当前位置:文档之家› 苏德矿汇编微积分1方法情况总结

苏德矿汇编微积分1方法情况总结

苏德矿汇编微积分1方法情况总结
苏德矿汇编微积分1方法情况总结

第一章 函数、极限、连续

注 “★”表示方法常用重要.

一、求函数极限的方法

★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要

极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等.

★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法

运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。

三、无穷小量阶的比较的方法

利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开

四、函数的连续与间断点的讨论的方法

如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则

0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函

数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法

★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理;

4. )()(lim )()(lim ∞=?∞=∞

→+∞

→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求

数列极限;7. 利用若∑∞

=1

n n

a

收敛,则0lim =∞

→n n a ;8. 无穷小量乘以有界量仍是无穷小量;

9.等价量替换等.

【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算,

2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理

3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则.

4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞

→∞

→与是特殊与

一般的关系,由归结原则知

5. 有lim

101

1()()n

n i i f f x dx n n →∞

==?∑

或1

lim

100

1()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学

★一、求一点导数或给处在一点可导推导某个结论的方法:

利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

1.求出()f x ',对于分段函数的分界点要用左右导数定义或导数定义求.

2.'()f x 讨论的连续性,

★三、求初等函数的导数的方法:

在求导之前尽可能的化简,把函数的乘除尽量化成加减,利用对数微分法转化为方程确定隐函数的求导等等,从而简化求导过程. 要熟练记住基本初等函数的导数公式、导数的四则运算,理解并掌握复合函数的求导法则.

四、求分段函数的导数的方法:

求分段函数导数不在分界点可直接利用求导公式。在分界点

(1)若在分界点两侧的表达式不同,求分界点的导数有下述两种方法: (i )利用左右导数的定义。 (ii )利用两侧导函数的极限。 (2)若在分界点两侧的表达式相同,求分界点的导数有下述两种方法: (i )利用导数定义。 (ii )利用导函数的极限。

★五、求参数式函数的导数的方法

若()()()()()0'',',

,≠??

?==t t t t y t x ?ψ?ψ?存在且,则

()()t t dt

dx dt dy

dx dy ''?ψ== 22()'()()"()t dy d y dy t dt y dx dx dx t dt

ψ??'

'''====

' ★六、求方程确定隐函数的导数的方法:

解题策略 求方程()()y x g y x f ,,=确定的隐函数()x y y =的导数时,由y 是x 的函数,此时方程两边是关于x 表达式的恒等式,两边同时对x 求导,会出现含有y'的等式,然后把y'看成未知数解出即可。

★七、求变上下限函数的导数的方法:

解题策略 利用变上下限函数求导定理,注意化成变上下限函数的成标准形式 八、求函数的高阶导数的方法:

求导之前,对函数进行化简,尽量化成加减,再用高阶导数的运算法则 九、方程根的存在性

把要证明的方程转化为f(x)=0的形式。对方程f(x)=0用下述方法:

★ 1.根的存在定理 若函数f(x)在闭区间],[b a 上连续,且,0)()(

★2.若函数f(x)的原函数)(x F 在],[b a 上满足罗尔定理的条件,则f(x)在(a,b )内至少有一个零值点.

3.用泰勒公式证明方程根的存在性. 4.实常系数的一元n 次方程)0(0011

10≠=++++--a a x a x

a x a n n n n

Λ,当n 为

奇数时,至少有一个实根。

)111()(111

01110n n n n n n n n n x

a x a x a a x a x a x a x a x f ++++=++++=----ΛΛ 由,00≠a 不妨设a 0>0。由于,0,1,)(0lim

>?=+∞=+∞→N M x f x 取当x>N 0时,都有

f(x)>1>0。

取b>N 0,有f(b)>0,0,1,)(1lim >?=-∞=-∞

→N M x f x 取,当x<-N 1时,都有

f(x)<-1<0。

取a<-N 1

5.实系数的一元n 次方程在复数范围内有n 个复数根,至多有n 个不同的实数根。 ★ 6.若f(x)在区间I 上连续且严格单调,则f(x)=0在I 内至多有一个根。若函数在两端点的函数(或极限)值同号,则f(x)=0无根,若函数在两端点的函数(或极限)值异号,则f(x)=0有一个根。

★7.求具体连续函数f(x)=0在其定义域内零值点的个数:首先求出f(x)的严格单调

区间的个数,若有m 个严格单调区间,则至多有m 个不同的根。至于具体有几个根,按照6研究每个严格单调区间是否有一个根。

8.若函数f(x)的原函数F(x)在某点x 0处取极值,在x 0处导数也存在,由费马定理知F'(x 0)=0,即f(x 0)=0。(用的较少)

★9.方程中含有字母常数,讨论字母常数取何值时,方程根有几个根地方法:(1)把

要证明的方程转化为()g x k =的形式,求出()g x 的单调区间、极值,求出每个严格单调区间两端函数(极限)值,画草图,讨论曲线与y k =轴相交的情况,确定方程根的个数.;(2)把要证明的方程转化为f(x)=0的形式。求出f(x)的单调区间,极值,求出每个严格单调区间两端函数(极限)值,画草图,讨论曲线与x 轴相交的情况,确定方程根的个数.

【评注】 在证明方程根的存在性的过程中,我们经常要用拉格朗日定理,积分中值定理,有时也用到柯西中值定理来证明满足方程根的存在性所需的条件,然后利用上述的方法来证明方程根的存在性。

十、证明适合某种条件下ξ的等式

★ 1. 常用的方法有罗尔定理、泰勒公式、根的存在定理、柯西定理、拉格朗定理;

2. 如果证明适合某种条件下,ξζ的等式,要用两次 上面的定理

3. 证明存在∈ξ(a , b ),使,0)()()(0)()()(='+'?='+'x g x f x f g f f ξξξ有一个根.而

??+'-='?'-='?

='+'c dx x g dx x f x f x g x f x f x g x f x f ln )()

()

()()()(0)()()( ?

-=?+-=?+-=?)()(ln )()(ln ln )()()

(1

x g Ce x f C x g x f C x g x df x f ,)()(C e x f x g =?令)()()(x g e x f x F =, 即0)()()()()(='+'?'='x g x f x f C x F

故对)(x F 在[]21,x x 上满足罗尔定理条件,至少存在一点)(2,1x x ∈ξ,使,0)(='ξF 即

0)()()(='+'ξξξg f f .

十一、证明不等式的方法:

★1.拉格朗日定理适用于已知函数导数的条件,证明涉及函数(值)的不等式 ★2.泰勒公式适用于已知函数的高阶导数的条件,证明涉及函数(值)或低阶导函

数(值)的不等式.

★3.单调性定理.(i )对于证明数的大小比较的不等式,转化为同一个函数在区间两

端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明.

(ii) 对于证明函数大小比较的不等式,转化为同一个函数在区间内上任意一点函数值与区间端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明.

4.利用函数最大值,最小值证明不等式.

把待证的不等式转化为区间上任意一点函数值与区间上某点0x 处的函数值大小的比

较,然后证明)(0x f 为最大值或最小值,即可证不等式成立。

★5.利用函数取到唯一的极值证明不等式.

把待证的不等式转化为区间上任意一点函值与区间内某点0x 处的函数值大小的比较,然后证明)(0x f 为唯一的极值且为极大值或极小值,即)(0x f 为最大值或最小值,即可证不等式成立。

6.用柯西定理证明不等式. 7.利用曲线的凹向性证明不等式.

第三章 一元函数积分学

★1.基本积分表(13个公式,略)

★2.要知道下列重要不定积分的推导过程,记住这些不定积分结果.

1.

1ax

ax e dx e C a =+?;2. 1cos sin axdx ax C a

=+?; 3. 1

sin cos axdx ax C a

=-

+?

; 4.

arcsin

x C a =+?

;5.221dx a x =+?1arctan x C a a

+; 6.tan ln cos xdx x C =-+?;7.cot ln sin xdx x C =+?

8.

22

11(0)ln 2a x

dx a C a x a a x

+≠=+--?; 9.csc xdx =?ln csc cot x x C -+; 10.sec ln sec tan xdx x x C =++?

;

11.

?

+dx a x 2

21ln x C =+.(a >0).

证 令t a x tan =,

原式

?

?=+=dt t a t

a t da a

t a sec sec tan tan 1

2222

??++==-∈.tan sec ln sec sec sec )2,2(2c t t tdt dt t

t

t π

π

,tan a

x

t =由作出直角三角形,可知,sec 2

2a

x a t +=

于是

原式ln

ln ln x

c x c a a

=+=++-

1ln(x c =+

12.

?

+-+=-c a x x dx a x 222

2ln 1。

一、求不定积分的方法:

★不定积分的线性运算法则、凑数分法、变量代换法、分部积分法,还有有理式的不

定积分、三角函数有理式的不定积分、无理式的不定积分理论上的方法也要知道.

★二、涉及到定积分的方程根的存在性的方法:

利用积分中值理,定积分的13条性质,尤其是变上限积分求导定理及微分中值定理,证明方法与技巧与第三章我们介绍的证明思想完全类似。

★三、涉及到定积分的适合某种条件ξ的等式的方法:

利用积分中值理,定积分的13条性质,尤其是变上限积分求导定理及微分中值定理,证明方法与技巧与第三章我们介绍的证明思想完全类似。

a x

图 3-1

★四、涉及到定积分的不等式的方法:

利用积分中值理,定积分的13条性质,尤其是变上限积分求导定理及微分中值定理,证明方法与技巧与第三章我们介绍的证明思想完全类似。

★五、涉及到定积分的等式证明的方法:

用变量代换较多或定积分的条性质、周期函数积分的性质.

★六、定积分计算的方法:

利用牛—莱公式、定积分的线性运算法则、凑微分、变量代换、分部积分计算及定积分的其他公式.

微元法要搞懂

★七、定积分的几何应用

1.求平面图形的面积(略)

2.()x f y =(连续),Ox 轴及直线x=a, x=b 所围成的曲边梯形绕Ox 轴旋转而成的旋转体的体积V x 为().2

?

=b

a

x dx x f

V π

3.()x f y =(连续)Ox 轴及直线x=a, x=b )0(b a <≤所围成的曲边梯形绕y 轴旋转所成立体的体积V y 为().2?

=b

a

y dx x f x V π

4. 求由连续曲线()Ox x f y ,=轴及直线b x a x ==,所围平面图形绕x 轴旋转所形成的旋转体的侧面面积()().122?

'+=b

a

x dx x f x f S π

5.面曲线的弧长:给定曲线弧B A )

)的方程为()()βαψ?≤≤??

?==t t y t x ,

,

其中,()()t t ψ?'',在[]βα,上连续,且()()02

2

≠'+'t t ψ?,则曲线弧B A )

)是可求长的。

其弧长s 可表示为()().22?'+'=

β

α

ψ?dt t t s

八、定积分在物理中的应用:1.液体的静压力.2功.3.引力.

大学微积分l知识点总结 二

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1(α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7)[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 ①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 数乘运算 加减运线性运 (8

释义:函数 对应:y=f(u) 说明: (11)c x dx a x a x ++??++?22ln 1 22 (12)分段函数的积分 例题说明:{} dx x ??2,1max (13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分 2.补充知识(课外补充) ☆【例谈不定积分的计算方法】☆ 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总 1、不定积分的定义及一般积分方法 (1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c (2)一般积分方法 值得注意的问题:

微积分上重要知识点总结

1、常用无穷小量替换 2、关于邻域:邻域的定义、表示(区间表示、数轴表示、简单表示);左右邻域、空心邻域、有 界集。 3、初等函数:正割函数sec就是余弦函数cos的倒数;余割函数就是正弦函数的倒数;反三角 函数:定义域、值域 4、收敛与发散、常数A为数列的极限的定义、函数极限的定义及表示方法、函数极限的几 何意义、左右极限、极限为A的充要条件、极限的证明。 5、无穷小量与无穷大量:无穷小量的定义、运算性质、定理(无穷小量与极限的替换)、比较、 高阶无穷小与同阶无穷小的表示、等价无穷小、无穷大量于无穷小量的关系。 6、极限的性质:局部有界性、唯一性、局部保号性、不等式性质(保序性)。 7、极限的四则运算法则。 8、夹逼定理(适当放缩)、单调有界定理(单调有界数列必有极限)。 9、两个重要极限及其变形 10、等价无穷小量替换定理 11、函数的连续性:定义(增量定义法、极限定义法)、左右连续 12、函数的间断点:第一类间断点与第二类间断点,左、右极限都存在的就是第一类间断 点,第一类间断点有跳跃间断点与可去间断点。左右极限至少有一个不存在的间断点就是第二类间断点。 13、连续函数的四则运算 14、反函数、复合函数、初等函数的连续性 15、闭区间上连续函数的性质:最值定理、有界性定理、零值定理、介值定理。 16、导数的定义、左右导数、单侧导数、左右导数的表示、可导则连续。 17、求导法则与求导公式:函数线性组合的求导法则、函数积与商的求导法则、反函数 的求导法则、复合函数求导法则、对数求导法、基本导数公式 18、隐函数的导数。 19、高阶导数的求法及表示。 20、微分的定义及几何意义、可微的充要条件就是可导。 21、A微分的基本公式与运算法则dy=f’(x0)Δx、

高等数学公式总结(绝对完整版).

高等数学公式大全 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

微积分2方法总结

第七章 矢量代数与空间解析几何 ★类型(一) 向量的运算 解题策略 1. a a a ?=,2.},,{321a a a a = , .||232221a a a a ++= 3. 利用 点积、叉积、混合积的性质及几何意义. ★类型(二) 求直线方程 解题策略 首先考虑直线方程的点向式与一般式,否则再用其它形式. 类型(三) 直线点向式与参数式转化 类型(四) 异面直线 ★类型(五) 点到直线的距离、两直线的夹角 ★类型(六) 求平面方程 解题策略 平面方程的点法式、一般式、平面束. 类型(七) 直线与平面的位置 类型(八)求曲线与曲面方程 解题对策 一般用定义求曲线与曲面方程 疑难问题点拨 一般参数方程?? ???===Γ)()()(:t h z t g y t f x 绕Oz 轴旋转所成旋转曲面∑的方程 .)]}([{)]}([{212122z h g z h f y x --+=+ 证如图4-7, 设),,(z y x M 是曲面 上任意一点,而M 是由曲线Γ上某点),,(1111z y x M (对应的参数为t 1)绕Oz 轴旋转所得到。因此有).(),(),(111111t h z t g y t f x === ,1z z =,2 12122y x y x +=+),()(111z h t t h z -=?=? )]([)],([1111z h g y z h f x --==, 故所求旋转曲面方程为.)]}([{)]}([{212122z h g z h f y x --+=+ 特别地,若Γ绕Oz 轴旋转时,且Γ参数方程表示为???==). (),(z g y z f x 则 ).()(2222z g z f y x +=+ 事实上,由前面的证明过程可知),(),(1111z g y z f x ==1z z =,212122y x y x +=+ ),(),(11z g y z f x ==? 故).()(2222z g z f y x +=+ 图4-7

大一上微积分知识点重点(供参考)

大一(上) 微积分 知识点 第一章 函数 一、A ?B=?,则A 、B 是分离的。 二、设有集合A 、B ,属于A 而不属于B 的所有元素构成的集合,称为A 与B 的差。 A-B={x|x ∈A 且x ?B}(属于前者,不属于后者) 三、集合运算律:①交换律、结合律、分配律与数的这三定律一致; ②摩根律:交的补等于补的并。 四、笛卡尔乘积:设有集合A 和B ,对?x ∈A,?y ∈B ,所有二元有序数组(x,,y )构成的集合。 五、相同函数的要求:①定义域相同②对应法则相同 六、求反函数:反解互换 七、关于函数的奇偶性,要注意: 1、函数的奇偶性是就函数的定义域关于原点对称时而言的,若函数的定义域关于原点不对称,则函数无奇偶性可言,那么函数既不是奇函数也不是偶函数; 2、判断函数的奇偶性一般是用函数奇偶性的定义:若对所有的)(f D x ∈,)()(x f x f =-成立,则)(x f 为偶函数;若对所有的)(f D x ∈,)()(x f x f -=-成立,则)(x f 为奇函数;若)()(x f x f =-或)()(x f x f -=-不能对所有的)(f D x ∈成立,则)(x f 既不是奇函数也不是偶函数; 3、奇偶函数的运算性质:两偶函数之和是偶函数;两奇函数之和是奇函数;一奇一偶函数之和是非奇非偶函数(两函数均不恒等于零);两奇(或两偶)函数之积是偶函数;一奇一偶函数之积是奇函数。 第二章 极限与连续 一、一个数列有极限,就称这个数列是收敛的,否则就称它是发散的。 二、极限存在定理:左、右极限都存在,且相等。 三、无穷小量的几个性质: 1、limf(x)=0,则 2、若limf(x)=)(lim x g =0,则0)()(lim =+x g x f 3、若limf(x)=)(lim x g =0,则lim )(x f ·)(x g 0= 4、若g(x)有界(|g(x)|<M ),且limf(x)=0,则limf(x)·g(x )=0 四、无穷小量与无穷大量的关系: ①若 y 是无穷大量,则y 1是无穷小量; ②若y (y ≠0)是无穷小量,则y 1是无穷大量。

微积分知识点归纳

知识点归纳 1. 求极限 2.1函数极限的性质P35 唯一性、局部有界性、保号性 P34 A x f x x =→)(lim 0 的充分必要条件是 :A x f x f x f x f x x x x == +==-+-→→)()0()()0(lim lim 0 000 2.2 利用无穷小的性质P37: 定理1有限个无穷小的代数和仍是无穷小。 0)sin 2(30 lim =+→x x x 定理2有界函数与无穷小的乘积是无穷小。 0)1 sin (20 lim =→x x x 定理3无穷大的倒数是无穷小。反之,无穷小的倒数是无穷大。 例如:lim ∞→x 12132335-++-x x x x ∞= , lim ∞→x 131 23523+--+x x x x 0= 2.3利用极限运算法则P41 2.4利用复合函数的极限运算法则P45 2.4利用极限存在准则与两个重要极限P47 夹逼准则与单调有界准则,

lim 0→x x x tan 1=,lim 0→x x x arctan 1=,lim 0→x x x arcsin 1=, lim )(∞→x ?)())(11(x x ??+e =,lim 0 )(→x ?) (1 ))(1(x x ??+e = 2.6利用等价无穷小P55 当0→x 时, x x ~sin ,x x ~tan , x x ~arcsin ,x x ~arctan ,x x ~)1ln(+, x e x ~,221 ~cos 1x x -,x x αα++1~)1(,≠α0 为常数 2.7利用连续函数的算术运算性质及初等函数的连续性P64 如何求幂指函数)()(x v x u 的极限?P66 )(ln )()()(x u x v x v e x u =,)(ln )()(lim )(lim x u x v x v a x a x e x u →=→ 2.8洛必达法则P120 lim a x →)() (x g x f )() (lim x g x f a x ''=→ 基本未定式:00,∞∞ , 其它未定式 ∞?0,∞-∞,00,∞1,0∞(后三个皆为幂指函数) 2. 求导数的方法 2.1导数的定义P77: lim 00|)(→?==='='x x x dx dy x f y x x f x x f x y x ?-?+ =??→?) ()(000lim h x f h x f h ) ()(000lim -+=→

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?=11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +?=1ln ax b C b x +-+ 6.2 d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++ 的积分 10.x C + 11.x ?=2 2(3215ax b C a -+ 12.x x ?=2223 2 (15128105a x abx b C a -+ 13.x =22 (23ax b C a - 14.2x =2223 2(34815a x abx b C a -+

15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22 d x x a -? =1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23.2 d x x ax b +? =2 1ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 2 1ln 2x C b ax b ++ 26.22d ()x x ax b +? =21d a x bx b ax b --+?

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

大学微积分l知识点总结(一)

大学微积分l 知识点总结 【第一部分】大学阶段准备知识 1、不等式: ab 2b a ≥+ ab 2b a 22≥+ 3abc 3c b a ≥++ ()n n 21n 21...a a a n a ...a a ≥+++ abc 3c b a 333≥++ 2b a 2b a ab b 1a 12 2 2+≤+≤≤+ b a b a b -a +≤±≤ () n n 21n 21n 21n x ...x x y p p x ...x x x ...x x y ? ? ? ??+++=+++???=的最大值为:则为常数,且扩展:若有 柯西不等式:设a 1、a 2、...a n ,b 1、b 2、...b n 均是实数,则有: ()()()()()()()()() 22221222212n n 2211......a a b a ...b a b a n n b b b a +++++≤+++ ()时取等号 为常数,当且仅当,n ...3,2,1i b a i i ==λλ 2、函数周期性和对称性的常用结论 1、若f (x+a )=±f (x+b ),则f (x )具有周期性;若f (a+x )=±f (b-x ),则f (x )具有对称性。 口诀:“内同表示周期性,内反表示对称性” 2、周期性 (1)若f (x+a )=f (b+x ),则T=|b-a| (2)若f (x+a )=-f (b+x ),则T=2|b-a| 引申双向不等式: 两侧均在ab ≥0或ab ≤0时取等号

(3)若f (x+a )=±1/f (x ),则T=2a (4)若f (x+a )=【1-f (x )】/【1+f (x )】,则T=2a (5)若f (x+a )=【1+f (x )】/【1-f (x )】,则T=4a 3、对称性 (1)若f (a+x )=f (b-x ),则f (x )的对称轴为x=(a+b )/2 (2)若f (a+x )=-f (b-x )+c ,则f (x )的图像关于((a+b )/2,c/2)对称 4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。 (1)若f (x )的图像有两条对称轴x=a 和x=b ,则f (x )必定为周期函数,其中一个周期为2|b-a|。 (2)若f (x )的图像有两个对称中心(a ,0)和(b ,0),(a ≠b ),则f (x )必定为周期函数,其中一个周期为2|b-a|。 (3)若f (x )的图像有一个对称轴x=a 和一个对称中心(b ,0),(a ≠b ),则f (x )必定为周期函数,其中一个周期为4|b-a|。 3、三角函数 l n sin = ?正弦 l m cos =?余弦 m n tan = ?正切 n m cot =?余切 m l sec =?正割 n l csc = ?余割 倒数关系: ?= ?cot 1tan ?=?csc 1sin ?= ?sec 1 cos L m n α

高数微积分公式大全总结的比较好

高数微积分公式大全总 结的比较好 Last revised by LE LE in 2021

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ ' = 二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()() () () ()() n n n u x v x u x v x ±=±???? (2)()() ()()n n cu x cu x =???? (3)()()() ()n n n u ax b a u ax b +=+???? (4)()()() () ()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1)() () !n n x n = (2)() () n ax b n ax b e a e ++=? (3)() () ln n x x n a a a = (4)()() sin sin 2n n ax b a ax b n π??+=++??? ??? ?? (5) ()()cos cos 2n n ax b a ax b n π??+=++??? ????? (6)() () () 1 1! 1n n n n a n ax b ax b +??? =- ? +?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-? ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1 ln d x dx x =

微积分心得范文

微积分心得范文 微积分学习心得 学号11120472 姓名吴心怡班级七班学号11120471 姓名吴亚男班级七班时间,如同轨道上疾驰的列车,匆匆行驶,不留一点痕迹的我们的寒假就这样over掉了了。恍惚之间,我们就要开始正式上课了。我们依稀还记得,放假前,老师们说让好好复习,来学校不久便是冬季学期的期末考试了,可是,嘿嘿~~自己却不得不承认有很大一部分的时间是被荒废了的。但早早来学校,我们好好静下心来思考了一下学习的经验和方法。突然有了要好好学习的冲动,可能以前真的是我们对学习不够上心的缘故吧。 对于学习方面,以前我总觉得数学一直处于主心骨的位置,它是我从小的梦想、我的骄傲。可是自从大学以来的第一个学期,微积分却着实让我们倍受打击。成绩的不再拔尖,沉痛的打击了我的自信心。但是,通过和老师交流,与同学讨论,让我明白强中自有强中手,而自己,并不是笨,只是有些方面自己做的不够,只要深切去思考自己的学习方法,自己依旧有很大的进步空间。 首先我们觉得大学里的学习课后巩固很重要,光靠一周两次大课的学习,远远不够。并且,课上老师可能会因为进度问题而降得很快,很多时候我们会跟不上老师的速度,这时,如果课后不再看老师局的

例题,课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的。 然而课后的巩固应该从两方面着手,一方面是教学大纲上要求必须掌握的内容,这些是考试必考内容,或许看似很简单的内容,确实解题目的最基本的基础。秋季学期的期末考正是由于自己对基本知识忽略,在一些很简单的题目丢了分,惨痛的教训给了哦我们深刻的教训,夯实基础知识,才能维纳最重要的考试打下良好的基础。 另一方面。是自己认为在内容掌握上的盲点和误区,这些事最容易忘记的,也是应用熟练程度最差的。而考试不会因为这是自己认为的难点就会不考,所以认真钻研这些题目便可为自己在分数上的突破起决定性作用。 同时,复习一定要有耐心,要持之以恒。学习上最大的忌讳便是三天打鱼两天晒网,这样的学习不会有任何收获。知识既然学习了,我们就要好好消化,不 能让它成为大脑中的脂肪。周期性的复习才不会使大脑一片空白,一周一次或两周一次,可以根据自己的记忆力而定,以适合自己的为基准便可以。

大学高数学习方法总结

2014年大学高数学习方法总结 一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近xx年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢? 在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现,这时就一定得坚持住,能够知难而进,继续跟随老师学习。 很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。 所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。篇二:高等数学学习方法及经验总结高等数学学习方法及经验总结 大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。 高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。 首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。 (一)做题的方法和技巧 学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。 (二)考试后的反思

微积分基础知识总结以及泰勒公式

§3.3 泰勒公式 常用近似公式 ,将复杂函数用简单的一 次多项式函数近似地表示,这是一个进步。当然这种近似表示式还较粗糙(尤其当 较大时),从下图可看出。 上述近似表达式至少可在下述两个方面进行改进: 1、提高近似程度,其可能的途径是提高多项式的次数。 2、任何一种近似,应告诉它的误差,否则,使用者“ 心中不安”。 将上述两个想法作进一步地数学化: 对复杂函数 ,想找多项式来近似表示它。自然地,我们希望 尽可能多地反映出函数 所具有的性态 —— 如:在某点处的值与导 数值;我们还关心 的形式如何确定; 近似 所产生的误差 。 【问题一】 设 在含的开区间内具有直到阶的导数,能否找出一个关于 的 次多项式 近似 ? e x x x x x ≈+≈1,sin ()充分小 x f x ()p x n ()p x n () f x ()p x n () p x n () f x ()R x f x p x n n ()()() =-f x ()x 0n +1() x x -0n ) ,,1,0()()() 1()()()()(0)(0) (0202010n k x f x p x x a x x a x x a a x p k k n n n n ==-++-+-+=且f x ()

【问题二】 若问题一的解存在,其误差 的表达式是什么? 一、【求解问题一】 问题一的求解就是确定多项式的系数 。 …………… 上述工整且有规律的求系数过程,不难归纳出: R x f x p x n n ()()() =-a a a n 01,,, p x a a x x a x x a x x n n n ()()()()=+-+-++-0102020 ∴=a p x n 00() '=+-+-++--p x a a x x a x x na x x n n n ()()()()1203020123 ∴ ='a p x n 10() ''=??+???-+???-++?-??--p x a a x x a x x n n a x x n n n ()()()()()213243123040202 ∴ ??=''2120a p x n () '''=???+????-+????-++?-?-??--p x a a x x a x x n n n a x x n n n ()()()()()()3214325431234050203 ∴???='''32130a p x n ()

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

微积分公式大全

导数公式: 基本积分表: 三角函数的有理式积分: 2222 212sin cos 1121u u x du x x u tg dx u u u -==== +++, , ,  22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=?'=-?'='=+' = 2 2 2 (arcsin )(arccos )1 (arctan )11 (arc cot )11 ()x x x x x x thx ch '= '='= +'=- +' = 2 22 2sec tan cos csc cot sin sec tan sec csc cot csc ln ln(x x dx xdx x C x dx xdx x C x x xdx x C x xdx x C a a dx C a shxdx chx C chxdx shx C x C ==+==-+?=+?=-+=+=+=+=+????????? 222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x C xdx x x C xdx x x C dx x C a x a a dx x a C x a a x a dx a x C a x a a x x C a =-+=+=++=-+=++-=+-++=+--=+???????? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

微积分学习总结

第一章函数与极限 第一节函数§ 1.1函数内容网络图 定义域 函数 定义 区间 不等式 集合 对应法则 厂表格法 表达方法&图象法 函数的特性 重要的函数 『单调性 奇偶性 周期性 有界性 反函数 ?复合函数几个具体重要的函数 § 1.2内容提要与释疑解难 一、函数的概念 非初等函数 定义 存在性定理 1,x0, r符号函数:sgnx 0,x0, 1,x0. 取整函数:f X [X],其中[x]表示不超过x 狄里克雷函数:D x 1, 0, x为有理数, X为无理数. 的最大整数.

定义:设A、B是两个非空实数集,如果存在一个对应法则f,使得对A中任何一个实数X,在B 中都有唯一确定的实数y与x对应,则称对应法则f是A上的函数,记为 f : x y 或f :A B . y称为x对应的函数值,记为 其中x叫做自变量,y又叫因变量,A称为函数f的定义域,记为D ( f), f(A) f(x)x A ,称为函数的值域,记为R( f),在平面坐标系Oxy下,集合 (x,y) y f (x),x D称为函数y=f(x)的图形。函数是微积分中最重要最基本的一个概念,因为微积分是以函数为研究对象,运用无穷小及无穷大过程分析处理问题的一门数学学科。 1、由确定函数的因素是定义域、对应法则及值域,而值域被定义域和对应法则完全确定,故确定函数的两要素为定义域和对应法则。从而在判断两个函数是否为同一函数时,只要看这两个函数的定义域和对应法则是否相同,至于自变量、因变量用什么字母,函数用什么记号都是无关紧要的。 2、函数与函数表达式的区别:函数表达式指的是解析式子,是表示函数的主要形式,而函数除了用表达式来表示,还可以用表格法、图象法等形式来表示,不要把函数与函数表达式等同起来。 二、反函数 定义设y=f(x),x D,若对R⑴中每一个y,都有唯一确定且满足y=f(x)的x D与之对应,则按此对应法则就能得到一个定义在R(f)上的函数,称这个函数为f的反函数,记作 f 1 : R f D 或x f 1 y , y R f . 由于习惯上用x表示自变量,y表示因变量,所以常把上述函数改写成y f 1 x, x R f . 1、由函数、反函数的定义可知,反函数的定义域是原来函数的值域,值域是原来函数的定义域。 2、函数y=f(x)与x=f-1(y)的图象相同,这因为满足y=f(x)点(x,y)的集合与满足x=f-1(y)点(x,y) 的集合完全相同,而函数y=f(x)与y=f-1(x)图象关于直线y=x对称。 1 1 3、若y=f(x)的反函数是x=f-1(y),则y ff(y), x f f x . 4、定理1 (反函数存在定理)严格增(减)的函数必有严格增(减)的反函数。 三、复合函数 定义设y fu,u E, u x , x D,若D( f) R ,则y通过u构成x的函数,称为由y=f(u)与u x复合而成的函数,简称为复合函数,记作y f( (x))。 复合函数的定义域为xx D且(x) E,其中x称为自变量, y称为因变量,u称为中间变量,x称为内函数,f(u)称为外函数。 1、在实际判断两个函数y f(u), u x能否构成复合函数,只要看y f( x )的定义域是否为非空集,若不为空集,则能构成复合函数,否则不能复合函数。 2、在求复合函数时,只要指出谁是内函数,谁是外函数,例如y=f(x), y=g(x),若y=f(x)作为外

高等数学知识点归纳知识讲解

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=? >?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0 lim ln 0n x x x + →=, 0, x x e x →-∞ ?→?+∞→+∞ ?

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在 一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim =→口 口口, (2) e ) 11(lim 0 =+ →口 口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求∞ ∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限; ⑻ 利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性, 极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章 导数与微分 一、本章提要 1. 基本概念

瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线. 2.基本方法 ⑴用洛必达法则求未定型的极限; ⑵函数单调性的判定; ⑶单调区间的求法; ⑷可能极值点的求法与极大值(或极小值)的求法; ⑸连续函数在闭区间上的最大值及最小值的求法; ⑹求实际问题的最大(或最小)值的方法; ⑺曲线的凹向及拐点的求法; ⑻曲线的渐近线的求法; ⑼一元函数图像的描绘方法. 3. 定理 柯西中值定理,拉格朗日中值定理,罗尔中值定理, 洛必达法则,函数单调性的判定定理,极值的必要条件,极值的第一充分条件,极值的第二充分条件,曲线凹向的判别法则. 第五章不定积分 一、本章提要 1. 基本概念 原函数,不定积分. 2.基本公式

相关主题
文本预览
相关文档 最新文档