n x b i n y a 0 )()( (1) 其中,i a (0=i ,1,…,N )和j b (0=j ,1,…,M )为实常数。 MATLAB 中函数filter 可对式(1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。函数filter 的语句格式为 y=filter(b,a,x) 其中,x 为输入的离散序列;y 为输出的离散序列;y 的长度与x 的长度一样;b 与a 分别为差分方程右端与左端的系数向量。 【实例1】 已知某LTI 系统的差分方程为 )1(2)()2(2)1(4)(3-+=-+--n x n x n y n y n y 试用MATLAB 命令绘出当激励信号为)()2/1()(n u n x n =时,该系统的零状态响应。 解:MATLAB 源程序为 >>a=[3 -4 2]; >>b=[1 2]; >>n=0:30; >>x=(1/2).^n; >>y=filter(b,a,x); >>stem(n,y,'fill'),grid on

自动控制原理例题详解-线性离散控制系统的分析与设计考试题及答案

----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(* t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3分)简述线性定常离散系统稳定性的定义及充要条件。 解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称系统稳定。稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(3分)已知X(z)如下,试用终值定理计算x (∞)。 ) 5.0)(1()(2+--= z z z z z X 解: 经过验证(1)X()z z -满足终值定理使用的条件,因此, 211x()lim(1)X()lim 20.5 z z z z z z z →→∞=-==-+。 5.(5分)已知采样周期T =1秒,计算G (z ) = Z [G h (s )G 0(s ) ]。 ) 2)(1(1 e 1)()()(0++-==-s s s s G s G s G Ts h 解:11 1 1211 11(1)(1e )()(1)Z[](1)()s s 11e (1e )e z z z G z z z z z z z --------=--=--=+---++ 6.(5分) 已知系统差分方程、初始状态如下: )k (1)(8)1(6)2(=++-+k c k c k c ,c(0)=c(1)=0。 试用Z 变换法计算输出序列c (k ),k ≥ 0。 解: 22 ()6()8()() ()(1)(68)3(1)2(2)6(4)1 (){2324},0 6 k k z C z C z C z R z z z z z C z z z z z z z c k k -+===-+--+---=-?+≥ 二、(10分)已知计算机控制系统如图1所示,采用数字比例控制() D z K =, 其中K >0。设采样周期T =1s ,368.0e 1=-。

离散时间信号的产生及信号的卷积和运算实验报告2

离散时间信号的产生及信号的卷积和运算 实验报告 班级:___________ 姓名:__________ 学号:____________ 一、实验目的和原理 实验原理: (一)DTFT 和DFT 的定义及其相互关系: 序列x[n] 的DTFT 定义:∑=∞ -∞ =-n jn ωj ω x[n]e )X(e 它是关于自变量ω的复函数,且是以π2为周期的连续函数。)X(e j ω 可以表示为: )(e jX )(e X )X(e j ωim j ωre j ω+= 其中,)(e X j ω re 和)(e X j ωim 分别是)X(e j ω的实部和虚部;还可以表示为: )(ωj j ωj ωe )X(e )X(e θ= 其中,)X(e j ω 和}arg{)()X(e j ω=ωθ分别是)X(e j ω的幅度函数和相位函数; 它们都是ω的实函数,也是以π2为周期的周期函数。 序列x[n]的N 点DFT 定义: ∑∑-=-=-===10 1 22][][)(][N n kn N N n kn N j k N j W n x e n x e X k X ππ ][k X 是周期为N 的序列。 )X(e j ω与][k X 的关系:][k X 是对)X(e j ω在一个周期中的谱的等间隔N 点采样,即: k N j ω)X(e k X πω2| ][= =, 而)X(e j ω 可以通过对][k X 内插获得,即:

]2/)1)][(/2([1 ) 22sin() 22sin( ] [1----=?--= ∑N N k j N k j ω e N k N k N k X N )X(e πωπωπω (二) 线性时不变离散时间系统的变换域表示: LTI 离散时间系统的时域差分方程为: ∑∑==-=-M k k N k k k n x p k n y d )()( (1) 传递函数: 对上面的差分方程两边求z 变换,得: ∑∑∑∑=-=-=-=-=? =N k k k M k k k M k k k N k k k z d z p z X z Y z p z X z d z Y 0 00 ) () ()()( 我们定义LTI 离散时间系统的输出的Z 变换Y(z)与输入的Z 变换X(z)的比值为该系统的传递函数,即) () ()(z X z Y z H = 为系统的传递函数。 N N M M z d z d d z p z p p z D z p z H ----++++++= =......)()()(110110 分解因式 ∏-∏-=∑∑= =-=-=-=-N i i M i i N i i k M i i k z z K z d z p z H 11 11 0)1()1()(λξ ,其中i ξ和i λ称为零、极点。 利用系统的传递函数)(z H ,我们可以分析系统的零极点,稳定性及实现结构等特点。 (2) 频率响应: 因为大多数离散时间信号都可以分解为n j e ω的线性组合,所以研究输入n j e ω-的响应具有极大的意义,即当输入为n j e n x ω=][时,输出为: )()()(][) (ωωωωωj n j m m j n j m n j m e H e e m h e e m h n y === ∑∑∞ -∞ =--∞ -∞ = 这里,∑∞-∞ =-= n n j j e n h e H ωω )()(是h(n)的DTFT ,称为LTI 离散时间系统的频率

离散系统的响应

§3.1LTI离散系统的响应 ?差分与差分方程 ?差分方程的经典解 ?零输入响应 ?零状态响应 通信与信息工程学院江帆

一、差分与差分方程 设有序列f(k),则…,f(k+2),f(k+1),…,f(k-1),f(k-2),…等称为f(k)的移位序列。 仿照连续信号的微分运算,定义离散信号的差分运算。 1. 差分运算 t t t f t f t t f t t f t t f t t f t t t ΔΔ??=Δ?Δ+=ΔΔ=→Δ→Δ→Δ)()(lim )()(lim )(lim d )(d 000离散信号的变化率有两种表示形式: k k k f k f k k f ?+?+=ΔΔ)1()()1()()1()1()()(????=??k k k f k f k k f

因此,可定义: (1)一阶前向差分定义:Δf(k) = f(k+1) –f(k) (2)一阶后向差分定义:?f(k) = f(k) –f(k –1) 式中,Δ和?称为差分算子,无原则区别。本书主要用后向差分,简称为差分。 (3)差分的线性性质: ?[af1(k) + bf2(k)] = a ?f1(k) + b ?f2(k) (4)二阶差分定义: ?2f(k) = ?[?f(k)] = ?[f(k) –f(k-1)] = ?f(k) –?f(k-1) = f(k)–f(k-1) –[f(k-1) –f(k-2)]= f(k) –2 f(k-1) +f(k-2)(5)m阶差分: ?m f(k) = f(k) + b1f(k-1) +…+ b m f(k-m)

2. 差分方程 包含未知序列y(k)及其各阶差分的方程式称为差分方程。将差分展开为移位序列,得一般形式 y(k) + a n-1y(k-1) +…+ a y(k-n) = b m f(k)+…+ b f(k-m) 差分方程本质上是递推的代数方程,若已知初始条件和激励,利用迭代法可求得其数值解。 例3-1-1:若描述某系统的差分方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知初始条件y(0)=0,y(1)=2,激励f(k)=2kε(k),求y(k)。 y(k) = –3y(k –1) –2y(k –2) + f(k) y(2)= –3y(1) –2y(0) + f(2) = –2 y(3)= –3y(2) –2y(1) + f(3) = 10 …… 注:一般不易得到解析形式的(闭合)解。

实验二_连续和离散时间LTI系统的响应及卷积

实验二 连续和离散时间LTI 系统的响应及卷积 一、实验目的 掌握利用Matlab 工具箱求解连续时间系统的冲激响应、阶跃响应,离散时间系统的单位样值响应,理解卷积概念。 二、实验内容 1、连续时间系统的冲击响应、阶跃响应 a. 利用impulse 函数画出教材P44例2-15: LTI 系统 ()3()2()dy t y t x t dt +=的冲击响应的波形。 a=[ 1 3]; >> b=[2]; >> impulse(b,a); b. 利用step 函数画出教材P45例2-17: LTI 系统 1''()3'()2()'()2()2 y t y t y t x t x t ++=+的阶跃响应的波形。 a=[1 3 2]; >> b=[0.5 2]; >> step(b,a)

2、离散时间系统的单位样值响应 利用impz函数画出教材P48例2-21: --+---=的单位样值响应的图形。 []3[1]3[2][3][] y n y n y n y n x n a=[1 -3 3 -1]; >> b=[1]; >> impz(b,a) 3、连续时间信号卷积 画出函数f1(t)=(1+t)[u(t)-u(t-1)]和f2(t)=u(t-1)-u(t-2)的图形,并利用附在后面的sconv.m函数画出卷积积分f1(t)* f2(t)图形。 t=-1:0.01:3; f1=(1+t).*(0.5*sign(t)-0.5*sign(t-1));

f2=(0.5*sign(t-1)-0.5*sign(t-2)); subplot(2,2,1); plot(t,f1); subplot(2,2,2); plot(t,f2); sconv(f1,f2,t,t,0.01); 4、画出教材P60例2-28中h[n]、x[n]的图形(图2-14(a)(b)),并利用conv函数求出 卷积x[n]*h[n]并画出图形(图2-14(f))。 n=0:10; x1=[zeros(1,0),1,zeros(1,10)]+[zeros(1,1),1,zeros(1,9)]+[zeros(1,2),1,zeros(1,8)]; >> stem(n,x1);

现代控制理论 离散时间系统、 时变系统和非线性系统的状态空间表达式

《现代控制理论》MOOC课程 1.5 离散时间系统、时变系统和非线性系统的状态空间表达式

一. 时间离散系统 离散系统的状态空间表达式可用差分方程组表示为 x(k +1)=Gx(k)+Hu (k)y k =Cx k +Du(k) 二. 线性时变系统 其系数矩阵的元素中至少有一个元素是时间t 的函数; 线性时变系统的状态空间表达式为: x =A t x +A t u y=C t x +D t u

三. 非线性系统 x =f (x,u , t ) y=g (x,u,t) 1.非线性时变系统的状态空间表达式 式中,f ,g 为函数向量; x =f (x,u ) y=g (x,u) 2.非线性定常系统的状态空间表达式 当非线性系统的状态方程中不显含时间t 时,则称为非线性定常系统

3.非线性系统的线性化 x =f (x,u ) y =g (x,u) 设是非线性系统x 0,u 0的一个平衡状态, 即。 f (x 0,u 0)=0 , y 0= g (x 0,u 0)若只考虑附近小范围的行为,则可将非线性系统取一次近似而予以线性化。x 0,u 0,y 0将非线性函数f 、g 在附近作泰勒级数展开,并忽略高次项,仅保留一次项: x 0,u 0f x,u =f x 0,u 0 +?ef ex x 0,u 0δx +?ef eu x 0,u 0δu g x,u =g x 0,u 0+?eg ex x 0,u 0δx +?eg eu x 0,u 0 δu

则非线性系统的一次线性化方程可表示为:δx =x ?x 0=?ef ex x 0,u 0δx +?ef eu x 0,u 0δu δy =y ?y 0=?eg ex x 0,u 0δx +?eg eu x 0,u 0 δu 将微增量用符号表示,线性化状态方程就表示为: δx ,δu ,δy ?x ,?u ,?y ?x =A ?x +B ?u ?y =C ?x +D ?u 其中,A =?ef ex x 0,u 0,B =?ef eu x 0,u 0,?C =eg ex x 0,u 0,D =?eg eu x 0,u 0

线性离散系统基础

第七章 线性离散系统基础 一.基本内容 1.了解离散控制系统基本概念、采样过程及采样定理;零阶保持器的传递函数、频率特性及应用特点。 2.掌握z 变换及z 反变换的求取方法;熟练掌握脉冲传递函的定义,开环脉冲传递函数和闭环脉冲传递函数求解方法; 3.熟练掌握离散控制系统的稳定性分析; 4.熟练掌握离散控制系统的稳态误差计算 二.重点和难点 离散控制系统与连续控制系统的根本区别,在于连续控制系统中的信号都是时间的连续函数,而离散控制系统中有一处或多处的信号是脉冲序列或数码形式的。 把连续信号变为离散信号的过程叫做采样,实现采样的装置称为采样器(采样开关)。反之,把采样后的离散信号恢复为连续信号的过程称为信号的复现。 离散控制系统的采样定理给出了从采样的离散信号恢复到原来连续信号所必须的最低采样频率(max 2ωω≥s )。 离散信号的恢复,是在系统中加入代替理想滤波器的实际保持器来实现的。按恒值外推规律实现的零阶保持器,由于其实现简单,且具有最小的相移,被广泛的应用于离散控制系统中,其传递函数为 s e s G Ts h --=1)( 1.脉冲传递函数 脉冲传递函数的定义:零初始条件下,线性定常离散系统输出离散信号的z 变换与输入离散信号的z 变换之比,称为脉冲传递函数。 比较常见的一种离散控制系统的结构形式如图7-1所示,其闭环脉冲传递函数为

) (1)()() (2121z H G G z G G z R z C += 式中 , )]()()([)(2121s H s G s G Z z H G G = )]()([)(2121s G s G Z z G G = 图7-1典型离散控制系统的结构图 其中:)(21z H G G 为系统的开环脉冲传递函数。 2.离散系统分析 (1)离散系统的稳定性 离散系统稳定的充分必要条件是:系统的闭环极点均在z 平面上以原点为中心的单位圆内。即 ),2,1(1n i z i =<。 因此,可以通过求解闭环特征方程式的根来判断离散系统的稳定性。但当系统的阶次较高或有待定常数时,采用此法不太合适,可以通过双线性变换 1 1 -+= w w z 将z 平面上的单位圆内部分映射到w 平面的左半平面,即可使用劳斯稳定判据判断离散系统的稳定性。 (2)稳态误差 单位反馈的离散系统(即图7-1中1)(=s H )的的稳态误差为: ) (1) () 1(lim )(1 z G z R z e z +-=∞→ 其中)()(21z G G z G =为开环脉冲传递函数。 通常选用三种典型输入信号,即单位阶跃信号、单位斜坡信号和单位抛物线信号,对应z 变换分别为 3 22)1(2) 1(,)1(,1 -+--z z z T z Tz z z 三.典型例题分析 )(1s G ) (s H )(s R T ) (s E ) (s C ) (2s G

离散时间系统及离散卷积

实验一、离散时间系统及离散卷积 1、单位脉冲响应 源程序: function pr1() %定义函数pr1 a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1; x=impseq(0,-20,120); %调用impseq函数(matlab软件的函数库) n=[-20:120]; %定义n的范围,从-20 到120 h=filter(b,a,x); %调用函数给纵坐标赋值 figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激 title('单位冲激响应(耿海锋)'); %定义标题为:'冲激响应(耿海锋)' xlabel('n'); %绘图横座标为n ylabel('h(n)'); %绘图纵座标为h(n) figure(2) %绘图figure 2 [z,p,g]=tf2zp(b,a); %绘出零极点图 zplane(z,p) function [x,n]=impseq(n0,n1,n2) %声明impseq函数 n=[n1:n2]; x=[(n-n0)==0]; 结果: Figure 1:

Figure 2:

2、离散系统的幅频、相频的分析 源程序: function pr2() b=[0.0181,0.0543,0.0543,0.0181]; a=[1.000,-1.76,1.1829,-0.2781]; m=0:length(b)-1; % m的范围,从0 到3 l=0:length(a)-1; % l的范围,从0 到3 K=5000; k=1:K; w=pi*k/K; %角频率w H=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义 figure(1) magH=abs(H); %magH为幅度 angH=angle(H); %angH为相位 plot(w/pi,magH-耿海锋); %绘制w(pi)-magH-耿海锋的图形 figure(2) axis([0,1,0,1]); %限制横纵座标从0到1 xlabel('w(pi)'); %x座标为 w(pi) ylabel('|H|'); %y座标为 angle(H)-耿海锋 title('幅度,相位响应(耿海锋)'); %图的标题为:'幅度,相位响应(耿海锋)' plot(w/pi,angH); %绘制w(pi)-angH的图形 grid; %为座标添加名称 xlabel('w(pi)'); %x座标为 w(pi) ylabel('angle(H)'); %y座标为 angle(H) 结果: Figure1

离散时间系统的分析

课程设计报告 课程设计题目:离散时间系统分析学号:201420130206 学生姓名:董晓勇 专业:通信工程 班级:1421301 指导教师:涂其远 2015年12月18日

离散时间系统的分析 一、设计目的和意义 1 . 目的: (1)深刻理解卷积和、相加、相乘运算,掌握求离散序列卷积和、相加相乘的计算方法;(2)加深理解和掌握求离散序列Z变换的方法; (3)加深和掌握离散系统的系统函数零点、函数极点和系统时域特性、系统稳定性的关系。 2 . 意义: 在对《信号与系统》一书的学习中,进行信号与系统的分析是具有十分重要的意义,同时也是必不可少的。利用matlab函数,只需要简单的编程,就可以实现系统的时域、频域分析,对系统特性进行分析,为实际的系统设计奠定了基础。本设计在离散系统Z域分析理论的基础上,利用matlab对离散系统的稳定性和频域响应进行了分析。 二、设计原理

第一部分:对离散时间系统的时域进行分析呈 对离散时间信号的代数运算(相加、相乘、卷积和),是在时域进行分析。相加用“+”来完成,相乘用“·*”来完成,卷积和则用conv 函数来实现,具体形式为y=conv(x1,x2,….),其中x1,x2,…..为输入的离散序列 ,y 为输出变量。 在零初始状态下,matlab 控制工具箱提供了一个filter 函数,可以计算差分方程描述的系统的响应,其调用形式为: y=filter(b,a,f) 其中,a=[a0,a1,a2,…]、b=[b0,b1,b2,….]分别是系统方程左、右边的系数向量,f 表示输入向量,y 表示输出向量。 第二部分:对离散时间系统的Z 域进行分析 matlab 工具箱提供了计算Z 正变换的函数ztrans,其调用形式为: F=zrtans(f) %求符号函数f 的Z 变换,返回函数的自变量为z 。 Matlab 的zplane 函数用于系统函数的零极点图的绘制,调用方式为: zplane(b,a)其中,b 、a 分别为系统函数分子、分母多项式的系数向量。 matlab 中,利用freqz() 函数可方便地求得系统的频率响应,调用格式为: freqz(b,a,N) 该调用方式将绘制系统在0~PI 范围内N 个频率等分点的幅频特性和相频特性图。 三、 详细设计步骤 1.自己设计两个离散时间序列x1、x2,对其进行相加,相乘,卷积运算,并显示出图形。 2.根据已知的LTI 系统:y[n]-0.7y[n-1]-0.6y[n-2]+y[n-3]=x[n]+0.5[n-1],得其在Z 域输 入输出的传递函数为: 1 12310.5()10.70.6z H z z z z ----+= --+ 利用matlab 求:(1)系统函数的零点和极点,并在z 平面显示他们的分布;(2)画出幅频响应和相频响应的特性曲线。 四、 设计结果及分析 (1).自行设计产生两个离散序列信号,对其进行相加、乘及卷积运算

离散时间信号与系统

实验:离散时间信号与系统的时域分析 一、实验目的 1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数; 2、掌握离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程; 3、牢固掌握系统的单位序列响应的概念,掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。 基本要求:掌握用MATLAB描述离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。掌握线性时不变离散系统的时域数学模型用MATLAB描述的方法,掌握线性常系数差分方程的求解编程。 二、实验原理 信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。 在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。 在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。但是,还有一些信号的独立时间变量是离散变化的,这种信号称为离散时间信号。前面提到的股票市场的日收盘指数,由于相邻两个交易日的日收盘指数相隔24小时,这意味着日收盘指数的时间变量是不连续的,因此日收盘指数是离散时间信号。 而系统则用于对信号进行运算或处理,或者从信号中提取有用的信息,或者滤出信号中某些无用的成分,如滤波,从而产生人们所希望的新的信号。系统通常是由若干部件或单元组成的一个整体(Entity)。系统可分为很多不同的类型,例如,根据系统所处理的信号的不同,系统可分为连续时间系统(Continuous-time system)和离散时间系统(Discrete-time system),根据系统所具有的不同性质,系统又可分为因果系统(Causal system)和非因果系统(Noncausal system)、稳定系统(Stable system)和不稳定系统(Unstable system)、线性系统(Linear system)和非线性系统(Nonlinear system)、时变系统(Time-variant system)和时不变系统(Time-invariant system)等等。 然而,在信号与系统和数字信号处理中,我们所分析的系统只是所谓的线性时不变系统,这种系统同时满足两个重要的基本性质,那就是线性性和时不变性,通常称为线性时不变(LTI)系统。 1. 信号的时域表示方法 1.1将信号表示成独立时间变量的函数

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k 。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

第九章线性离散控制系统

第九章 线性离散控制系统 A9-1 试求下列函数的Z 变换: (1)f(t)=1-e -at (2)f(t)=cos ωt (3)f(t)=αt/T (4)f(t)=te -at (5)f(t)=t 2 A9-2 求下列拉氏变换式的Z 变换(式中T 为采样周期): (1)21)(s s F = (2)) 2)(1()3()(+++=s s s s F (3)2 )2(1)(+=s s F (4)) ()(a s s K s F += (5))(1)(2a s s s F += (6)22)(ωω ?=s s F (7)) ()(a s e s F nTs +=? A9-3 求下列函数的Z 反变换(式中T 为采样周期): (1)) )(1()1()(T T e z z e z z F ?????= (2)) 2()1()(2??=z z z z F (3)22)1()1()(?+= z z z z F (4)222) 1()1(2)(+?=z z z z F

(5)55 432546.035.0)(z z z z z z z F +++++= A9-4 用留数法求下列函数的Z 反变换: (1)) 2)(1(10)(??=z z z z F (2)3 )1()(2 ?=ze z z F A9-5 确定下列函数的初值与终值: (1)) 2.0)(18.0()1()(2222+++?++=z z z z z z z z F (2)) 1.0)(8.0()(2 ??=z z z z F (3)3212 14.26.52.411.03.01)(??????+?++=z z z z z z F A9-6 用Z 变换方法求解下列差分方程,结果以f(k)表示: (1)f(k+2)+2f(k+1)+f(k)=u(k) f(0)=0, f(1)=0, u(k)=k (k=0,1,2,…) (2)f(k+2)-4f(k)=coskn (k=0,1,2,…) f(0)=1, f(1)=0 (3)f(k+2)+5f(k+1)+6g(k)=cos 2 k n (k=0,1,2,…) f(0)=0, f(1)=1 A9-7 求图题A8-7所示各系统的脉冲传递函数和输出信号的Z 变换。

非线性与离散系统

《非线性与离散系统》课程教学大纲 Nonlinear and Discrete Control System 课程编号:2000492 学时数:32 适用专业:电气工程及其自动化学分数:2学分 执笔者:王艳邱瑞昌编写日期:2002.5 一、课程的性质和目的 课程性质:非线性离散控制系统是电气工程及其自动化专业的技术基础选修课之一。 主要目的:培养学生 1、掌握非线性控制系统、离散控制系统的分析方法; 2、学会使用非线性环节改善系统的动态性能及用离散系统的理论分析数字系统; 3、掌握典型非线性环节及采样系统的实验方法,获得实验技能的基本训练。 4.了解非线性控制系统和离散控制系统的发展方向。 二、课程教学内容 第一章非线性控制系统 内容:理解非线性控制系统的基本概念及其与线性控制系统的区别,掌握非线性控制系统的两种分析方法 描述函数法和相平面法;学会利用非线性特性改善系统的动态性能。了解如何运用计算机对非线性系统进行辅助分析和设计。 重点:描述函数法、相平面法。 难点:运用两种分析法分析非线性系统。 作业:9个。 自学内容:典型环节描述函数的求取,(自学不占课时,但要考试)。自学前给出求取描述函数的一般方法,自学后布置作业检验自学效果。 课堂讨论:如何利用非线性特性改善控制系统的动态性能。 实验环节:非线性控制系统的综合与校正、采样控制系统设计实验。 第二章线性离散控制系统 理解采样过程的数学描述,掌握采样定理,会确定采样周期;掌握信号如何恢复和保持,会运用Z变换求取系统的脉冲传递函数;会分析线性离散系统的稳定性;学会运用时域分析法分析离散系统;了解数字控制器的模拟化和数字化的设计方法。 重点:采样定理、信号的采样和保持、Z变换、脉冲传递函数、离散系统的稳定性。 难点:采样过程、离散系统的稳定性、数字控制器的设计。 作业:8个。 自学内容:Z变换与Z的反变换,(自学不占课时,但要考试)。自学前对内容作简要介绍,自学后布置作业检验自学效果。 课堂讨论:数字控制器的设计方法。 实验环节:采样控制系统的校正 三、课程教学的基本要求 本课程的教学环节包括:自学、课堂讲授、自制多媒体电子课件、习题课、课外作业、实验。通过本课程各个教学环节的教学,重点培养学生的自学能力、动手能力、分析问题和解决问题的能力。 (一)课堂讲授 1、教学方法: 采用启发式教学,鼓励学生自学,培养学生的自学能力;精选教学内容,精讲多练;思考题和课外作业为主,调动学生学习的主动性。

自动控制原理例题详解-线性离散控制系统的分析与设计考试题及答案

一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(* t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3分)简述线性定常离散系统稳定性的定义及充要条件。 解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称系统稳定。稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(3分)已知X(z)如下,试用终值定理计算x (∞)。 ) 5.0)(1()(2 +--= z z z z z X 解: 经过验证(1)X()z z -满足终值定理使用的条件,因此, 2 1 1 x()lim(1)X()lim 20.5 z z z z z z z →→∞=-==-+。 5.(5分)已知采样周期T =1秒,计算G (z ) = Z [G h (s )G 0(s ) ]。 ) 2)(1(1 e 1)()()(0++-==-s s s s G s G s G Ts h 解:11 1 1211 11(1)(1e )()(1)Z[](1)()s s 11e (1e )e z z z G z z z z z z z --------=--=--=+---++ 6.(5分) 已知系统差分方程、初始状态如下: )k (1)(8)1(6)2(=++-+k c k c k c ,c(0)=c(1)=0。 试用Z 变换法计算输出序列c (k ),k ≥ 0。 解: 22()6()8()() ()(1)(68)3(1)2(2)6(4)1 (){2324},0 6 k k z C z C z C z R z z z z z C z z z z z z z c k k -+===-+ --+---=-?+≥ 二、(10分)已知计算机控制系统如图1所示,采用数字比例控制()D z K =, 其中K >0。设采样周期T =1s ,368.0e 1=-。

离散时间信号与系统

离散时间信号与系统

实验:离散时间信号与系统的时域分析 一、实验目的 1、熟悉和掌握常用的用于信号与系统时域仿真分析的MATLAB函数; 2、掌握离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程; 3、牢固掌握系统的单位序列响应的概念,掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。 基本要求:掌握用MATLAB描述离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。掌握线性时不变离散系统的时域数学模型用MATLAB描述的方法,掌握线性常系数差分方程的求解编程。 二、实验原理 信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、

声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。 在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。 在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。但是,还有一些信号的独立时间变量是离散变化的,这种信号称为离散时间信号。前面提到的股票市场的日收盘指数,由于相邻两个交易日的日收盘指数相隔24小时,这意味着日收盘指数的时间变量是不连续的,因此日收盘指数是离散时间信号。 而系统则用于对信号进行运算或处理,或者

离散时间信号与离散时间系统..

§7-1 概述 一、 离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、 连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、 离散信号的表示方法: 1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、 典型的离散时间信号 1、 单位样值函数: ?? ?==其它001)(k k δ 下图表示了)(n k -δ的波形。

这个函数与连续时间信号中的冲激函数)(t δ相似,也有着 与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f -=-δδ。 2、 单位阶跃函数: ?? ?≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数) (t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列: )(k a k ε 比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。 4、 单边正弦序列:)()cos(0k k A εφω+ 双边正弦序列:)cos(0φω+k A (a) 0.9a = (d) 0.9a =- (b) 1a = (e) 1a =- (c) 1.1a = (f) 1.1a =-

第7章 线性离散控制系统的分析 参考答案

第七章 习题与答案 7-1 离散控制系统由哪些基本环节组成? 答:离散控制系统由连续的控制对象,离散的控制器,采样器和保持器等几个环节组成。 7-2 香农采样定理的意义是什么? 答:香农采样定理给出了采样周期的一个上限。 7-3 什么是采样或采样过程? 答:采样或采样过程,就是抽取连续信号在离散时间瞬时值序列的过程,有时也称为离散化过程。 7-4 写出零阶保持器的传递函数,引入零阶保持器对系统开环传递函数的极点有何影响? 答:零阶保持器的传递函数为s e s H Ts --=1)(0。零阶保持器的引入并不影响开环系统 脉冲传递函数的极点。 7-5 线性离散控制系统稳定的充要条件是什么? 答:线性离散控制系统稳定的充要条件是: 闭环系统特征方程的所有根的模1

相关主题
文本预览
相关文档 最新文档