当前位置:文档之家› 中考数学(圆的综合提高练习题)压轴题训练及详细答案

中考数学(圆的综合提高练习题)压轴题训练及详细答案

中考数学(圆的综合提高练习题)压轴题训练及详细答案
中考数学(圆的综合提高练习题)压轴题训练及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)

1.如图,在锐角△ABC 中,AC 是最短边.以AC 为直径的⊙O ,交BC 于D ,过O 作OE ∥BC ,交OD 于E ,连接AD 、AE 、CE . (1)求证:∠ACE=∠DCE ;

(2)若∠B=45°,∠BAE=15°,求∠EAO 的度数; (3)若AC=4,

2

3

CDF COE S S ??=,求CF 的长.

【答案】(1)证明见解析,(2)60°;(343

【解析】 【分析】

(1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°; (3)易证

1

2COE CAE

S S

=

,由于2

3

CDF COE

S S

=

,所以

CDF CAE

S S =

1

3

,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案. 【详解】

(1)∵OC =OE ,∴∠OEC =∠OCE .

∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G .

∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°. ∵OE ∥BC ,∴∠AEO =∠AGC =60°. ∵OA =OE ,∴∠EAO =∠AEO =60°.

(3)∵O 是AC 中点,∴

12

COE CAE

S

S

=. 23CDF COE

S S

=

,∴CDF CAE

S S

=

1

3

. ∵AC 是直径,∴∠AEC =∠FDC =90°. ∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴

CF CA =33,∴CF =33CA =3

3

【点睛】

本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.

2.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.

(1)求证:BF=EF:

(2)求证:PA是⊙O的切线;

(3)若FG=BF,且⊙O的半径长为32,求BD的长度.

【答案】(1)证明见解析;(2) 证明见解析;(3)2

【解析】

分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;

(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;

(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.

详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,

∴EB⊥BC.

又∵AD⊥BC,

∴AD∥BE.

∴△BFC∽△DGC,△FEC∽△GAC,

∴BF

DG

=

CF

CG

EF

AG

=

CF

CG

∴BF

DG

=

EF

AG

∵G是AD的中点,

∴DG=AG,

∴BF=EF;

(2)连接AO,AB.

∵BC是圆O的直径,

∴∠BAC=90°,

由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,

又∵OA=OB,

∴∠ABO=∠BAO,

∵BE是圆O的切线,

∴∠EBO=90°,

∴∠FBA+∠ABO=90°,

∴∠FAB+∠BAO=90°,

即∠FAO=90°,

∴PA⊥OA,

∴PA是圆O的切线;

(3)过点F作FH⊥AD于点H,

∵BD⊥AD,FH⊥AD,

∴FH∥BC,

由(2),知∠FBA=∠BAF,

∴BF=AF.

∵BF=FG,

∴AF=FG,

∴△AFG是等腰三角形.

∵FH⊥AD,

∴AH =GH , ∵DG =AG , ∴DG =2HG . 即

1

2

HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°, ∴四边形BDHF 是矩形, ∴BD =FH , ∵FH ∥BC ∴△HFG ∽△DCG , ∴1

2

FH HG CD DG ==, 即1

2

BD CD =, ∴

23

2.15≈, ∵O 的半径长为32, ∴BC =62, ∴BD =

1

3

BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.

3.如图,△ABC 内接于⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于点E ,交PC 于点F ,连结AF . (1)判断AF 与⊙O 的位置关系并说明理由; (2)若AC =24,AF =15,求sin B .

【答案】(1) AF 与⊙O 相切 理由见解析;(2)35

【解析】

试题分析:(1)连接OC ,先证∠OCF =90°,再证明△OAF ≌△OCF ,得出∠OAF =∠OCF =90°即可;

(2)先求出AE 、EF ,再证明△OAE ∽△AFE ,得出比例式OA AE

AF EF

=,可求出半径,进而求出直径,由三角函数的定义即可得出结论.

试题解析:解:(1)AF 与⊙O 相切.理由如下:

连接OC .如图所示.∵PC 是⊙O 的切线,∴OC ⊥PC ,∴∠OCF =90°.∵OF ∥BC ,∴∠B =∠AOF ,∠OCB =∠COF .∵OB =OC ,∴∠B =∠OCB ,∴∠AOF =∠COF .在△OAF 和△OCF 中,∵OA =OC ,∠AOF =∠COF ,OF =OF ,∴△OAF ≌△OCF (SAS ),∴∠OAF =∠OCF =90°,∴AF 与⊙O 相切;

(2)∵△OAF ≌△OCF ,∴∠OAE =∠COE ,∴OE ⊥AC ,AE =

1

2

AC =12,∴EF =2215129-=.∵∠OAF =90°,∴△OAE ∽△AFE ,∴OA AE AF EF =,即12

159

OA =,∴OA =20,∴AB =40,sin B =

243

405

AC AB ==.

点睛:本题考查了切线的性质与判定和全等三角形的判定与性质以及相似三角形的判定与性质;熟练掌握切线的证法和三角形相似是解题的关键.

4.如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径.∠ACB 的平分线交⊙O 于点D ,过点D 作⊙O 的切线PD 交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F .

(1)求证:DP ∥AB ;

(2)若AC=6,BC=8,求线段PD 的长. 【答案】详见解析 【解析】 【分析】

(1)连接OD ,由AB 为⊙O 的直径,根据圆周角定理得∠ACB=90°,再由

∠ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB 为等腰直角三角形,所以DO ⊥AB ,根据切线的性质得OD ⊥PD ,于是可得到DP ∥AB .

(2)先根据勾股定理计算出AB=10,由于△DAB 为等腰直角三角形,可得到

AD 5222

=

==△ACE 为等腰直角三角形,得到

AC6

AE CE32

22

====,在Rt△AED中利用勾股定理计算出DE=42,则

CD=72,易证得∴△PDA∽△PCD,得到PD PA AD52

PC PD CD72

===,所以PA=

5

7

PD,

PC=7

5

PD,然后利用PC=PA+AC可计算出PD.

【详解】

解:(1)证明:如图,连接OD,

∵AB为⊙O的直径,∴∠ACB=90°.

∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°.

∴∠DAB=∠ABD=45°.∴△DAB为等腰直角三角形.

∴DO⊥AB.

∵PD为⊙O的切线,∴OD⊥PD.

∴DP∥AB.

(2)在Rt△ACB中,,

∵△DAB为等腰直角三角形,∴.

∵AE⊥CD,∴△ACE为等腰直角三角形.∴.在Rt△AED中,,

∴.

∵AB∥PD,∴∠PDA=∠DAB=45°.∴∠PAD=∠PCD.

又∵∠DPA=∠CPD,∴△PDA∽△PCD.∴.

∴PA=7

5PD,PC=

5

7

PD.

又∵PC=PA+AC,∴7

5

PD+6=

5

7

PD,解得PD=.

5.问题发现.

(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为______.

(2)如图②,矩形ABCD 中,AB =3,BC =4,点M 、点N 分别在BD 、BC 上,求CM+MN 的最小值.

(3)如图③,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度.若不存在,请说明理由.

【答案】(1) 125CD =;(2) CM MN +的最小值为9625.(3) 152

【解析】

试题分析:(1)根据两种不同方法求面积公式求解;(2)作C 关于BD 的对称点C ',过

C '作BC 的垂线,垂足为N ,求C N '的长即可;(3) 连接AC ,则

ADC

ACG

AGCD S S

S

=+四,321GB EB AB AE ==-=-=,则点G 的轨迹为以E 为圆

心,1为半径的一段弧.过E 作AC 的垂线,与⊙E 交于点G ,垂足为M ,由

AEM ACB ∽求得GM 的值,再由ACD

ACG

AGCD S S

S

=+四边形 求解即可.

试题解析:

(1)从C 到AB 距离最小即为过C 作AB 的垂线,垂足为D ,

22

ABC

CD AB AC BC

S ??==,

∴3412

55

AC BC CD AB ??=

==, (2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,且与BD 交于M ,

则CM MN +的最小值为C N '的长,

设CC '与BD 交于H ,则CH BD ⊥, ∴

BMC BCD ∽,且125CH =

, ∴

C CB BDC ∠=∠',245

CC '=, ∴

C NC BC

D '∽,

∴244

965525

CC BC C N BD ??==='', 即CM MN +的最小值为96

25

(3)连接AC ,则ADC

ACG

AGCD S S

S

=+四,

321GB EB AB AE ==-=-=,

∴点G 的轨迹为以E 为圆心,1为半径的一段弧. 过E 作AC 的垂线,与⊙E 交于点G ,垂足为M , ∵AEM ACB ∽, ∴EM AE

BC AC

=, ∴248

55

AE BC EM AC ??=

==, ∴83

155

GM EM EG =-=-=,

∴ACD

ACG

AGCD S S

S

=+四边形,

113

345225=??+??, 152

=. 【点睛】本题考查圆的综合题、最短问题、勾股定理、面积法、两点之间线段最短等知识,解题的关键是利用轴对称解决最值问题,灵活运用两点之间线段最短解决问题.

6.如图1,已知⊙O 是ΔADB 的外接圆,∠ADB 的平分线DC 交AB 于点M ,交⊙O 于点C ,连接AC ,BC . (1)求证:AC=BC ;

(2)如图2,在图1 的基础上做⊙O 的直径CF 交AB 于点E ,连接AF ,过点A 作⊙O 的切

线AH,若AH//BC,求∠ACF的度数;

(3)在(2)的条件下,若ΔABD的面积为63,ΔABD与ΔABC的面积比为2:9,求CD 的长.

【答案】(1)证明见解析;(2)30°;(3)233

【解析】

分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;

(2)连接AO并延长交BC于I交⊙O于J,由AH是⊙O的切线且AH∥BC得AI⊥BC,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB,由CF是直径可得∠ACF的度数;

(3)过点D作DG⊥AB ,连接AO,知ABC为等边三角形,求出AB、AE的长,在RtΔAEO 中,求出AO的长,得CF的长,再求DG 的长,运用勾股定理易求CD的长.

详解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴AC=BC.

(2)如图,连接AO并延长交BC于I交⊙O于J

∵AH是⊙O的切线且AH∥BC,

∴AI⊥BC,

∴BI=IC,

∵AC=BC,

∴IC=1

AC,

2

∴∠IAC=30°,

∴∠ABC=60°=∠F=∠ACB . ∵FC 是直径, ∴∠FAC=90°,

∴∠ACF=180°-90°-60°=30°. (3)过点D 作DG AB ⊥,连接AO

由(1)(2)知ABC 为等边三角形 ∵∠ACF=30°, ∴AB CF ⊥, ∴AE=BE , ∴2ΔABC 3

34

S AB =

= ∴AB=3 ∴33AE =

在RtΔAEO 中,设EO=x ,则AO=2x , ∴222AO AE OE =+, ∴()(2

2

2233

x x =+,

∴x =6,⊙O 的半径为6, ∴CF=12.

∵ΔABD 11

636322

S AB DG DG =??=?= ∴DG=2.

如图,过点D 作DG CF '⊥,连接OD . ∵AB CF ⊥,DG AB ⊥, ∴CF//DG ,

∴四边形G ′DGE 为矩形, ∴2G E '=,

63211CG G E CE +=++'==',

在RtΔOG D '中,5,6OG OD ='=,

∴11

DG'=,

∴222

1111233

CD DG CG

=+=+=

''

点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等相关知识.比较复杂,熟记相关概念是解题关键.

7.如图,线段BC所在的直线是以AB为直径的圆的切线,点D为圆上一点,满足BD=BC,且点C、D位于直径AB的两侧,连接CD交圆于点E. 点F是BD上一点,连接EF,分别交AB、BD于点G、H,且EF=BD.

(1)求证:EF∥BC;

(2)若EH=4,HF=2,求BE的长.

【答案】(1)见解析;(2) 2

3

【解析】

【分析】

(1)根据EF=BD可得EF=BD,进而得到BE DF,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.

(2)连接DF,根据切线的性质及垂径定理求出GF、GE的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG,进而求出∠BDE的度数,确定BE所对的圆心角的度数,根据∠DFH=90°确定DE为直径,代入弧长公式即可求解.

【详解】

(1)∵EF=BD,

∴EF=BD

∴BE DF

∴∠D=∠DEF

又BD=BC,

∴∠D=∠C,

∴∠DEF=∠C

EF∥BC

(2)∵AB是直径,BC为切线,∴AB⊥BC

又EF∥BC,

∴AB⊥EF,弧BF=弧BE,

GF=GE=1

2

(HF+EH)=3,HG=1

DB平分∠EDF,

又BF∥CD,

∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2

∴cos∠BHG=HG

HB =

1

2

,∠BHG=60°.

∴∠FDB=∠BDE=30°

∴∠DFH=90°,DE为直径,DE=3BE所对圆心角=60°.

∴弧BE=1

63π=

2

3

【点睛】

本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.

8.如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A在原点的左上方,且tan∠AOB3C为OB的中点,点D在数轴上对应的数为4.

(1)S扇形AOB=(大于半圆的扇形);

(2)点P是优弧AB上任意一点,则∠PDB的最大值为°

(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)

①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;

②当PD∥AO时,求AD2的值;

③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.

【答案】(1)103

π

(2)30(3)①AD =2PC ②20+83或20+83③1≤d ≤3 【解析】 【分析】

(1)利用扇形的面积公式计算即可.

(2)如图1中,当PD 与⊙O 相切时,∠PDB 的值最大.解直角三角形即可解决问题. (3)①结论:AD =2PC .如图2中,连接AB ,AC .证明△COP ∽△AOD ,即可解决问题. ②分两种情形:如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .求出PC 即可.如图④中,当PA ∥OA 时,作PK ⊥OB 于K ,同法可得. ③判断出PC 的取值范围即可解决问题. 【详解】

(1)∵tan ∠AOB =3, ∴∠AOB =60°,

∴S 扇形AOB =23002103603

ππ

??=

(大于半圆的扇形), (2)如图1中,当PD 与⊙O 相切时,∠PDB 的值最大.

∵PD 是⊙O 的切线, ∴OP ⊥PD , ∴∠OPD =90°,

∵21

sin 42

OP PDO OD ∠=

== ∴∠PDB =30°,

同法当DP ′与⊙O 相切时,∠BDP ′=30°, ∴∠PDB 的最大值为30°. 故答案为30.

(3)①结论:AD =2PC . 理由:如图2中,连接AB ,AC .

∵OA =OB ,∠AOB =60°, ∴△AOB 是等边三角形, ∵BC =OC , ∴AC ⊥OB ,

∵∠AOC =∠DOP =60°, ∴∠COP =∠AOD ,

2AO OD

OC OP

==, ∴△COP ∽△AOD ,

2AD AO

PC OC ==, ∴AD =2PC .

②如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .

∵OP =OK ,∠POK =60°, ∴△OPK 是等边三角形, ∵PD ∥OA ,

∴∠AOP =∠OPD =90°, ∴∠POH +∠AOC =90°, ∵∠AOC =60°, ∴∠POH =30°, ∴PH =

1

2

OP =1,OH 33, ∴PC 2222PH CH 1(13)523+=++=+ ∵AD =2PC ,

∴AD 2=4(5+23)=20+83.

如图④中,当PA ∥OA 时,作PK ⊥OB 于K ,同法可得:PC 2=12+(3﹣1)2=5﹣23,AD 2=4PC 2=20﹣83.

③由题意1≤PC ≤3,

∴在旋转过程中,点C 到PD 所在直线的距离d 的取值范围为1≤d ≤3. 【点睛】

本题属于圆综合题,考查了切线的性质,相似三角形的判定和性质,旋转变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.

9.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;

(2)若AD =2,AC=6,求⊙O 的半径R 的长.

【答案】(1)证明见解析 (2)

32

【解析】

试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=

1

2

∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC

AC R

,从而求得R . 试题解析:(1)证明:连接OC ,

∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径, ∴OC ⊥CD . 又∵AC 平分∠DAB , ∴∠1=∠2=

1

2

∠DAB . 又∠COB =2∠1=∠DAB , ∴AD ∥OC , ∴AD ⊥CD .

(2)连接BC ,则∠ACB =90°, 在△ADC 和△ACB 中 ∵∠1=∠2,∠3=∠ACB =90°, ∴△ADC ∽△ACB . ∴

2AD AC

AC R

= ∴R =2322AC AD =

10.如图,AB 为⊙O 的直径,DA 、DC 分别切⊙O 于点A ,C ,且AB =AD . (1)求tan ∠AOD 的值. (2)AC ,OD 交于点E ,连结BE . ①求∠AEB 的度数;

②连结BD 交⊙O 于点H ,若BC =1,求CH 的长.

【答案】(1)2;(2)①∠AEB =135°;②22

CH = 【解析】 【分析】

(1)根据切线的性质可得∠BAD=90°,由题意可得AD=2AO ,即可求tan ∠AOD 的值; (2)①根据切线长定理可得AD=CD ,OD 平分∠ADC ,根据等腰三角形的性质可得DO ⊥AC ,AE=CE ,根据圆周角定理可求∠ACB=90°,即可证∠ABC=∠CAD ,根据“AAS”可证

△ABC≌△DAE,可得AE=BC=EC,可求∠BEC=45°,即可求∠AEB的度数;

②由BC=1,可求AE=EC=1,BE2

=,根据等腰直角三角形的性质可求∠ABE=∠HBC,可证△ABE∽△HBC,可求CH的长.

【详解】

(1)∵DA是⊙O切线,∴∠BAD=90°.

∵AB=AD,AB=2AO,∴AD=2AO,∴tan∠AOD

AD

AO

==2;

(2)①∵DA、DC分别切⊙O于点A,C,∴AD=CD,OD平分∠ADC,∴DO⊥AC,

AE=CE.

∵AB是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,且∠BAC+∠CAD=90°,

∴∠ABC=∠CAD,且AB=AD,∠ACB=∠AED=90°,∴△ABC≌△DAE(AAS),∴CB=AE,∴CE=CB,且∠ACB=90°,∴∠BEC=45°=∠EBC,∴∠AEB=135°.

②如图,∵BC=1,且BC=AE=CE,∴AE=EC=BC=1,∴BE2

=.

∵AD=AB,∠BAD=90°,∴∠ABD=45°,且∠EBC=45°,∴∠ABE=∠HBC,且∠BAC=∠CHB,

∴△ABE∽△HBC,∴BC CH

EB AE

=,即

1

2

CH

=,∴CH2

=.

【点睛】

本题考查了切线的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.

2020上海中考数学压轴题专项训练

1文档来源为:从网络收集整理.word 版本可编辑. 24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得 1, 1643 c b c =-?? ++=-?, ………………………………………………………………(1分) 解,得9 ,12b c =-=- …………………………………………………………………(1分) 所以抛物线的解析式为29 12y x x =- - …………………………………………… (1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5AOH OBC ∠=∠= ……………………………(1分) ∴4sin 5AH OA AOH =∠= ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511AH ABO BH ∠==÷= ………………………………(1分) (3)直线AB 的解析式为1 12y x =--, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分) 所以符合题意的点N 有4 个35 (22),(22),(1,),(3,)22 --+--- ……………………………………………………………………………………(1分) 25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5

中考数学压轴题100题精选【含答案】

中考数学压轴题100题精选【含答案】 【001 】如图,已知抛物线 2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1 个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;

(新)中考数学--选择题压轴题(含答案)

题型一选择题压轴题 类型一选择几何压轴题 1?如图,四边形ABCD是平行四边形,ZBCD=I20o , AB = 2, BC = 4,点E是直线BC上的点,点F是直线CD上的点,连接AF, AE, EF,点M, N分别是AF, EF 的中点,连接MW则MN的最小值为() 2.如图,四边形ABCD是菱形,对角线AC与BD交于点0, AB = 4, AC = 2√TT,若直线1满足:①点A到直线1的距离为2;②直线1与一条对角线平行;③直线1与菱形ABCD的边有交点,则符合题意的直线1的条数为() 3?如图,在四边形ABCD 中,AD/7BC, AB=CD, AD = 2, BC = 6, BD = 5.若点P 在四边形ABCD的边上,则使得APBD的面积为3的点P的个数为() -√3 (第2(第3

4?如图,点M是矩形ABCD的边BC, CD上的动点,过点B作BN丄AM于点P,交

矩形ABCD 的边于点N,连接DP.若AB=4, AD = 3,则DP 的长的最小值为( ) A. √T3-2 5?如图,等腰直角三角形ABC 的一个锐角顶点A 是。()上的一个动点,ZACB= 90° ,腰AC 、斜边AB 分别交Oo 于点E, D,分别过点D, E 作OO 的切线,两线 交于点F,且点F 恰好是腰BC 上的点,连接O C, ()D, OE.若Θ0的半径为2,则 OC 的长的最大值为( ) 6.如图,在矩形ABCD 中,点E 是AB 的中点,点F 在AD 边上,点M, N 分别是 CD, BC 边上的动点?若AB=AF 二2, AD 二3,则四边形EFMN 周长的最小值是( ) 7.如图,OP 的半径为1,且点P 的坐标为(3, 2),点C 是OP 上的一个动点, 点A, B 是X 轴上的两点,且OA=OB, AC 丄BC,则AB 的最小值为( ) √TT √T3 C. √5+l +√13 √2+2√5 ÷√5 √2+1 O B (第5 (第6 (第7(第8

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

中考数学压轴题 易错题难题专项训练检测试题

一、中考数学压轴题 1.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于A B 、两点. (1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度. (2)已知M 是 O 一点,1cm OM =. ①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________. ②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm . 2.如图1,在 O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO , AD AB =. (1)求证:2CAO CDB ∠=∠ (2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE += (3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长. 3.已知抛物线2 17 22 2 y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点; (2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标; (3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.

4.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N . (1)如图1,当α=60°时,求证:DM =BN ; (2)在上述旋转过程中, DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积. 5.如图,在等边ABC ?中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接 BE ,DE . (1)如图1,若310DE =,23BC =,求CE 的长; (2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且 DF CD =,求证:12 AB EF =; (3)在(2)的条件下,若45AED ∠=?直接写出线段BD ,EF ,ED 的等量关系 6.如图,90EOF ∠=?,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =, 3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

中考数学压轴题(选择填空)

中考数学压轴题解题技巧 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数与方程思想。以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。 二是运用分类讨论的思想。对问题的条件或结论的多变性进行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。 解中考压轴题技能技巧: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

最新全国各地中考数学解答题压轴题解析2

全国各地中考数学解答题压轴题解析2

2011年全国各地中考数学解答题压轴题解析(2) 1.(湖南长沙10分)如图,在平面直角坐标系中,已知 点A(0,2),点P是x轴上一动点,以线段AP为一边, 在其一侧作等边三角线APQ。当点P运动到原点O处时, 记Q得位置为B。 (1)求点B的坐标; (2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值; (3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。 【答案】解:(1)过点B作BC⊥y轴于点C, ∵A(0,2),△AOB为等边三角形, ∴AB=OB=2,∠BAO=60°, ∴BC=3,OC=AC=1。即B( 3 1,)。 (2)不失一般性,当点P在x轴上运动(P不与O重合)时, ∵∠PAQ==∠OAB=60°,∴∠PAO=∠QAB, 在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB,∴△APO≌△AQB总成立。 ∴∠ABQ=∠AOP=90°总成立。 ∴当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°。 (3)由(2)可知,点Q总在过点B且与AB垂直的直线上, ∴AO与BQ不平行。

①当点P 在x 轴负半轴上时,点Q 在点B 的下方, 此时,若AB∥OQ ,四边形AOQB 即是梯形, 当AB∥OQ 时,∠BQO=90°,∠BOQ=∠ABO=60°。 又OB=OA=2,可求得BQ=3。 由(2)可知,△APO≌△AQB ,∴OP=BQ=3, ∴此时P 的坐标为(3 0-, )。 ②当点P 在x 轴正半轴上时,点Q 在点B 的上方, 此时,若AQ∥OB ,四边形AOQB 即是梯形, 当AQ∥OB 时,∠ABQ=90°,∠QAB=∠ABO=60°。 又AB= 2,可求得BQ=23, 由(2)可知,△APO≌△AQB ,∴OP=BQ=23, ∴此时P 的坐标为(23 0, )。 综上所述,P 的坐标为(3 0-, )或(23 0,)。 【考点】等边三角形的性质,坐标与图形性质;全等三角形的判定和性质,勾股定理,梯形的判定。 【分析】(1)根据题意作辅助线过点B 作BC⊥y 轴于点C ,根据等边三角形的性质即可求出点B 的坐标。 (2)根据∠PAQ═∠OAB=60°,可知∠PAO=∠QAB ,得出△APO≌△AQB 总成立,得出当点P 在x 轴上运动(P 不与Q 重合)时,∠ABQ 为定值90°。 (3)根据点P 在x 的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果。 2.(湖南永州10分)探究问题:

中考数学选择题压轴题汇编

资料收集于网络,如有侵权请联系网站删除 2017年中考数学选择题压轴题汇编(1) 2a的解为正数,且使关于的分式方程y的不等(2017重庆)若数a使关于x1.4?? x?11?xy?2y???1?23的解集为y,则符合条件的所有整数a的和为()式组 2???????0y?2a? A.10 B.12 C.14 D.16 【答案】A 【解析】①解关于x的分式方程,由它的解为正数,求得a的取值范围. 2a 4??x?11?x去分母,得2-a=4(x-1) 去括号,移项,得4x=6-a 6?a 1,得x=系数化为46?a6?a≠1,解得a且a≠2;6?,且,∴x≠1∵x且00?? 44②通过求解于y的不等式组,判断出a的取值范围. y?2y???1?32 ?????0y?2a?解不等式①,得y;2???a;解不等式②,得y ∵不等式组的解集为y,∴a;2??2??③由a且a≠2和a,可推断出a的取值范围,且a≠2,符合条件的所有整数6?a6??2?2??a为-2、-1、0、1、3、4、5,这些整数的和为10,故选A.2.(2017内蒙古赤峰)正整数x、y满足(2x-5)(2y-5)=25,则x+y等于()A.18或10 B.18 C.10 D.26 【答案】A, 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)只供学习与交流. 资料收集于网络,如有侵权请联系网站删除 又∵正整数x、y满足(2x-5)(2y-5)=25, ∴2x-5=5,2y-5=5或2x-5=1,2y-5=25 解各x=5,y=5或x=3,y=15. ∴x+y=10或x+y=18. 故选A. x?a?0?3.(2017广西百色)关于x的不等式组的解集中至少有5个整数解,则正数a?2x?3a?0?的最小值是() 2 D..1 B.2 CA. 3 3B. 【答案】3a3a<x≤a,因为该解集中至少5个整数解,所以a比至少【解析】不等式组的解集为??223a+5,解得a≥2 a≥.大5,即?2111122=n-m-2,则-的值等于(4.(2017四川眉山)已知m+n )44mn1D.- 1 C.B0 .-A.1 4C 【答案】11112222,m+1)n+(-1)m=0,从而=-2即1)1)由题意,【解析】得(m+m++(n-n +=0,(24421111 =-1.=n2,所以-=-2nm2-端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙.(2017聊城)5之前的函数关系式如图所示,下列两队与时间500米的赛道上,所划行的路程(min)my()x 说法错误的是()到达终点.乙队比甲队提前A0.25min 时,此时落后甲队.当乙队划行B110m15m

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

中考数学压轴题精选含详细答案

目 录 2.1 由比例线段产生的函数关系问题 例1 2012年上海市徐汇区中考模拟第25题 例2 2012年连云港市中考第26题 例3 2010年上海市中考第25题 例1 2012年上海市徐汇区中考模拟第25题 在Rt △ABC 中,∠C =90°,AC =6,53sin B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点. (1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系; (2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域. 图1 图2 图3 动感体验 请打开几何画板文件名“12徐汇25”,拖动点O 在AB 上运动,观察△OMP 的三个顶点与对边的垂直平分线的位置关系,可以体验到,点O 和点P 可以落在对边的垂直平分线上,点M 不能. 请打开超级画板文件名“12徐汇25”, 分别点击“等腰”按钮的左部和中部,观察三个角度的大小,可得两种等腰的情形.点击“相切”按钮,可得y 关于x 的函数关系. 思路点拨 1.∠B 的三角比反复用到,注意对应关系,防止错乱. 2.分三种情况探究等腰△OMP ,各种情况都有各自特殊的位置关系,用几何说理的方法比较简单. 3.探求y 关于x 的函数关系式,作△OBN 的边OB 上的高,把△OBN 分割为两个具有公共直角边的直角三角形. 满分解答

(1) 在Rt △ABC 中,AC =6,53sin =B , 所以AB =10,BC =8. 过点M 作MD ⊥AB ,垂足为D . 在Rt △BMD 中,BM =2,3sin 5MD B BM ==,所以65 MD =. 因此MD >MP ,⊙M 与直线AB 相离. 图4 (2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况. ②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形. 在Rt △BOM 中,BM =2,4cos 5BO B BM ==,所以85BO =.此时425 OA =. ③如图6,当OM =OP 时,设底边MP 对应的高为OE . 在Rt △BOE 中,BE =32,4cos 5BE B BO ==,所以158BO =.此时658 OA =. 图5 图6 (3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y . 在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45 BF y =. 在Rt △ONF 中,4105 OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55 x y x y y +=--+. 整理,得2505040 x y x -=+.定义域为0<x <5. 图7 图8 考点伸展 第(2)题也可以这样思考: 如图8,在Rt △BMF 中,BM =2,65MF =,85 BF =.

中考数学压轴题专项训练十套(含答案)

做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日 三、解答题 23.(11分)如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1, 1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速 度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0

做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日 三、解答题 23. (11分)如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点, 与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点. (1)求抛物线的解析式及点D 的坐标. (2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标. (3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由. 备用图

做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日 三、解答题 23.(11分)如图,已知直线 1 1 2 y x =-+与坐标轴交于A,B两点,以线段AB 为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E. (1)请直接写出C,D两点的坐标,并求出抛物线的解析式; (2 个单位长度的速度沿射线AB下滑,直至顶点D落 在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围; (3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积. 备用图

中考数学压轴题精选及答案(整理版)

20XX 年全国各地中考数学压轴题精选 1、(黄石市20XX 年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1 O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合) ,直线CB 与⊙1O 交于另一点D 。 (1)如图(8),若 AC 是⊙2O 的直径,求证:AC CD =; (2)如图(9),若C 是⊙1O 外一点,求证:1O C AD ⊥; (3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。 2、(黄石市20XX 年)(本小题满分10分)已知二次函数 2248y x mx m =-+- (1)当2x ≤时,函数值 y 随x 的增大而减小,求m 的取值范围。 (2)以抛物线 2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接 正三角形 AMN (M ,N 两点在抛物线上) ,请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。 (3)若抛物线 2248y x mx m =-+-与x 轴交点的横坐标均为整数,求整数m 的值。

3、(20XX 年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0) ,与x 轴相交于点A (5,0),过点A 的直线AB 与 y 轴的正半轴交于点B ,与⊙P 交于点C . (1)已知AC=3,求点B的坐标; (4分) (2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明 理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数 x k y = 的图象经过点1O ,求k 的值(用含a 的代数式表示). 4、庆市潼南县20XX 年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物 线的顶点为D . (1)求b ,c 的值; (2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的 垂线 交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标; (3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛 物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由. 第3题图 χ y

中考数学选择题压轴题汇编

年中考数学选择题压轴题汇编

————————————————————————————————作者:————————————————————————————————日期: 2

3 2017年中考数学选择题压轴题汇编(1) 1.(2017重庆)若数a 使关于x 的分式方程2411a x x +=--的解为正数,且使关于y 的不等式组()213220y y y a +?->???-≤? 的解集为y 2<-,则符合条件的所有整数a 的和为( ) A .10 B .12 C . 14 D .16 【答案】A 【解析】①解关于x 的分式方程,由它的解为正数,求得a 的取值范围. 2411a x x +=-- 去分母,得2-a =4(x -1) 去括号,移项,得 4x =6-a 系数化为1,得x = 64a - ∵x 0>且x≠1,∴64a -0>,且64 a -≠1,解得a 6<且a≠2; ②通过求解于y 的不等式组,判断出a 的取值范围. ()213220y y y a +?->???-≤? 解不等式①,得y 2<-; 解不等式②,得y ≤a ; ∵不等式组的解集为y 2<-,∴a 2≥-; ③由a 6<且a≠2和a 2≥-,可推断出a 的取值范围26a -≤<,且a≠2,符合条件的所有整数a 为-2、-1、0、1、3、4、5,这些整数的和为10,故选A . 2.(2017内蒙古赤峰)正整数x 、y 满足(2x -5)(2y -5)=25,则x +y 等于( ) A .18或10 B .18 C .10 D .26 【答案】A , 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)

中考数学二轮复习中考数学压轴题知识点及练习题附解析(1)

一、中考数学压轴题 1.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF = 1 3 ,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由. 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.如图1,在平面直角坐标系中,抛物线239 334 y x x = --x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点 C . (1)过点C 的直线5 334 y x = -x 轴于点H ,若点P 是第四象限内抛物线上的一个动

点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值: (2)如图2, 将ABC ?绕点B 顺时针旋转至A BC ''?的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连 接AE C E '、, 将AC E ?'沿直线C E '翻折为A C E ?'', 是否存在点E , 使得BAA ?'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由. 4.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ; (2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ; (3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由. 5.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:

相关主题
文本预览
相关文档 最新文档