当前位置:文档之家› 透明导电膜知识培训

透明导电膜知识培训

透明导电膜知识培训
透明导电膜知识培训

新业务知识教材—透明导电膜部分

一、触摸屏发展的背景

二、触摸屏的原理以及发展历程

1、触摸屏—绝对定位元件

2、触摸屏的种类以及工作原理

3、各种方式触摸屏的特点比较以及应用的领域

三、透明导电膜的功能以及材料组成

1、透明导电膜在触摸屏中的作用

2、透明导电膜的材料特点

四、透明导电膜的技术要求

1、透明导电膜的技术要求

2、透明导电膜的技术指标

五、透明导电膜的生产工艺

1、溅射法生产工艺介绍

2、涂布法生产工艺介绍

3、其他方法简介

六、触摸屏的发展趋势以及面临的问题

触摸屏及透明导电膜知识简介

前言

随着计算机技术的快速发展,人机界面的沟通成了计算机技术的一个热点,触摸屏凭着优秀的人机沟通方式,成为了当今发展最快的技术。

触摸屏主要应用于个人便携式信息产品(如使用手写输入技术的PC、PDA、A V等)之外,应用领域遍及信息家电、公共信息(如电子政务、银行、医院、电力等部门的业务查询等)、电子游戏、通讯设备、办公室自动化设备、信息收集设备及工业设备等等。2009年全球触摸屏产值达43亿美元,估计2016年将成长到140亿美元,年复合成长率达18%。国内市场约占全球市场的20%,约为8.6亿美元。

第一章:触摸屏发展的背景

在人类渴求讯息实时联系与传递的欲望下,个人化电子用品未来将有爆发性的需求。然而,在机动与方便性的诉求下,个人化的电子工具通常使用在不安稳的场合,如何快速简便的使用随身的电子工具,是使用者最大期待。其中最大的障碍在于人与机器间的沟通。所以,是否具有快速简便的人机沟通接口,将是未来电子化产品最重要的功能。

如果说1964年鼠标的发明,把电脑操作带入了一个新的时代,那么触摸屏的出现,则使图形化的人机交互界面变得更为直观易用。1971年,美国人SamHurst发明了世界上第一个触摸传感器。虽然这个仪器和我们今天看到的触摸屏并不一样,却被视为触摸屏技术研发的开端。

当年,SamHurst在肯尼迪大学当教师,因为每天要处理大量的图形数据而不胜其烦,就开始琢磨怎样提高工作效率,用最简单的方法搞定这些该死的图形。他把自己的三间地下室改造成了车间,一间用来加工木材,一间制造电子元件,一间用来装配这些零件,并最终制造出了最早的触摸屏。这种最早的触摸屏被命名为“AccuTouch”,由于是手工组装,一天生产几台设备。不久,SamHurst成立了自己的公司,并和西门子公司合作,不断完善这项技术。这个时期的触摸屏技术主要被美国军方采用,直到1982年,Sam Hurst的公司在美国一次科技展会上展出了33台安装了触摸屏的电视机,平民百姓才第一次亲手“摸”到神奇的触摸屏。触摸屏早期多被装于工控计算机、POS机终端等工业

或商用设备之中。2007年iPhone手机的推出,成为触控行业发展的一个里程碑。苹果公司把一部至少需要20个按键的移动电话,设计得仅需三四个键就能搞定,剩余操作则全部交由触控屏幕完成。除赋予了使用者更加直接、便捷的操作体验之外,还使手机的外形变得更加时尚轻薄,增加了人机直接互动的亲切感,引发消费者的热烈追捧,同时也开启了触摸屏向主流操控界面迈进的征程。

触摸屏的优点:人类自婴儿时期就具有碰触喜爱事物的本能,因为碰触是表达意志最简单快速的方法。所以,触控屏幕可使人与机器间以更友善直接的方式沟通,使个人电子产品的使用更加人性化。有句广告词说「科技始终来自于人性」,这的确对于触控屏幕的重要性,作了最完美的诠释。

第二章:触摸屏的原理以及发展历程触摸屏技术自从应用于公共服务领域和个人娱乐设备,人们逐渐习惯用“摸”的方式,在电子售货机上选购商品,在卡拉OK机上点播歌曲,在银行、医院、图书馆、机场查询自己需要的信息。1991年,触摸屏正式进入中国。1996年中国自主研发的触摸自助一体机投入生产。今天我们在大街小巷看到的“数字北京信息亭”就离不开触摸屏技术,有了它,即使不会使用电脑的人也能轻易查到“我在哪里”、“我要到哪去”。1、触摸屏—绝对定位元件

触摸屏---绝对定位元件。所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。从技术原理角度来讲,触摸屏是一套透明的绝对定位系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统;再其次就是能检测手指的触摸动作并且判断手指位置。2、触摸屏的种类以及工作原理

触摸屏目前主要的形式分为:电阻式触摸屏、电容式触摸屏、声波式触摸屏、红外线式触摸屏。

电阻式触摸屏的工作原理以及构造

电阻触摸屏主要是通过测量电阻的大小来实现定位的。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,在强化玻璃表面分别涂上两层ITO透明氧化金属导电层。利用压力感应进行控制。当手指触摸屏幕时。两层导电层在触摸点位置就有了接触,电阻发生变化。在X 和Y 两个方向上产生信号,然后传送到触摸屏控制器。

控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。电阻式触摸屏不怕尘埃、水及污垢影响,能在恶劣环境下工作。但由于复合薄膜的外层采用塑胶材料,抗爆性较差,使用寿命受到一定影响。

电阻式触摸屏结果示意图:

图1

电容式触摸屏的工作原理以及构造

电容式触摸屏主要是通过人体的电流感应进行工作的,当有导电物体触碰时,就会改变触点的电容,从而可以探测出触摸的位置。电容式触摸屏对于戴手套的手或手持不导电的物体触摸时没有反应,这是因为增加了更为绝缘的介质。电容触摸屏能很好地感应轻微及快速触摸、防刮擦、不怕尘埃、水及污垢影响,适合恶劣环境下使用。但由于电容随温度、湿度或环境电场的不同而变化,故其稳定性较差,分辨率低,易漂移。

电容式触摸屏也需要使用ITO 材料,而且它的功耗低寿命长,但是较高的成本使它之前不太受关注。Apple 推出的iPhone 提供的友好人机界面,流畅操作性能使电容式触摸屏受到了市场的追捧,各种电容式触摸屏产品纷纷面世。而且随着工艺进步和批量化,它的成本不断下降,开始显现逐步取代电阻式触摸屏的趋势。

表面电容触摸屏只采用单层的ITO,当手指触摸屏表面时,就会有一定量的电荷转

移到人体。为了恢复这些电荷损失,电荷从屏幕的四角补充进来,各方向补充的电荷量和触摸点的距离成比例,我们可以由此推算出触摸点的位置。

表面电容ITO 涂层通常需要在屏幕的周边加上线性化的金属电极,来减小角落/边缘效应对电场的影响。有时ITO 涂层下面还会有一个ITO 屏蔽层,用来阻隔噪音。表面电容触摸屏至少需要校正一次才能使用。

感应电容触摸屏与表面电容触摸屏相比,可以穿透较厚的覆盖层,而且不需要校正。感应电容式在两层ITO 涂层上蚀刻出不同的ITO 模块,需要考虑模块的总阻抗,模块之间的连接线的阻抗,两层ITO 模块交叉处产生的寄生电容等因素。而且为了检测到手指触摸,ITO 模块的面积应该比手指面积小。

电容式触摸屏示意图

图2

表面声波式触摸屏的工作原理以及构造

表面声波是一种沿介质表面传播的机械波。该种触摸屏的角上装有超声波换能器。能发送一种高频声波跨越屏幕表面,当手指触及屏幕时,触点上的声波即被阻止,由此确定坐标位置。表面声波触摸屏不受温度、湿度等环境因素影响,分辨率极高,有极好的防刮性,寿命长,透光率高,能保持清晰透亮的图像质量,最适合公共场所使用。但尘埃、水及污垢会严重影响其性能,需要经常维护,保持屏面的光洁。

表面声波式触摸屏输入是一种最新颖的触摸输入技术。该触摸屏是由传送换能器、接收换能器、反射板及控制器所组成。它不采用膜层结构,而是采用廉价的压电陶瓷换能器。该换能器在屏面上看不见,但能发送耳朵听不到的表面声波(见图)。位于触摸输入屏四周的反射阵列对表面声波进行空间取样,再次向多路平行路径反射。位于各发送器对面的反射声波检测阵列合成每束反射声波,变成连续的反射声波,变成连续的反射声波交替地对水平和垂直方向进行扫描。手指一触摸到触摸输入屏某个部位,该部位的表面波强度便能与触摸压力成正比地衰减。

表面声波式触摸屏示意图

图3

红外线式触摸屏的工作原理以及构造

红外线式触摸屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。任何触摸物体都可改变触点上的红外线而实现触摸屏操作。红外触摸屏不受电流、电压和静电干扰,适宜某些恶劣的环境条件。其主要优点是价格低廉、安装方便、不需要卡或其它任何控制器,可以在各档次的计算机上应用。

红外线式触摸屏示意图

3、各种方式触摸屏的特点比较以及应用的领域:

各种触摸屏的应用领域:

第三章:透明导电膜的功能以及材料组成

需要使用透明导电膜的触摸屏类型中,主要的有电阻式和电容式触摸屏。

1、透明导电膜在触摸屏中的作用

作为触摸屏中的主要原件的透明导电膜需要经过蚀刻、印刷线路、压合等工序后才能形成触摸屏。

透明导电膜在触摸屏中主要作为绝对定位的信号发生器,同时还需要兼顾保护触摸屏和显示器,保证显示器所显示的图像能够真实的被人眼所观察到。所以导电膜在触摸屏中具有如下的作用:

A. 接受操作,产生正确信号。

B. 对显示器显示的内容能够清晰的传递出去。

C. 保护显示器以及触摸屏内部的原件。

D. 具有可靠的寿命。

2、透明导电膜的材料特点:

透明导电膜一般分为三层:最外面的是起保护作用的硬化层(HC),中间的是起支持作用的基材层(PET),最里面的是起导电作用的导电层。

硬化层为导电膜提供保护,避免在日常使用过程中造成的划伤,抵抗外界的磨损。该层目前一般采用UV涂料来进行制备。

基材为导电膜提供支持,并提供足够的机械强度和尺寸的稳定性的,导电膜的机械性能特性绝大部分由该层提供。目前通常情况下基材使用PET材料。

导电层为导电膜提供电性能和使用过程中的可靠性。

由于透明导电膜要求具有具透明性和导电性两大特性,所以目前导电层的材料主要采用的是ITO(纳米铟锡金属氧化物),这种材料具有很好的导电性和透明性。ITO导电膜以掺Sn的In2O3(ITO)膜的透过率最高和导电性能最好,而且容易在酸液中蚀刻出细微的图形,所以其蚀刻方式既可以采用酸碱蚀刻,也可以采用环保的激光蚀刻方式,其中透过率已达90%以上。ITO中其透过率和阻值分别由In2O3与Sn2O3之比例来控制,通常情况下Sn2O3:In2O3=1:9。但其导电膜略带黄色色调,刚好是液晶显示器画质最忌讳的颜色。此外由于ITO膜的金属属性其柔韧性较差,同时由于触摸屏的变形的输入方式,使得ITO膜在使用过程中的寿命较短,成为业界的一项难题。

高分子导电膜是近来新兴的一种透明导电膜,由于导电高分子也同时具备良好的透过率和导电性能,并且不受资源限制,目前是最被看好替代ITO的一种导电膜。高分子导电膜是利用导电高分子是具有导电特性的纳米微粒,通过配方技术使高分子有序排列,使电子传递,达到导电目的,同时使用涂布技术使其很好成膜,最终形成满足触摸屏使用要求的透明导电膜。高分子导电膜由于不会被酸碱所腐蚀,所以该种膜在使用过程中只能采用激光蚀刻的方式。这类膜层相对于ITO主要优点是柔韧性能良好,采用ITO 制备的产品无法进行曲率半径ψ8mm以下的弯曲,而采用有机导电聚合物制备的产品

却可以行曲率半径ψ1mm的弯曲,正因为它不易变形不易龟裂,断线,因此,未来可望大幅提高窄边触摸屏的上电极基板特性。同时氧化铟锡资源稀缺,而导电高分子采用合成技术,没有资源的限制,在制造上原材料成本非常有利。湿式涂布法规模化生产上有较大优势(车速比干式高一个数量级,幅宽高2-3倍)。高分子天然的淡淡蓝色色调提升了显示器的色彩品质。

由于透明导电膜的材料同时具备柔性和透明导电性的优点所以它的用途十分的广泛。

图6

随着科学技术的发展,越来越多的电子器件开始朝柔性化、超薄化方向发展,使得对柔性透明导电膜的需求日益迫切。迄今为止,对柔性透明导电薄膜的研究还处于初级阶段,光电性能优良的柔性透明导电膜的制备技术还不完全成熟,而透明导电膜是许多透明电子元器件制造的基础,如果没有性能优良的柔性透明导电薄膜材料,就无法制备出柔性透明电子器件。因此,开发光电性能优良的柔性透明导电薄膜具有非常现实的意义。

第四章:透明导电膜的技术要求

1、透明导电膜的技术要求

触摸屏由于是用于显示器上并且在使用过程中因长期的被按压,其使用条件为自然条件,高温、高湿、寒冷、光照、骤冷骤热等自然条件必须耐受。这样,对位透明导电膜提出较高的技术要求。为保证其能够长期稳定的发挥作用,要求位于组件最外层的透明导电膜,能够保护触摸屏内部以及显示器元器件不受水汽的侵蚀;能耐受温差变化;良好的光线透过率;耐敲击性能;耐磨损性能;可以透过显示器发出的光线,正确的响应按压时所产生的信号。主要体现在可见光透过率、电阻性能、耐老化性能、打击性能、线性度等方面。

透过率

透明导电膜是用于显示器上的组件,这就要求透明导电膜要具备足够的可见光透过率,这样才能满足人眼对显示器面板上的图像有清晰,明亮,鲜艳的感受。透明导电膜的透过率要求在85%以上。透明导电膜的透过率是由硬化层、基材和导电层三层共同决定的,目前市场上商品化的硬化基材的透过率一般在90%左右,所以透明导电膜的透过率大部分是由导电层所决定的。

ITO薄膜在可见光范围内导电层的透过率与导电性成反比,当导电层电阻率(方块电阻)在10Ω/sq以下时,导电层的可见光率可达80%,但当透光率欲达90%以上,电阻率必须提高至100Ω/sq以上。

图7

而高分子导电薄膜目前在透过率上已经基本接近于ITO产品。

图8

电阻性能:

触摸屏目前主要用于手持式电子产品,这类电子产品的一大特点是使用电池作为能量供给,同时待机时间也成为该类产品的一个主要的性能,电阻值过大,则在使用的过程中会消耗大量的电能不利于产品的使用,目前该能产品一般要求电阻值小于500Ω/sq。

ITO薄膜电阻与高分子导电薄膜的电阻水平基本相当。

耐老化性能

由于透明导电膜需要在使用过程中遇到各种各样的使用条件,并且还需要保持对信号的可靠响应,对显示的良好体现,并且在制备触摸屏的工艺流程中,透明导电膜需要在130摄氏度的环境中烘烤,还必须要在强UV的环境中照射,这就要求透明导电膜具有良好的耐老化性能。要求透明导电膜在130摄氏度的环境中电阻值的稳定,光学性能不改变。

ITO薄膜在在高温高湿(60℃、95%RH)条件下,经过500小时之后电阻变化比较大(R1/R0大于1.3)已经不能满足触摸屏的使用要求,而高分子导电薄膜在相同条件下基本性能参数几乎没有变化(R1/R0小于1.3)。

打击性能

透明导电膜是触摸屏中唯一的运动部分,要求其在经过百万次的按压后还能保持其

可靠性,这就要求其有足够的强度和韧性,通常情况下要求透明导电膜在80克力的情况下能够耐受60万次至100万次的敲击。

ITO材料由于本身是类似于陶瓷一样物质,所以它的柔韧性比较差。ITO薄膜一般情况下能够耐受约100万次的敲击,或者10万次的划线。

ITO膜的磨损情况图

图9

高分子导电薄膜,比ITO薄膜具有更高的对机械性压力的耐久性,即使反复笔点触和按压也很少发生ITO薄膜导电性变差的问题,因而可以延长触摸屏寿命实现高可靠性。

图10

图10是用试制的触摸屏进行笔划耐久性试验的实例。用聚缩醛树脂(POM)做成的R0.8尖笔,以负重4.9N(约500g)的力量按压触摸屏的操作面,来回滑动并观察其线性特征的变化。线性特征就是表示实际的输入坐标和根据触摸屏的输出而计算出的坐标值之间的偏差,这个差值越小越好。试验结果表明,在ITO薄膜上约2万次左右开始出现劣化,7万次左右已经超出规格,而在有导电聚合物薄膜上20万次还几乎没有呈现劣化。

图11是通过SEM(扫描式电子显微镜)观察到的导电薄膜表面试验前后的图像。从图像可以一目了然地看出,ITO膜表面在滑动20万次后出现破裂,而在有机导电聚合物薄膜上虽然出现一些痕迹,却没有明显的缺陷。由此有理由认为有机导电聚合物薄膜触摸屏的线性特征在反复滑动后仍是稳定的。

图11

结果表明无论按压试验还是笔滑动试验,有机导电聚合物薄膜触摸屏的寿命能比ITO薄膜触摸屏长出10倍以上。

线性度

线性度是指透明导电膜给出的信号值与理论值的最大偏差,它决定了触摸屏的定位精确性。线性度的大小同时也决定了触摸屏的解析度。触摸屏的线性度一般要求在1.5%。

图12

ITO导电膜由于其制膜过程非常均匀,膜的厚度偏差非常小,同时膜的质地非常均匀,其线性度一般在1.5%左右。

高分子导电薄膜,由于电子在传输的过程中无法连续传输存在着跃迁现象,同时由于其采用湿式涂布法制备膜的均匀性能还无法与ITO膜相比美,其线性度一般较ITO 膜大,使其市场化比较困难。依据最新的消息韩国SK集团在今年10月成功开发出利用导电性高分子的触摸屏用透明导电膜,实现全球首例商用化(来自金羊网)。

2、透明导电膜的技术指标

不同类型透明导电膜性能比较

第五章透明导电膜的生产工艺

迄今为止,业已出现了多种透明导电薄膜的制备方法,但主要可以分为干式法和湿式法两大类。其中常用的干式制备方法有:真空蒸发法、化学气相沉积法、离子镀、溅射法等;湿式涂布发有:高温热解喷涂法、溶胶一凝胶(Sol-Gel)法、浸渍法、湿式涂布发等,但主要的生产工艺是:溅射法和湿式涂布法。下面对其各自特点加以叙述。

1) 溅射法

溅射法是制备透明导电膜最广泛使用的工艺方法,主要包括直流和射频的反应式和非反应式溅射,以及最近几年发展起来的磁控溅射和离子束溅射。溅射镀膜主要有以下优点:第一,任何物质都可以溅射,尤其是高熔点,低蒸气压的元素和化合物。第二,利用反应溅射镀膜法可以方便地获得各种与靶材不同的化合物膜,如氧化物、氮化物、碳化物、硅化物等。第三,薄膜与衬底之间的的附着性好。第四,溅射镀膜法获得的薄膜的密度高,针孔少,而且薄膜的纯度较高。第五,膜厚可控和重复性好。由于溅射镀膜时放电电流和靶电流可控制,通过控制溅射功率则可有效控制溅射速率,所以溅射镀膜的膜厚可控性和多次溅射的膜厚再现性好,能够有效地镀制预定厚度的薄膜。此外,溅射镀膜还可以在较大面积上获得厚度均匀的薄膜。但是该种方法存在设备投入巨大,生产效率低下(一般每分钟1米),材料利用率低(目前靶材的利用率只有40%左右),成膜面积小等缺点。

透明导电膜目前主流的制备方式是磁控溅射方式,具体过程是:将PET基材装入磁控溅射设备,将ITO均匀的溅射到基材上,形成透明导电膜,然后覆膜收卷。已收卷的产品还需要按不同长度和宽度规格进行裁切,并进行包装整理,以达到最终产品。

2) 湿式涂布发

湿式涂布发是将导电涂料采用湿式涂布方式(如浸涂、凹版涂布等)在基材上形成导电涂层,然后干燥成膜,最终形成透明导电膜。湿式涂布发设备相对于溅射发简单,便于大面积生产,生产效率较高,原材料利用率高,但是存在薄膜厚度的均匀性不易控制,获得的薄膜的质量不高等缺点。

乐凯公司目前所采用的方法是:

透明导电膜制两种主要造方法比较

其他的方法在生产中并不多见,多为实验研究性质的。

3)离子镀

离子镀膜技术是在真空蒸发和真空溅射技术的基础上发展起来的一种镀膜技术。当真空室抽至10-4Pa的高真空后,往真空室内通入惰性气体(如氩气),使真空度达到1-10-1 Pa,然后在蒸发基片和蒸发源间施加一直流电压,使工作气体电离,从而在基片和蒸发源之间建立一个低压气体导电的等离子体区。离子镀膜成核、结晶、迁徙所需要的能量不是靠加热衬底的方式获得,而是由离子轰击的方式来获得的。离子镀膜膜层附着性好,膜层密度高,被广泛地用来制各氧化物透明导电膜.

4)溶胶凝胶法

溶胶一凝胶(sol—gel)法是制备材料的湿化学方法中新兴的方法。与其他传统的无机材料制备方法相比,溶胶一凝胶工艺具有如下优点:①工艺过程温度低,使得材料的制备过程容易控制;②溶胶一凝胶过程依靠的是溶液中的化学反应,只要搅拌均匀,外界条件稳定,就可以获得非常均匀的材料,并可以保证这些材料的物理、化学性质非常均匀;③由于溶胶一凝胶过程依靠化学反应,所以通过计算与控制参加反应的物质配比,就可以控制反应产物的成分,并获得高纯度的

反应产物。由于溶胶一凝胶工艺具有独特的优点,近年来它己经被用作多种薄膜材料的制备。

5) 高温热解喷涂法

高温热解喷涂法是将待镀材料的水解反应溶液(一般为可溶性盐溶液),均匀地喷涂于加热的衬底上,通过高温热解以形成一定厚度的透明导电薄膜。与传统的物理方法或各种CVD方法相比,溶液镀膜法设备简单,成本低廉,便于大面积生产,得到的膜的成份比较均匀,可以很方便地实现薄膜的掺杂。但溶液镀膜法相对来说需要较高的衬底

金属氧化物透明导电材料地基本原理

金屬氧化物透明導電材料的基本原理 一、透明導電薄膜簡介 如果一種薄膜材料在可見光範圍內(波長380-760 nm)具有80%以上的透光率,而且導電性高,其比電阻值低於1×10-3 ·cm,則可稱為透明導電薄膜。Au, Ag, Pt, Cu, Rh, Pd, A1, Cr等金屬,在形成3-15 nm厚的薄膜時,都有某種程度的可見光透光性,因此在歷史上都曾被當成透明電極來使用。但金屬薄膜對光的吸收太大,硬度低而且穩定性差,因此人們開始研究氧化物、氮化物、氟化物等透明導電薄膜的形成方法及物性。其中,由金屬氧化物構成的透明導電材料(transparent conducting oxide, 以下簡稱為TCO),已經成為透明導電膜的主角,而且近年來的應用領域及需求量不斷地擴大。首先,隨著3C產業的蓬勃發展,以LCD為首的平面顯示器(FPD)產量逐年增加,目前在全球顯示器市場已佔有重要的地位,其中氧化銦錫(In2O3:Sn, 意指摻雜錫的氧化銦,以下簡稱為ITO)是FPD的透明電極材料。另外,利用SnO2等製成建築物上可反射紅外線的低放射玻璃(low-e window),早已成為透明導電膜的最大應用領域。未來,隨著功能要求增加與節約能源的全球趨勢,兼具調光性與節約能源效果的electrochromic (EC) window (一種透光性可隨施加的電壓而變化的玻璃)等也可望成為極重要的建築、汽車及多種日用品的材料,而且未來對於可適用於多種場合之透明導電膜的需求也會越來越多。 二、常用的透明導電膜

一些目前常用的透明導電膜如表1所示,我們可看出TCO佔了其中絕大部分。這是因為TCO具備離子性與適當的能隙(energy gap),在化學上也相當穩定,所以成為透明導電膜的重要材料。 表1 一些常用的透明導電膜 三、代表性的TCO材料 代表性的TCO材料有In2O3, SnO2, ZnO, CdO, CdIn2O4, Cd2SnO4,Zn2SnO4和In2O3-ZnO等。這些氧化物半導體的能隙都在3 eV以上,所以可見光(約1.6-3.3 eV)的能量不足以將價帶(valence band)的電子激發到導帶(conduction band),只有波長在350-400nm(紫外線)以下的光才可以。因此,由電子在能帶間遷移而產生的光吸收,在可見光範圍中不會發生,TCO對可見光為透明。

透明导电膜知识培训

新业务知识教材—透明导电膜部分 一、触摸屏发展的背景 二、触摸屏的原理以及发展历程 1、触摸屏—绝对定位元件 2、触摸屏的种类以及工作原理 3、各种方式触摸屏的特点比较以及应用的领域 三、透明导电膜的功能以及材料组成 1、透明导电膜在触摸屏中的作用 2、透明导电膜的材料特点 四、透明导电膜的技术要求 1、透明导电膜的技术要求 2、透明导电膜的技术指标 五、透明导电膜的生产工艺 1、溅射法生产工艺介绍 2、涂布法生产工艺介绍 3、其他方法简介 六、触摸屏的发展趋势以及面临的问题

触摸屏及透明导电膜知识简介 前言 随着计算机技术的快速发展,人机界面的沟通成了计算机技术的一个热点,触摸 屏凭着优秀的人机沟通方式,成为了当今发展最快的技术。 触摸屏主要应用于个人便携式信息产品(如使用手写输入技术的PC、PDA、AV 等)之外,应用领域遍及信息家电、公共信息(如电子政务、银行、医院、电力等部 门的业务查询等)、电子游戏、通讯设备、办公室自动化设备、信息收集设备及工业设备等等。2009年全球触摸屏产值达43亿美元,估计2016年将成长到140 亿美元,年复合成长率达18%。国内市场约占全球市场的20%,约为8.6亿美元。 第一章:触摸屏发展的背景 在人类渴求讯息实时联系与传递的欲望下,个人化电子用品未来将有爆发性的需求。然而,在机动与方便性的诉求下,个人化的电子工具通常使用在不安稳的场合, 如何快速简便的使用随身的电子工具,是使用者最大期待。其中最大的障碍在于人与 机器间的沟通。所以,是否具有快速简便的人机沟通接口,将是未来电子化产品最重 要的功能。 如果说1964年鼠标的发明,把电脑操作带入了一个新的时代,那么触摸屏的出现,则使图形化的人机交互界面变得更为直观易用。1971 年,美国人SamHurst发明了世界上第一个触摸传感器。虽然这个仪器和我们今天看到的触摸屏并不一样,却被视为触 摸屏技术研发的开端。 当年,SamHurst 在肯尼迪大学当教师,因为每天要处理大量的图形数据而不胜其烦,就开始琢磨怎样提高工作效率,用最简单的方法搞定这些该死的图形。他把自己 的三间地下室改造成了车间,一间用来加工木材,一间制造电子元件,一间用来装配这些零件,并最终制造出了最早的触摸屏。这种最早的触摸屏被命名为“AccuTouch”,由于是手工组装,一天生产几台设备。不久,SamHurst 成立了自己的公司,并和西门 子公司合作,不断完善这项技术。这个时期的触摸屏技术主要被美国军方采用,直到1982 年,Sam Hurst的公司在美国一次科技展会上展出了33 台安装了触摸屏的电视机,平民百姓才第一次亲手“摸”到神奇的触摸屏。触摸屏早期多被装于工控计算机、

透明导电薄膜研究进展

氧化锌基透明导电薄膜研究 汇报人:卢龙飞 导师:齐暑华 学号:2014201921 摘要:本文简要介绍了氧化锌基导电薄膜的基本特征、发展近况,并对其前景进行了展望。关键词:氧化锌导电薄膜参杂 Progess in research of ZnO based transparentconductinve films Abstract:Basic traits and latest development of ZnO based conductive thin films are introduced in this paper,and the prospect of ZnO conductive films was also forecased. Keywords:ZnO conductive thin films doping 0.引言 透明导电氧化物薄膜(transparent conductive oxide films)[1-3],简称TCO,由于本身的透明性和导电性,迅速发展成为重要的功能薄膜材料,在透明电极(太阳能电池、显示器、发光二极管LED、触摸屏等)、面发热膜(除霜玻璃)、红外反射族(汽车贴膜、建筑窗坡璃)、防静电膜、电磁屏蔽膜、电致变色密、气敏传感器、高密度存储、低波长激光器、光纤通信等领域得到广泛的应用透明导电材料是一类对可见光具有高透光率,同时又具有高导电率的特殊材料由于其特有的光电性能,透明导电材料在电子信息技术光电技术新能源技术以及国防技术中具有广泛的应用[4-7]。自20世纪80年代以来,人们开始关注Zn O薄膜。相比氧化铟锡(ITO)而言,ZnO具有原材料廉价无毒沉积温度低等优点,并且在H2等离子体环境下具有更好的稳定性尽管ITO薄膜目前仍是工业化应用最多的透明导电材料,但研究表明,在ZnO中通过掺杂Al、Ga、In等元素能有效提高薄膜光电性能,未来有望替代ITO成为最具竞争力的透明导电材料早期研究者大多在硬质材料衬底如硅片玻璃陶瓷上制备ZnO基透明导电薄膜。然而,科学技术的发展,越来越多的电子器件开始朝柔性化超薄化方向发展,比如触摸屏太阳能电池等,使得对柔性透明导电薄膜的需求日益迫切柔性透明导电薄膜有许多独特优点,例如可绕曲质量小不易碎易于大面积生产成本低便于运输等。因此,开发具有实用前景并且性能优异的柔性透明导电薄膜具有非常重要的现实意义。 1.ZnO基本特征 氧化锌(ZnO, Zinc Oxide)是一种新型的宽带隙II-VI 族化合物半导体材料,兼具有光电、压电、热电以及铁电等特性,可以方便地制备成薄膜以及各种形态的纳米结构。ZnO主要有四方岩盐矿立方闪锌矿和六方纤锌矿3种结构,通常情况下以纤锌矿结构存在,属六方晶系热稳定性好熔点1975℃,常温下禁带宽度为3.37eV对应于近紫外光阶段,作为一种压电材料,具有激活能大(60 meV)、压电常数大、发光性能强、热电导高等特点[8]。ZnO存在很多浅施主缺陷主要有氧空位V0和锌间隙Zni,使得ZnO偏离化学计量比表现为n型本身就有透明导电性,但高温下400K电稳定性不好同时红外反射率较低。 ZnO有较大的耦合系数;ZnO中掺杂Li 或Mg 时可作为铁电材料;ZnO与Mn元素合金化后是一种具有磁性的半导体材料;高质量的单晶或纳米结构ZnO可用于蓝光或紫外发光二极管(LEDs)和激光器(LDs);通过能带工程,如在ZnO中掺入适量的MgO或CdO形成三元合金,可以实现其禁带宽度在2.8~4.0 eV 之间的调控。通过掺杂III 族元素(B、Al、Ga、In、Sc、Y)或IV 族元素(Si、Ge、Ti、Zr、Hf)以及VII 族元素(F)之后,ZnO有优良的导电性,同时也有可见光高透过性,可用作透明导电氧化物薄膜材料,应用于平板显示器、薄膜太阳电池等多个领域[9]。ZnO基薄膜在氢等离子气氛下的化学稳定性良好,并且原材料丰富、价廉、无毒,所以近年来ZnO基透明导电薄膜被研究应用于薄膜太阳电池的透明电极[10]。 2.透明导电薄膜

【开题报告】ZnO-SnO2透明导电薄膜光电特性研究

开题报告 电气工程与自动化 ZnO-SnO2透明导电薄膜光电特性研究 一、选题的背景与意义: 随着电子信息产业的迅猛发展,透明导电薄膜材料被广泛应用于半导体集成电路、平面显示器、抗静电涂层等诸多领域,市场规模巨大。 1. 透明导电薄膜的概述 自然界中往往透明的物质不导电,如玻璃、水晶、水等,导电的或者说导电性好的物质往往又不透明,如金属材料、石墨等。但是在许多场合恰恰需要某一种物体既导电又透明,例如液晶显示器、等离子体显示器等平板显示器和太阳能电池光电板中的电极材料就是需要既导电又透明的物质。透明导电薄膜是薄膜材料科学中最重要的领域之一,它的基本特性是在可见光范围内,具有低电阻率,高透射率,也就是说,它是一种既有高的导电性,又对可见光有很好的透光性,而对红外光有较高反射性的薄膜。正是因为它优异的光电性能,它被广泛的应用在各种光电器件中,例如:平面液晶显示器(LCD),太阳能电池,节能视窗,汽车、飞机的挡风玻璃等。自从1907年Badeker制作出CdO透明导电薄膜以后,人们先后研制出了In2O3,SnO2,ZnO等为基体的透明导电薄膜。目前世界研究最多的是掺锡In2O3(简称ITO)透明导电薄膜,掺铝ZnO(简称AZO)透明导电薄膜。同时,人们还开发了CdInO4、Cd2SnO4、 Zn2SnO4等多元透明氧化物薄膜。 2. SnO2基薄膜 SnO2(Tin oxide,简称TO)是一种宽禁带半导体材料,其禁带宽度Eg=3.6eV,n 型半导体。本征SnO2薄膜导电性很差,因而得到广泛应用的是掺杂的SnO2薄膜。对于SnO2来说,五价元素的掺杂均能在禁带中形成浅施主能级,从而大大改善薄膜的导电性能。目前应用最多、应用最广的是掺氟二氧化锡(SnO2:F,简称FTO)薄膜和掺锑二氧化锡(SnO2:Sb,简称ATO)薄膜。SnO2:Sb薄膜中的Sb通常以替代原子的形式替代Sn的位置。掺杂Sb浓度不同,电阻率不同,最佳Sb浓度为0.4%-3%(mol)的范围对应电阻率为10-3Ω·cm,可见光透过率在80%-90%。SnO2:F薄膜热稳定性好、化学稳定性好、硬度高、生产设备简单、工艺周期短、原材料价格廉价、生产成本

银纳米线透明导电膜

目录 1 课题背景 (1) 2 国内外研究进展 (2) 2.1 银纳米线的制备 (2) 2.1.1 银纳米线的制备状况 (3) 2.1.2 银纳米线的生长机理 (4) 2.2 银纳米线透明导电膜的制备 (6) 2.2.1 银纳米线薄膜制备 (6) 2.2.2 后处理工艺 (8) 2.2.3 渗透理论 (11) 2.3 银纳米线透明导电膜的应用 (12) 2.3.1 太阳能电池 (13) 2.3.2 透明加热器 (13) 2.3.3 触摸屏 (13) 2.3.4 显示器 (13) 3 展望 (13) 4 参考文献 (15)

1.课题背景 高导电性和高透光性的透明导电膜对于各种电子器件的性能是很有必要的。具有透明导电膜的光电子器件在我们日常生活中被广泛使用,如触摸面板和液晶显示器。透明导电氧化物通常在这些光电子器件中用作电极[1]。在电子工业中最常用的导电氧化物是氧化铟锡(ITO)[2],它具有优异的光学透明度和低表面电阻,极大地拓宽了其在光电器件中的用途[3],例如太阳能电池[4]、触摸屏[5]和平板显示器[6]。然而,ITO也有一些固有的缺点,例如沉积工艺需要高的真空度[7],沉积温度比较高[8],相对高的生产成本[9]和易脆的属性[10]。随着电子设备需求的快速增长和具有新特性设备的发展,例如柔性显示器[11],柔性触摸面板[12],柔性太阳能电池[13],柔性晶体管[14]和柔性超级电容器[15]等,ITO不能满足这些要求。因此,一些研究者们已经深入研究了新的透明导电材料以替代ITO。 理想的能替代ITO的材料应该成本低,适应各种基底,且方便制备。最近研究了一些能替代ITO的材料,比如银纳米线[16]、碳纳米管[17]、石墨烯[18]、铝掺杂的氧化锌[19]和导电聚合物[20]。通常,透明导电膜应能够满足广泛不同应用的性能要求。例如,光学烟雾有益于太阳能电池但对触摸面板有害;触摸屏需要的薄层电阻在50-300 Ω/sq 的范围内。然而,太阳能电池薄层电阻应小于10 Ω/sq[21,22]。表1总结了各种透明导电膜的性质和制备方法[23]。 表1各种透明导电膜的性质和制备方法 含碳的透明导电膜主要包括碳纳米管和石墨烯。由于碳纳米管具有高导电性,高

透明导电薄膜的研究现状及应用概要

透明导电薄膜的研究现状及应用 摘要:综述了当前透明导电薄膜的最新研究和应用状况,重点讨论了ITO膜的光电性能和当前的研究焦点。指出了目前需要进一步从材料选择、工艺参数制定、多层膜光学设计等方面来提高透明导电膜的综合性能,使其可见光平均透光率达到92%以上,从而满足高尖端技术的需要。 关键词:透明导电,薄膜,平均透光率,ITO,电导率 透明导电薄膜的种类有很多,但氧化物膜占主导地位(例如ITO和AZO膜。氧化铟锡(Indium TinOxide简称为ITO薄膜、氧化锌铝(Al-doped Z nO,简称AZO膜都是重掺杂、高简并n型半导体。就电学和光学性能而言,它是具有实际应用价值的透明导电薄膜。金属氧化物透明导电薄膜(TCO:Transpa rent and Conductive Oxide 的缩写的研究比较早,Bakde ker于1907年第一个报道了CdO透明导电薄膜。从此人们就对透明导电薄膜产生了浓厚的兴趣,因为从物理学角度看,透明导电薄膜把物质的透明性和导电性这一矛盾两面统一起来了。1950年前后出现了硬度高、化学稳定的SnO2基和综合光电性能优良的I n2O3基薄膜,并制备出最早有应用价值的透明导电膜NESA(商品名-SnO2薄膜。ZnO基薄膜在20世纪80年代开始研究得火热。TCO薄膜为晶粒尺寸数百纳米的多晶;晶粒取向单一,目前研究较多的是ITO、FTO(Sn2O:F。1985年, Takea OjioSizo Miyata首次用汽相聚合方法合成了导电的PPY-PVA复合膜,从而开创了导电高分子的光电领域,更重要的是他们使透明导电膜由传统的无机材料向加工性能较好的有机材料方面发展。 透明导电膜以其接近金属的导电率、可见光范围内的高透射比、红外高反射比以及其半导体特性,广泛地应用于太阳能电池、显示器、气敏元件、抗静电涂层以及半导体/绝缘体/半导体(SIS异质结、现代战机和巡航导弹的窗口等。由于ITO薄膜材料具有优异的光电特性,因而近年来得以迅速发展,特别是在薄膜晶体管(TFT制造、平板液晶显示(L CD、太阳电池透明电极以及红外辐射反射镜涂层、火车飞机用玻璃除霜、建筑物幕墙玻璃等方面获得广泛应用,形成一定市场规模。

光电显示用透明导电膜及玻璃

光电显示用透明导电膜及玻璃(ITO)的原理 ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。液晶显示器专用ITO导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。液晶显示器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。因此,最终的液晶显示器都会沿浮法方向,规律的出现波纹不平整情况。 在溅镀ITO层时,不同的靶材与玻璃间,在不同的温度和运动方式下,所得到的ITO层会有不同的特性。一些厂家的玻璃ITO层常常表面光洁度要低一些,更容易出现“麻点”现象;有些厂家的玻璃ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。 ITO导电层的特性: ITO膜层的主要成份是氧化铟锡。在厚度只有几千埃的情况下,氧化铟透过率高,氧化锡导电能力强,液晶显示器所用的ITO玻璃正是一种具有高透过率的导电玻璃。由于ITO具有很强的吸水性,所以会吸收空气中的水份和二氧化碳并产生化学反应而变质,俗称“霉变”,因此在存放时要防潮。 ITO层在活性正价离子溶液中易产生离子置换反应,形成其它导电和透过率不佳的反应物质,所以在加工过程中,尽量避免长时间放在活性正价离子溶液中。 ITO层由很多细小的晶粒组成,晶粒在加温过程中会裂变变小,从而增加更多晶界,电子突破晶界时会损耗一定的能量,所以ITO导电玻璃的ITO层在600度以下会随着温度的升高,电阻也增大。 ITO导电玻璃的分类: ITO导电玻璃按电阻分,分为高电阻玻璃(电阻在150~500欧姆)、普通玻璃(电阻在60~150欧姆)、低电阻玻璃(电阻小于60欧姆)。高电阻玻璃一般用于静电防护、触控屏幕制作用;普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃一般用于STN 液晶显示器和透明线路板。 ITO导电玻璃按尺寸分,有14”x14”、14”x16”、20”x24”等规格;按厚度分,有2.0mm、1.1mm、0.7mm、0.55mm、0.4mm、0.3mm等规格,厚度在0.5mm以下的主要用于STN液晶显示器产品。 ITO导电玻璃按平整度分,分为抛光玻璃和普通玻璃。

透明导电薄膜的研究现状及应用

透明导电薄膜的研究现状及应用 李世涛乔学亮陈建国 (武汉华中科技大学模具技术国家重点实验室) 摘要:综述了当前透明导电薄膜的最新研究和应用状况,重点讨论了ITO膜的光电性能和当前的研究焦点。指出了目前需要进一步从材料选择、工艺参数制定、多层膜光学设计等方面来提高透明导电膜的综合性能,使其可见光平均透光率达到92%以上,从而满足高尖端技术的需要。 关键词:透明导电,薄膜,平均透光率,ITO,电导率 1 前言 透明导电薄膜的种类有很多,但氧化物膜占主导地位(例如ITO和AZO膜)。氧化铟锡(IndiumTinOxide简称为ITO)薄膜、氧化锌铝(Al-dopedZnO,简称AZO)膜都是重掺杂、高简并n型半导体。就电学和光学性能而言,它是具有实际应用价值的透明导电薄膜。金属氧化物透明导电薄膜(TCO:TransparentandConductiveOxide的缩写)的研究比较早,Bakdeker于1907年第一个报道了CdO透明导电薄膜。从此人们就对透明导电薄膜产生了浓厚的兴趣,因为从物理学角度看,透明导电薄膜把物质的透明性和导电性这一矛盾两面统一起来了。1950年前后出现了硬度高、化学稳定的SnO2基和综合光电性能优良的In2O3基薄膜,并制备出最早有应用价值的透明导电膜NESA(商品名)-SnO2薄膜。ZnO基薄膜在20世纪80年代开始研究得火热。TCO薄膜为晶粒尺寸数百纳米的多晶;晶粒取向单一,目前研究较多的是ITO、FTO(Sn2O:F)。1985年,TakeaOjioSizoMiyata首次用汽相聚合方法合成了导电的PPY-PVA复合膜,从而开创了导电高分子的光电领域,更重要的是他们使透明导电膜由传统的无机材料向加工性能较好的有机材料方面发展。 透明导电膜以其接近金属的导电率、可见光范围内的高透射比、红外高反射比以及其半导体特性,广泛地应用于太阳能电池、显示器、气敏元件、抗静电涂层以及半导体/绝缘体/半导体(SIS)异质结、现代战机和巡航导弹的窗口等。由于ITO薄膜材料具有优异的光电特性,因而近年来得以迅速发展,特别是在薄膜晶体管(TFT)制造、平板液晶显示(LCD)、太阳电池透明电极以及红外辐射反射镜涂层、火车飞机用玻璃除霜、建筑物幕墙玻璃等方面获得广泛应用,形成一定市场规模。 制备透明导电薄膜的方法很多:物理汽相沉积(PVD)(喷涂法、真空蒸发、磁控溅射、高密度等离子体增强(HDPE)蒸发、脉冲激光沉积(PulsedLaserDeposition,简称PLD)技术、化学汽相沉积(CVD)、原子层外延(ALE)技术、反应离子注入以及溶胶-凝胶(Sol-Gel)技术等。然而,适合于批量生产且已经形成产业的工艺,只有磁控溅射法和溶胶-凝胶法。特别是,溅射法由于具有良好的可控性和易于获得大面积均匀的薄膜,而被广泛应用于显示器件中ITO薄膜的制备。美欧和日本均在发展ITO产业,其中日本夏普、日本电气和东芝三大公司都在其工厂内开发ITO薄膜。深圳几家导电玻璃公司在进口和国产生产线上制造LCD用导电玻璃。而AZO薄膜由于其在实用上还有许多问题,现在还处于研究阶段。综上所述,ITO薄膜性能优异,制

透明导电薄膜简介[1]

透明導電薄膜簡介 蔡有仁、王納富、許峰豪 正修科技大學 電子工程研究所 近年來,由於光電半導體應用的快速發展,所以與其相關的研究不斷的被提出,主要的光電產品如太陽能電池(Solar Cells)、平面顯示器(Flat-Panel Displays)、發光二極體(Light Emitting Devices)、光波導元件(Waveguide Devices)等[1-4]。在光電元件的應用中透明導電玻璃是一個關鍵材料,由於玻璃本身並不具有導電性,因此需要在基板上鍍一層透明導電極。在應用上舉個例子來說,例如太陽能電池的基本原理就是利用太陽光照射元件,再藉由元件內的內建電位將電子電洞對分離,然後再由兩端的電極收集電子(electron)與電洞(hole),產生電位差即產生了電能,如圖1為一非晶矽太陽能電池的結構圖,但我們若將最上層的TCO 用不透光的金屬代替,則會因為光線無法穿透金屬進去元件,而造成效率的降低,或用透光率高,但導電率很低金屬薄膜代替,則也會造成損耗過大,效率很低。 透明導電電極主要可分為兩種,一種是金屬薄膜,另一種就是現在光電產品最常用的透明導電氧化物(Transparent conductive oxide, TCO)。由於金屬本身就是一種良導體,不過並不具有透光性,但若是將金屬製作成很薄的薄膜(約100?以下, ? = 1x10-10 m),則薄膜可以呈透明性,但是相對的薄膜越薄,愈可能形成不連續的薄膜,導電率(conductivity)也會相對的下降,所以不適合作為透明電極。相反的,透明導電氧化物(目前商用約8000?)在可見光區域(約380-760 nm)有著高透光性亦有適當的導電性,因此廣泛地被應用在商用光電產品中,是一種很好的透明導電電極材枓。 圖1非晶矽太陽能電池的結構圖 目前最常使用的TCO 薄膜以銦錫氧化物(Tin doped Indium oxide, ITO)薄膜、氧化錫(Tin Oxide, SnO 2)等二種材料為主。其中ITO 因具高透光性與良好的導電性,已廣泛應用在各種光電元件之導電電極,然而因為ITO 中的銦含量短缺、價格昂貴、具毒性[5]且容易和氫電漿 (hydrogen plasma)產生還原反應[6],導致許多研究轉而尋求其取代之材料。 氧化鋅(Zinc Oxide, ZnO)是一種寬能隙(3.37 eV)的半導體,屬於六方晶系(HCP)中具有6mm 對稱之纖維鋅礦結構(wurtzite structure)的II-VI 族化合物半導體[7],且具有C 軸(002)優先取向(圖2為氧化鋅的結構示意圖)。氧化鋅在室溫下的激子束縛能(60 meV)與氮化鎵的激子束縛能(GaN 25 meV)相比高出很多,而較大的激子束縛能代表更高的發光效率,因此是光電元件主動層的很好材枓。除此之外,鋅在地球內的含量豐富,價格相對上的比ITO 便宜,而氧化鋅本身亦無毒性,且在氫電漿中具高化學穩定及低成長溫度等特點[8-9],所以氧化鋅透明導電電極

透明导电薄膜

透明导电薄膜 引言:透明导电薄膜作为一种具有低电阻和高透光率的薄膜材料。被应用于显示器、太阳能电池、抗静电涂层、带电防护膜等各种光电材料中。目前广泛研究和应用的透明导电薄膜主要为In2O3∶Sn(ITO)、Sb∶SnO2(ATO)和ZnO∶A1(ZAO)等无机氧化物透明导电薄膜。氧化物薄膜具有透光性好、电阻率低和化学稳定性较好等优点但是作为无机材料,氧化物薄膜的脆性大、韧性差、合成温度高、且和柔性衬底的结合性较差。这些缺点限制了它们的进一步应用。例如.可折叠显示屏上要求透明导电薄膜具有可弯曲性.飞机有机玻璃窗户表面用于加热除霜的薄膜必须与有机基底结合牢固等。 薄膜的组成,设备和制作工艺 首先在室温下将3-巯丙基三甲氧基硅烷(MPTMS)和醋酸以一定物质的量比混合.并搅拌5 h后得到无机前驱体溶液。然后,用传统乳液聚合法制备得到十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺。将一定量的导电聚苯胺溶于氯仿和间甲酚的混合溶剂中,并搅拌3 h;然后混合聚苯胺溶液和无机前驱体溶液。搅拌并陈化6 h后得到有机一无机杂化溶胶溶液实验中醋酸和MPTMS的物质的量比为0.1~1.0,定义为H1~H10:间甲酚与MPTMS的物质的量比为3~7,定义为M3~M7:聚苯胺和二氧化硅的质量比为15/85~50/50,定义为P15~P50。其中,溶胶溶液的浓度为0.5mol.L-1。 实验采用提拉法制备薄膜将用超声清洗并干燥的普通载玻片在杂化溶胶溶液中浸泡20 s后匀速提拉.控制提拉速度为1mm.s-1。然后将沉积有薄膜的载玻片在80℃烘箱中干燥30 min,并在室温中冷却后,重复浸渍提拉干燥过程,制备5层厚度的导电薄膜,最后在80℃烘箱中干燥。 薄膜分析方法、结果及性能 图1为3-巯丙基三甲氧基硅烷(MPTMS)、十二烷基苯磺酸掺杂的聚苯胺(DBSA—PANI)和H4M5P30干凝胶样品的红外光谱图。在MPTMS的红外图谱中,2850和810 cm一分别为硅氧烷的C,H和SiO,C振动吸收峰 1 084 cm一为Si,O基团的吸收峰。在2566 cm处的一个小吸收峰为MPTMS有机链中SH 的吸收峰。同时在DBSA.PANI的红外谱图中,1575和l471 cm一处的吸收峰分别对应聚苯胺中C=C吸收的醌式和苯式结构。为导电聚苯胺的特征吸收峰。此外l 122、l 327和l026 em一处的吸收峰分别为N-Q=N、C—N和S=O吸收峰。当导电聚苯胺和无机前驱体反应杂化后.聚苯胺链中C=C吸收的醌式和苯式结构所对应的峰位移至1580和1454.1 327 cm一所对应的C.N双峰红移至1 249 Cm.同时MPTMS中2 566 cm 所对应的SH吸收峰消失.说明3一巯丙基三甲氧基硅烷中的SH基团已和聚苯胺中氨基基团形成键合.得到杂化结构。另外在杂化干凝胶的红外谱图中,1 149和1 031 cm处出现了一个较大的双峰结构,主要为Si.0.Si结构的振动吸收峰此峰覆盖了聚苯胺的N=Q=N吸收峰原MPTMS 在810 cm 处的SiO—C吸收峰消失。Si.0一si峰的出现和SiO.C峰的消失充分说明硅的网络结构的形成从红外谱图分析看出,用溶胶一凝胶法可以得到无机网络完整的PANI—SiO 杂化材料。

氧化物透明导电薄膜研究进展综述

本科毕业设计说明书 氧化物透明导电薄膜研究进展综述Development of Transparent Conductive Oxide Films 学院(部): 专业班级: 学生姓名: 指导教师: 年月日

氧化物透明导电薄膜研究进展综述 摘要 通过介绍TCO薄膜的功能原理和制备工艺以及现实应用,了解TCO薄膜的特点、作用、研究现状,并由此对TCO的发展前景和研究方向做出总结。 关键词: 透明导电机理;制备工艺;发展前景;TCO

DEVELOPMENT OF TRANSPARENT CONDUCTING OXIDE FILMS ABSTRAC In this paper, Across to describe the transparent conducting mechanism and the latest researching progress in preparation methods of TCO thin films, to look into the distance the future and acton of TOC. Furthermore summarized the progress and research of TCO thin films. KEYWORDS:thin oxide films,transparent,preparation methods,TCO

目录

绪论 TCO薄膜分为P型和N型两种。TCO现如今被广泛应用于高温电子器件、透明导电电极等领域,如太阳能电池、液晶显示器、光探测器、窗口涂层等多个领域。 目前,已经商业化应用的TCO薄膜主要是In O :Sn(ITO)和SnO :F(FTO)2类,ITO 因为其透明性好,电阻率低,易刻蚀和易低温制备等优点,一直以来是显示器领域中的首选TCO薄膜。然而FTO薄膜由于其化学稳定性好,生产设备简单,生产成本低等优点在节能视窗等建筑用大面积TCO薄膜中,在应用方面具有很大的优势。 1 TCO薄膜的特性及机理研究 1.1 TCO薄膜的特性 一般意义上的TCO薄膜具有以下两种性质:(1)电导率高σ,>103Ω-1?cm-1。TCO 主要包括In、Sb、Zn、Cd、Sn等金属氧化物及其复合多元氧化物,以氧化铟锡(Indium Tin Oxide简称ITO)和氧化锌铝(Alum inum doped Zin cum Oxide简称AZO)为代表,其具有显著的综合光电性能。(2)在可见光区(400~800nm)透射率高,平均透射率Tavg>80%; TCO薄膜综合了物质的透明性与导电性的矛盾。透明材料的禁带宽度大(Eg>3eV)而载流子(自由电子)少,导电性差;而另一方面,导电材料如金属等,因大量自由电子对入射光子吸收引发内光电效应,呈现不透明的状态。为了使金属导电氧化物更好的呈现一定的透明性,必须使材料费米半球的中心偏离动量的空间原点。按照能带理论,在费米能级附近的能级分布是很密集的,被电子占据的能级(价带)和空能级(导带)之间不存在能隙(禁带)。入射光子很容易被吸收从而引起内光电效应,使其可见光无法透过。克服内光电效应必须使禁带宽度(Eg)大于可见光光子能量才能够使导电材料透明。利用“载流子密度”的杂质半导体技术能够制备出既有较低电阻率又有良好透光性的薄膜。现有TCO薄膜的制备原理主要有2种:替位掺杂和制造氧空位。 TCO薄膜为晶粒尺寸几十至数百纳米的多晶层,晶粒择优取向。晶粒尺寸变大,载流子迁移率因晶界散减少而增大,导电性增强;同时晶粒长大会导致薄膜表面粗糙度增大,光子散射增强,透光性下降。目前研究较多的有ITO(Sn∶In2O3)、AZO(Al∶ZnO)与FTO(F∶SnO2)。半导体机理为化学计量比偏移和掺杂,禁带宽度大并随组分的不同而变化。光电性能依赖金属的氧化态以及掺杂的特性和数量,具有高载流子浓度(1018~1021cm-3)和低载流子迁移率(1~50cm2V-1s-1),可见光透射率可高达80%~90%。 1.2 TCO薄膜的机理 1.2.1TCO薄膜的光学机理

透明导电膜玻璃TCO

一、玻璃导电的机理 众所周知,不同种类的物质,其导电的机理是不同的。金属导体导电,是由于在金属导体中有可以自由移动的自由电子的作用;半导体导电,是靠半导体中空穴的移动作用而使电子传导得以实现;电解质水溶液导电,是由于在电解质水溶液中有可以自由移动的离子的作用;离子化合物的晶体导电是在具有晶格缺欠的情况下,虽然是固体,但由于离子的迁移而导电。那么,玻璃导电的机理是什么呢? 在室温条件下,玻璃是相当好的绝缘体。一般来说,玻璃的电阻率在1010Ω/m~1015Ω/m之间。但是,温度升高,玻璃就要被软化,处于熔融状态中玻璃的电阻可降到几个欧姆,导电性能增强。即,玻璃从固体变成液体状态时可以导电。玻璃导电的能力由玻璃结构中离子的移动程度决定。玻璃是离子化合物晶体。玻璃的种类不同,其离子的种类以及比例含量都不同。以最常见的苏打石灰玻璃为例,其主要成分为SiO2,通常由于结构中存在晶格缺欠,晶体中的Na+在温度升高时由一个空穴迁移到另一个空穴而导电。由此可见,玻璃导电是属于离子导电 二、透明导电膜玻璃(TCO Coating Glass) 透明导电膜玻璃(TCO Coating Glass)是指在平板玻璃表面通过物理或化学镀膜方法均匀的镀上一层透明的导电氧化物薄膜(Transparent Conductive Oxide)而形成的组件。对于薄膜太阳能电池来说,由于中间半导体层几乎没有横向导电性能,因此必须使用TCO玻璃有效收集电池的电流,同时TCO薄膜具有高透和减反射的功能让大部分光进入吸收层。TCO玻璃的生产工艺TCO玻璃工艺主要分为超白浮法玻璃生产、TCO镀膜。超白浮法玻璃生产工艺难度较高,目前世界上主要供应商有日本旭硝子、美国PPG、法国圣戈班等,国内供应厂家有限,目前仅金晶科技、南玻、信义能够供货。 透明导电膜玻璃(TCO Coating Glass)的种类主要为氧化铟锡透明导电膜玻璃(ITO Coating Glass)、掺Al氧化锌透明导电膜玻璃(AZO Coating Glass)和掺F氧化锡(FTO Coating Glass)三种;ITO透明导电膜玻璃广泛的使用于大面积平板显示领域,国内ITO导电膜玻璃生产厂家主要有深圳南玻显示事业部、深圳莱宝光学、蚌埠华益导、芜湖长信,深圳天泽等众多厂家,技术也能与日本与欧美厂家竞争;而FTO透明导电膜和AZO透明导电膜的主要生产商有日本旭硝子(Asahi)、板硝子(NSG)与美国AFG,国内非晶硅薄膜电池厂因需求不大、尺寸规格特殊,所以议价空间小,进货价格高,甚至有钱也不一定买的到货。由于没有稳定的TCO导电膜货源,有些国内非晶硅薄膜电池厂则改用ITO 来代替,效果不好,价格亦贵。 三、氧化铟锡透明导电膜玻璃(ITO Coating Glass)

ITO透明导电薄膜替代品发展现状

ITO透明导电薄膜替代品发展现状现在,薄膜液晶显示器的透明电极大量使用的是ITO和In,本文介绍作为其替代品的透明导电氧化物材料的发展现状与前景.用于LCDs透明电极ITO薄膜的最佳替代材料是掺Al ZnO和掺Ga ZnO(AZO与GZO)。从资源和环境的角度来看,AZO是最佳的候选材料。有关ZnO取代ITO用于LCDs透明电极的问题已在实验室实验中得到解决。目前看来,(射频和直流)磁控溅射是最好的沉积具有实用价值的掺杂ZnO薄膜的方法。在玻璃衬底上制备的AZO薄膜电阻率在10?4Ω?cm 数量级,并且拥有几乎均匀的面电阻分布,其厚度可以超过100nm。为了提高电阻率的稳定性,AZO和GZO共掺杂薄膜有了新进展。一个50nm厚的掺杂V的AZO薄膜具有足够的稳定性,可以作为实际应用中的透明电极。然而,如果薄膜的厚度小于30nm的话要获得与ITO相媲美的掺杂ZnO薄膜还是很困难的。 关键词:透明导电氧化物,薄膜,ITO,AZO, GZO,LCD,透明电极,磁控溅射 1 引言 ITO薄膜实际上作为绝大多数液晶显示器的透明电极。目前,铟已成为用于液晶显示器的ITO的主要原料。并且,最近用于平板显示,碱性电池,薄膜太阳能电池的铟显著增加。因为世界铟储量很有限,所以人们普遍认为在不久的将来铟将会短缺。除了资源的可用性问题,最近铟的价格也增加了约10倍。对于一个蓬勃发展的液晶显示器市场,ITO的稳定供应将很难实现。因此,发展LCDs 透明电极ITO薄膜的替代品显得尤为重要。最近,含少量铟或不含铟的透明导电氧化物作为候选材料备受关注。我们曾经指出ITO的替代品有AZO,GZO,ZnO-In2O3-SnO2或Zn-In-O等多元氧化物[1-5]。本文我们介绍一下作为替代ITO 用于液晶显示器透明电极的材料的现状及前景。特别地,有关AZO和GZO代替ITO用在LCDs存在的问题我们将会特别强调其解决方法。

TCO透明导电薄膜玻璃的主要应用

TCO透明导电薄膜玻璃的主要应用 TCO的主要应用领域有平面液晶显示(LCD)、有机发光二极管(OLED)显示、半导体照明(LED出光面电极)、薄膜太阳能电池、Low-E玻璃等。另外,柔性衬底的TCO薄膜的开发使它的潜在用途扩大到制造柔性发光器件、塑料液晶显示器、可折叠太阳能电池以及作为保温材料用于塑料大棚、玻璃粘贴膜等。一般来说,不同TCO材料在可见光透光率差别不大的情况下,方阻决定其用途,具体参见表1。 表1 TCO方阻值与应用方阻(Ω/sq)应用领域 <10 液晶显示器、彩色滤波片等 15~40 液晶电视、笔记本电脑、便携式电脑等 40~300 太阳能电池、家电/仪器/仪表面板、手机、游戏机、EL等 <1000 车载液晶显示器、触控面板、Low-E玻璃等 常见的TCO材料及其应用、性能需求见表2。 表2 TCO应用 1.2.1平板显示 作为资金密集型和技术密集型行业,近年来LCD行业以每年平均高于30%的增长率增长而被誉为全球明星产业。LCD面板广泛应用于各类消费电子产品,其中大尺寸LCD面板主要应用于笔记本电脑和液晶电视等,中小尺寸LCD面板主要应用于手机、数码相机、MP4、GPS导航仪和车载显示屏等,见图2。

图2 LCD应用范围 大尺寸LCD面板基本上为大规模生产的标准品,主要集中在笔记本电脑、液晶监视器、液晶电视等产品上。而中小尺寸LCD面板大都是客户定制型产品,其规格品种多样且成系列化,其应用范围比较广泛,包括手机、PDA、数码相机、数码摄像机、车载显示屏等,近年来发展尤为迅猛。 由于透明导电薄膜与LCD面板之间存在着一对一的搭配关系,透明导电薄膜是平板显示的基础和关键材料,因此也相应地为透明导电薄膜的发展创造了良好的市场空间。此外,在平电致发光显示器(ELD)、电致变色显示器(ECD)、等离子体显示(PD)等领域,TCO 薄膜也将会发挥巨大的作用。 1.2.2薄膜太阳能电池 在国际市场硅原材料持续紧张的背景下,薄膜太阳电池已成为国际光伏市场发展的新趋势和新热点,具有广阔的应用前景。薄膜太阳能电池与晶硅太阳能电池相比具有更低的成本,对于大规模工业生产具有独特的优势,已成为继单晶硅、多晶硅之后的第三代太阳能电池,成为目前太阳能研究开发的主要方向。 薄膜太阳能电池是在TCO玻璃表面的导电薄膜上镀制p-i-n半导体膜,再镀制背电极。图3示意了非晶硅/微晶硅双结叠层的薄膜太阳能电池。 图3 薄膜太阳能电池结构示意图 太阳光从TCO玻璃一侧入射,由于TCO的透明性大部分光进入硅薄膜p-i-n结区域,其中光子能量大于硅禁带宽度E g的光子能把价带中电子激发到导带上去,形成自由电子,价带中留下带正电的自由空穴,即电子-空穴对,通常称它们为光生载流子。其中在耗尽区或空间电荷层内的光生载流子,立即被该区的内建电场分离,电子被扫到电池的n型一侧,空穴被扫到电池的p型一侧,从而在电池上下两面(两极)分别形成了正负电荷积累,产生“光生电压”,即“光伏效应”。由此可见,TCO玻璃作为薄膜太阳能电池的前电极,是必不可少的构件。并且,TCO玻璃表面薄膜的电导率、透光性能、光反射及吸收特性都将对最终薄膜电池的光电转换效率起决定性作用。

相关主题
文本预览
相关文档 最新文档