当前位置:文档之家› TCO透明导电薄膜玻璃的主要应用

TCO透明导电薄膜玻璃的主要应用

TCO透明导电薄膜玻璃的主要应用
TCO透明导电薄膜玻璃的主要应用

TCO透明导电薄膜玻璃的主要应用

TCO的主要应用领域有平面液晶显示(LCD)、有机发光二极管(OLED)显示、半导体照明(LED出光面电极)、薄膜太阳能电池、Low-E玻璃等。另外,柔性衬底的TCO薄膜的开发使它的潜在用途扩大到制造柔性发光器件、塑料液晶显示器、可折叠太阳能电池以及作为保温材料用于塑料大棚、玻璃粘贴膜等。一般来说,不同TCO材料在可见光透光率差别不大的情况下,方阻决定其用途,具体参见表1。

表1 TCO方阻值与应用方阻(Ω/sq)应用领域

<10 液晶显示器、彩色滤波片等

15~40 液晶电视、笔记本电脑、便携式电脑等

40~300 太阳能电池、家电/仪器/仪表面板、手机、游戏机、EL等

<1000 车载液晶显示器、触控面板、Low-E玻璃等

常见的TCO材料及其应用、性能需求见表2。

表2 TCO应用

1.2.1平板显示

作为资金密集型和技术密集型行业,近年来LCD行业以每年平均高于30%的增长率增长而被誉为全球明星产业。LCD面板广泛应用于各类消费电子产品,其中大尺寸LCD面板主要应用于笔记本电脑和液晶电视等,中小尺寸LCD面板主要应用于手机、数码相机、MP4、GPS导航仪和车载显示屏等,见图2。

图2 LCD应用范围

大尺寸LCD面板基本上为大规模生产的标准品,主要集中在笔记本电脑、液晶监视器、液晶电视等产品上。而中小尺寸LCD面板大都是客户定制型产品,其规格品种多样且成系列化,其应用范围比较广泛,包括手机、PDA、数码相机、数码摄像机、车载显示屏等,近年来发展尤为迅猛。

由于透明导电薄膜与LCD面板之间存在着一对一的搭配关系,透明导电薄膜是平板显示的基础和关键材料,因此也相应地为透明导电薄膜的发展创造了良好的市场空间。此外,在平电致发光显示器(ELD)、电致变色显示器(ECD)、等离子体显示(PD)等领域,TCO 薄膜也将会发挥巨大的作用。

1.2.2薄膜太阳能电池

在国际市场硅原材料持续紧张的背景下,薄膜太阳电池已成为国际光伏市场发展的新趋势和新热点,具有广阔的应用前景。薄膜太阳能电池与晶硅太阳能电池相比具有更低的成本,对于大规模工业生产具有独特的优势,已成为继单晶硅、多晶硅之后的第三代太阳能电池,成为目前太阳能研究开发的主要方向。

薄膜太阳能电池是在TCO玻璃表面的导电薄膜上镀制p-i-n半导体膜,再镀制背电极。图3示意了非晶硅/微晶硅双结叠层的薄膜太阳能电池。

图3 薄膜太阳能电池结构示意图

太阳光从TCO玻璃一侧入射,由于TCO的透明性大部分光进入硅薄膜p-i-n结区域,其中光子能量大于硅禁带宽度E g的光子能把价带中电子激发到导带上去,形成自由电子,价带中留下带正电的自由空穴,即电子-空穴对,通常称它们为光生载流子。其中在耗尽区或空间电荷层内的光生载流子,立即被该区的内建电场分离,电子被扫到电池的n型一侧,空穴被扫到电池的p型一侧,从而在电池上下两面(两极)分别形成了正负电荷积累,产生“光生电压”,即“光伏效应”。由此可见,TCO玻璃作为薄膜太阳能电池的前电极,是必不可少的构件。并且,TCO玻璃表面薄膜的电导率、透光性能、光反射及吸收特性都将对最终薄膜电池的光电转换效率起决定性作用。

ZnO透明导电薄膜结构与特性

沈阳工业大学 毕业实习报告题目:ZnO透明薄膜结构与特性研究 班级: 学号: 姓名: 沈阳工业大学应用物理系制 2012年10月

ZnO透明薄膜结构与特性研究 ( 摘要:ZnO是一种适用于在室温或更高温度下应用的短波长发光材料,在光电子器件领域有着广阔的应用前景。 本论文利用溶胶一凝胶法制备透明ZnO导电薄膜。利用扫描电子显微镜(SEM)和X射线衍射(XRD)测试, 结果表明薄膜具有明显择优取向生长,分光光度计测试的370nm以下的紫外光全部吸收,而在可见光透过率高达85% 。 通过在胶中制备A13+掺杂的ZnO 薄膜并进行光电特性方面的研究。发现有如下结果:(1) ZAO薄膜仍保持着ZnO六角纤锌矿结构;(2)ZAO的光致发光峰较ZnO发生蓝移;(3)ZAO的拉曼光谱随A13+的掺杂浓度不同发生改变;(4)A13+的引入, 薄膜的导电性能提高,在A13+掺杂浓度为1% 并在700度退火处理时,电导率可达1.3x1O3S/cm 。 关键词:ZnO 光电材料透明薄膜溶胶-凝胶法 Al3+掺杂光学性能六角纤锌矿电导率 第一章引言 1.1 ZnO的基本特性及应用 ZnO作为一种多功能的n一vl族直接宽禁带化合物半导体材料,多年来一直受到研究者的青睐,主要原因是由于ZnO材料的光电、压敏、气敏等特性以及它的无毒性,低成本等原因。含过量Zn的ZnO: Zn很早就被作为一种场发射材料来研究, 用于场发射低压平板显示ZnO纳米粒子比表面大, 表面有很多氧空位和悬键, 其表面吸收和光催化活性强, 可用作光催化材料,由于ZnO在可见光区几乎没有吸收,Al、Ga等元素掺杂的ZnO薄膜是一种优良的透明导电材料, 可用做太阳能电池、发光及显示器件的电极。过渡金属元素Fe、Co、Ni、M n等掺杂的ZnO薄膜是一种半导体磁性材料,可用于制作磁光器件。随着ZnO 光泵浦紫外受激辐射的发现和p型掺杂的获得,,ZnO作为一种新型的光电材料,在紫外探测器、发光二极管(LEDs)、激光二极管(LDs)等领域显示出巨大的应用潜力。 溶胶一凝胶法是制备材料的低温湿化学合成法。它具有制品纯度及均匀度高,烧成温度低,反应易于控制、材料成分可任意调整、成形性好等诸优点。并且它不需要复杂的真空设备,对衬底的选择也不苛刻,可以在很多常见的衬底上均匀而且大面积的成膜。在制备超导材料、功能陶瓷材料、非线性光学材料、催化剂及酶载体的合成、多孔玻璃材料、材料的表面镀膜处理等方面有广泛的应用。 1.2 ZAO薄膜的国内外研究进展 在90年代以前,ZnO 作为阴极射线荧光粉一直得到人们的广泛研究,自1991年开始, ZnO荧光粉在平板显示器中日益受到人们的重视。直到1996年,随着第一篇关于ZnO微晶结构薄膜在室温下光泵浦紫外受激发射论文的发表[1-3], 到1997年,日本和香港的科学家在室温下就实现了光泵浦ZnO薄膜紫外光激发[4], 引起科学界的不小震动。这种材料开始重新引起人们的注意, 并迅速成为半导体激光器件研究的国际新热点[5]。1997年5月“Science”第276卷对此作了专门报道, 称之为A great work,近三年来,除日本和香港科技大学合作研究外[6]。美国西北大学也于1998 年在国家基金的资助下重点开展了这个项目, 怀特洲大学也在美国国防部支持下进行了这项工作。同时, ZnO 薄膜在发光领域的应用前景也在国内得到重视, 山东大学的张德恒等人[7]在1994 年用射频偏压溅射法制备了具有快速紫外光响应

ITO透明导电玻璃项目建设方案分析参考模板.docx

ITO透明导电玻璃项目建设方案分析 建设方案分析参考模板,仅供参考

摘要 该ITO透明导电玻璃项目计划总投资23477. 01万元,其中:固定资产投资17762. 89万元,占项目总投资的75.66%;流动资金5714. 12 万元,占项目总投资的24. 34%o 达产年营业收入43792. 00万元,总成本费用34370. 53万元,税金及附加393. 10万元,利润总额9421. 47万元,利税总额11114. 08 万元,税后净利润7066. 10万元,达产年纳税总额4047. 98万元;达产年投资利润率40. 13%,投资利税率47. 34%,投资回报率30. 10%,全部投资回收期4. 82年,提供就业职位774个。 认真贯彻执行“三高、三少”的原则。“三高”艮卩:高起点、高水平、高投资回报率;“三少"即:少占地、少能耗、少排放。 本IT0透明导电玻璃项目报告所描述的投资预算及财务收益预评估基于一个动态的环境和对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与未来发生的事实不完全一致。

ITO透明导电玻璃项目建设方案分析目录第一章IT0透明导电玻璃项目绪论 第二章IT0透明导电玻璃项目建设背景及必要性 第三章建设规模分析 第四章IT0透明导电玻璃项目选址科学性分析 第五章总图布置 第六章工程设计总体方案 第七章项目风险评估分析 第八章职业安全与劳动卫生 第九章项目进度说明 第十章投资估算与经济效益分析

第一章ITO透明导电玻璃项目绪论 一、项目名称及承办企业 (-)项目名称 IT0透明导电玻璃项目 (二)项目承办单位 XXX公司 二、IT0透明导电玻璃项目选址及用地规模控制指标 (-)IT0透明导电玻璃项目建设选址 项目选址位于XXX临港经济开发区,地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,建设条件良好。 (二)IT0透明导电玻璃项目用地性质及规模 项目总用地面积59289. 63平方米(折合约88. 89亩),土地综合利用率100. 00%;项目建设遵循“合理和集约用地”的原则,按照IT0 透明导电玻璃行业生产规范和要求进行科学设计、合理布局,符合规划建设要求。 (三)用地控制指标及土建工程

金属氧化物透明导电材料地基本原理

金屬氧化物透明導電材料的基本原理 一、透明導電薄膜簡介 如果一種薄膜材料在可見光範圍內(波長380-760 nm)具有80%以上的透光率,而且導電性高,其比電阻值低於1×10-3 ·cm,則可稱為透明導電薄膜。Au, Ag, Pt, Cu, Rh, Pd, A1, Cr等金屬,在形成3-15 nm厚的薄膜時,都有某種程度的可見光透光性,因此在歷史上都曾被當成透明電極來使用。但金屬薄膜對光的吸收太大,硬度低而且穩定性差,因此人們開始研究氧化物、氮化物、氟化物等透明導電薄膜的形成方法及物性。其中,由金屬氧化物構成的透明導電材料(transparent conducting oxide, 以下簡稱為TCO),已經成為透明導電膜的主角,而且近年來的應用領域及需求量不斷地擴大。首先,隨著3C產業的蓬勃發展,以LCD為首的平面顯示器(FPD)產量逐年增加,目前在全球顯示器市場已佔有重要的地位,其中氧化銦錫(In2O3:Sn, 意指摻雜錫的氧化銦,以下簡稱為ITO)是FPD的透明電極材料。另外,利用SnO2等製成建築物上可反射紅外線的低放射玻璃(low-e window),早已成為透明導電膜的最大應用領域。未來,隨著功能要求增加與節約能源的全球趨勢,兼具調光性與節約能源效果的electrochromic (EC) window (一種透光性可隨施加的電壓而變化的玻璃)等也可望成為極重要的建築、汽車及多種日用品的材料,而且未來對於可適用於多種場合之透明導電膜的需求也會越來越多。 二、常用的透明導電膜

一些目前常用的透明導電膜如表1所示,我們可看出TCO佔了其中絕大部分。這是因為TCO具備離子性與適當的能隙(energy gap),在化學上也相當穩定,所以成為透明導電膜的重要材料。 表1 一些常用的透明導電膜 三、代表性的TCO材料 代表性的TCO材料有In2O3, SnO2, ZnO, CdO, CdIn2O4, Cd2SnO4,Zn2SnO4和In2O3-ZnO等。這些氧化物半導體的能隙都在3 eV以上,所以可見光(約1.6-3.3 eV)的能量不足以將價帶(valence band)的電子激發到導帶(conduction band),只有波長在350-400nm(紫外線)以下的光才可以。因此,由電子在能帶間遷移而產生的光吸收,在可見光範圍中不會發生,TCO對可見光為透明。

ITO导电玻璃检验标准

1.0范围 本标准准适用于正星光电科技有限公司生产的ITO 产品。 2.0规范性引用文件 2.1 JIS B0601—1994表面微观波纹度测量过程和方法的标准。 2.2 GB2828—2003计数抽样检验程序[第一部分 按照接收质量限(AQL )检索的逐批检验抽样计划]。 3.0玻璃基片的规格 3.1 长度及宽度的允许偏差、厚度允许偏差表 序号 检验项目 标准范围 测量方法 1 长度/宽度 ±0.20mm 数显游标卡尺 2 厚度 1.10mm ±0.1mm 0.70mm ±0.05mm 0. 55mm ±0.05mm 0.4/0.33mm ±0.05mm 千分尺 3 垂直度 ≤0.10% 宽座角尺和塞尺 3.2垂直度 玻璃基片的垂直度的公差等级a/L ≤0.1%(见图1,a 为公差带,L 为被测玻璃基片的相应边长)。 图1 玻璃基片的垂直度 3.3 弯曲度(h/L) 图2 玻璃基片的弯曲度,不允许S 形弯曲 3.4微观波纹度(玻璃的浮法锡面) 微观表面波纹度的数值Rt 的最大值应符合表2要求 序号 厚度 玻璃类型 弯曲度 微观波纹度 1 1.10mm 非强化 ≤0.10% ≤0.15um/20mm 强化 ≤0.20% 2 0.70mm 非强化 ≤0.15% ≤0.20um/20mm 强化 ≤0.25% 3 0.55mm 非强化 ≤0.15% ≤0.25um/20mm 强化 ≤0.30% 4 0.4/033mm 非强化 ≤0.15% ≤0.30um/20mm 强化 ≤0.30% 3.5磨边倒角: R 型边 编号 项目 标准要求 检验方法 1 C 型倒边 0.05mm ≤W ≤0.4mm 10倍放大镜 2 R 型倒边 宽度:0.1mm ≤W ≤1.0 曲半径: R ≤50 mm 10倍放大镜 3 标识角 b=2.0±1.0mm 10倍放大镜 b d*d 浮法方向 切角磨边示意图 a 0.3*45° C 型边

基于光电显示用透明导电膜及玻璃(ITO)的原理.

基于光电显示用透明导电膜及玻璃(ITO)的原理 ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。液晶显示器专用ITO导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。液晶显示器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。因此,最终的液晶 ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。液晶显示器专用ITO导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。液晶显示器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。因此,最终的液晶显示器都会沿浮法方向,规律的出现波纹不平整情况。 在溅镀ITO层时,不同的靶材与玻璃间,在不同的温度和运动方式下,所得到的ITO层会有不同的特性。一些厂家的玻璃ITO层常常表面光洁度要低一些,更容易出现“麻点”现象;有些厂家的玻璃ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。 ITO导电层的特性: ITO膜层的主要成份是氧化铟锡。在厚度只有几千埃的情况下,氧化铟透过率高,氧化锡导电能力强,液晶显示器所用的ITO玻璃正是一种具有高透过率的导电玻璃。由于ITO具有很强的吸水性,所以会吸收空气中的水份和二氧化碳并产生化学反应而变质,俗称“霉变”,因此在存放时要防潮。 ITO层在活性正价离子溶液中易产生离子置换反应,形成其它导电和透过率不佳的反应物质,所以在加工过程中,尽量避免长时间放在活性正价离子溶液中。 ITO层由很多细小的晶粒组成,晶粒在加温过程中会裂变变小,从而增加更多晶界,电子突破晶界时会损耗一定的能量,所以ITO导电玻璃的ITO层在600度以下会随着温度的升高,电阻也增大。 ITO导电玻璃的分类: ITO导电玻璃按电阻分,分为高电阻玻璃(电阻在150~500欧姆)、普通玻璃(电阻在60~150欧姆)、低电阻玻璃(电阻小于60欧姆)。高电阻玻璃一般用于静电防护、触控屏幕制作用;普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃一般用于STN液晶显示器和透明线路板。

透明导电薄膜用Sb掺杂SnO2光电特性研究[设计+开题+综述]

开题报告 电子信息科学与技术 透明导电薄膜用Sb掺杂SnO2光电特性研究 一、选题的背景与意义 近年来,随着科技的进一步发展,太阳能电池,高分辨率,大尺寸平面显示器,节能红外反射膜等广泛应用,对透明导电膜的需求越来越大。透明导电膜主要用于透明电极、屏幕显示、热反射镜、透明表面发热器、柔性发光器件、液晶显示器等领域。这就要求透明导电膜不但要有好的导电性,还要有优良的可见光透光性。根据材料的不同,透明导电膜可分为金属透明导电薄膜,氧化物透明导电膜、非氧化物透明导电薄膜及高分子透明导电薄膜。当前,氧化物及其复合氧化物薄膜的研究十分引人关注。本课题主要研究的是Sb掺杂SnO2(简称ATO)体系。 ATO主要成分的SnO2因其优良的光电性能而被广泛应用于透明导电、固态气体传感器及催化等领域。在透明导电膜中,SnO2因其优异的光电性能已被广泛应用,二氧化锡膜是较早获得商业应用的透明导电材料之一,SnO2是透明n 型宽禁带半导体材料,其Eg=3.6 eV(300 K),纯SnO2的电阻率通常较高,其载流子浓度由氧空位决定,在SnO2中掺入少量的Sb离子能大幅度降低SnO2的电阻率并保持良好的透光性。 而随着电子工业以及相关高新技术产业的高速发展,具有半导体特性金属氧化物导电粉末尤其是超细粉末(如掺杂锑的氧化锡)由于其独特的稳定性和广泛的应用领域而得到迅速发展。 ATO(锑掺杂的二氧化锡)是一类新型浅色透明导电粉,它利用锑掺杂取代锡形成缺陷固融体时形成的氧空位或电子作为载流电子导电的。ATO可做优良隔热粉、导电粉使用。其良好隔热性能,被广泛的应用于涂料、化纤、高分子膜等领域。此外作为导电材料,在分散性、耐活性、热塑性、耐磨性、安全性有着其他导电材料无法比拟的优势。被应用于光电显示器件、透明电极、太阳能电池、液晶显示、催化等方面。

【开题报告】ZnO-SnO2透明导电薄膜光电特性研究

开题报告 电气工程与自动化 ZnO-SnO2透明导电薄膜光电特性研究 一、选题的背景与意义: 随着电子信息产业的迅猛发展,透明导电薄膜材料被广泛应用于半导体集成电路、平面显示器、抗静电涂层等诸多领域,市场规模巨大。 1. 透明导电薄膜的概述 自然界中往往透明的物质不导电,如玻璃、水晶、水等,导电的或者说导电性好的物质往往又不透明,如金属材料、石墨等。但是在许多场合恰恰需要某一种物体既导电又透明,例如液晶显示器、等离子体显示器等平板显示器和太阳能电池光电板中的电极材料就是需要既导电又透明的物质。透明导电薄膜是薄膜材料科学中最重要的领域之一,它的基本特性是在可见光范围内,具有低电阻率,高透射率,也就是说,它是一种既有高的导电性,又对可见光有很好的透光性,而对红外光有较高反射性的薄膜。正是因为它优异的光电性能,它被广泛的应用在各种光电器件中,例如:平面液晶显示器(LCD),太阳能电池,节能视窗,汽车、飞机的挡风玻璃等。自从1907年Badeker制作出CdO透明导电薄膜以后,人们先后研制出了In2O3,SnO2,ZnO等为基体的透明导电薄膜。目前世界研究最多的是掺锡In2O3(简称ITO)透明导电薄膜,掺铝ZnO(简称AZO)透明导电薄膜。同时,人们还开发了CdInO4、Cd2SnO4、 Zn2SnO4等多元透明氧化物薄膜。 2. SnO2基薄膜 SnO2(Tin oxide,简称TO)是一种宽禁带半导体材料,其禁带宽度Eg=3.6eV,n 型半导体。本征SnO2薄膜导电性很差,因而得到广泛应用的是掺杂的SnO2薄膜。对于SnO2来说,五价元素的掺杂均能在禁带中形成浅施主能级,从而大大改善薄膜的导电性能。目前应用最多、应用最广的是掺氟二氧化锡(SnO2:F,简称FTO)薄膜和掺锑二氧化锡(SnO2:Sb,简称ATO)薄膜。SnO2:Sb薄膜中的Sb通常以替代原子的形式替代Sn的位置。掺杂Sb浓度不同,电阻率不同,最佳Sb浓度为0.4%-3%(mol)的范围对应电阻率为10-3Ω·cm,可见光透过率在80%-90%。SnO2:F薄膜热稳定性好、化学稳定性好、硬度高、生产设备简单、工艺周期短、原材料价格廉价、生产成本

ITO导电玻璃入门知识

I T O导电玻璃入门知识 SANY GROUP system office room 【SANYUA16H-

I T O导电玻璃入门知识ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。液晶显示器专用ITO导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。液晶显示器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。因此,最终的液晶显示器都会沿浮法方向,规律的出现波纹不平整情况。 在溅镀ITO层时,不同的靶材与玻璃间,在不同的温度和运动方式下,所得到的ITO层会有不同的特性。一些厂家的玻璃ITO层常常表面光洁度要低一些,更容易出现“麻点”现象;有些厂家的玻璃ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。 ITO导电层的特性: ITO膜层的主要成份是氧化铟锡。在厚度只有几千埃的情况下,氧化铟透过率高,氧化锡导电能力强,液晶显示器所用的ITO玻璃正是一种具有高透过率的导电玻璃。由于ITO具有很强的吸水性,所以会吸收空气中的水份和二氧化碳并产生化学反应而变质,俗称“霉变”,因此在存放时要防潮。

ITO层在活性正价离子溶液中易产生离子置换反应,形成其它导电和透过率不佳的反应物质,所以在加工过程中,尽量避免长时间放在活性正价离子溶液中。 ITO层由很多细小的晶粒组成,晶粒在加温过程中会裂变变小,从而增加更多晶界,电子突破晶界时会损耗一定的能量,所以ITO导电玻璃的ITO层在600度以下会随着温度的升高,电阻也增大。 ITO导电玻璃的分类: ITO导电玻璃按电阻分,分为高电阻玻璃(电阻在150~500欧姆)、普通玻璃(电阻在60~150欧姆)、低电阻玻璃(电阻小于60欧姆)。高电阻玻璃一般用于静电防护、触控屏幕制作用;普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃一般用于STN液晶显示器和透明线路板。 ITO导电玻璃按尺寸分,有14”x14”、14”x16”、20”x24”等规格;按厚度分,有2.0mm、1.1mm、0.7mm、0.55mm、0.4mm、0.3mm等规格,厚度在0.5mm 以下的主要用于STN液晶显示器产品。 ITO导电玻璃按平整度分,分为抛光玻璃和普通玻璃。 影响ITO玻璃性能的主要参数: 长度、宽度、厚度及允差(±0.20) 垂直度(≤0.10%) 翘曲度(厚度0.7mm以上≤0.10%,厚度0.55mm以下≤0.15%)

透明导电薄膜研究进展

氧化锌基透明导电薄膜研究 汇报人:卢龙飞 导师:齐暑华 学号:2014201921 摘要:本文简要介绍了氧化锌基导电薄膜的基本特征、发展近况,并对其前景进行了展望。关键词:氧化锌导电薄膜参杂 Progess in research of ZnO based transparentconductinve films Abstract:Basic traits and latest development of ZnO based conductive thin films are introduced in this paper,and the prospect of ZnO conductive films was also forecased. Keywords:ZnO conductive thin films doping 0.引言 透明导电氧化物薄膜(transparent conductive oxide films)[1-3],简称TCO,由于本身的透明性和导电性,迅速发展成为重要的功能薄膜材料,在透明电极(太阳能电池、显示器、发光二极管LED、触摸屏等)、面发热膜(除霜玻璃)、红外反射族(汽车贴膜、建筑窗坡璃)、防静电膜、电磁屏蔽膜、电致变色密、气敏传感器、高密度存储、低波长激光器、光纤通信等领域得到广泛的应用透明导电材料是一类对可见光具有高透光率,同时又具有高导电率的特殊材料由于其特有的光电性能,透明导电材料在电子信息技术光电技术新能源技术以及国防技术中具有广泛的应用[4-7]。自20世纪80年代以来,人们开始关注Zn O薄膜。相比氧化铟锡(ITO)而言,ZnO具有原材料廉价无毒沉积温度低等优点,并且在H2等离子体环境下具有更好的稳定性尽管ITO薄膜目前仍是工业化应用最多的透明导电材料,但研究表明,在ZnO中通过掺杂Al、Ga、In等元素能有效提高薄膜光电性能,未来有望替代ITO成为最具竞争力的透明导电材料早期研究者大多在硬质材料衬底如硅片玻璃陶瓷上制备ZnO基透明导电薄膜。然而,科学技术的发展,越来越多的电子器件开始朝柔性化超薄化方向发展,比如触摸屏太阳能电池等,使得对柔性透明导电薄膜的需求日益迫切柔性透明导电薄膜有许多独特优点,例如可绕曲质量小不易碎易于大面积生产成本低便于运输等。因此,开发具有实用前景并且性能优异的柔性透明导电薄膜具有非常重要的现实意义。 1.ZnO基本特征 氧化锌(ZnO, Zinc Oxide)是一种新型的宽带隙II-VI 族化合物半导体材料,兼具有光电、压电、热电以及铁电等特性,可以方便地制备成薄膜以及各种形态的纳米结构。ZnO主要有四方岩盐矿立方闪锌矿和六方纤锌矿3种结构,通常情况下以纤锌矿结构存在,属六方晶系热稳定性好熔点1975℃,常温下禁带宽度为3.37eV对应于近紫外光阶段,作为一种压电材料,具有激活能大(60 meV)、压电常数大、发光性能强、热电导高等特点[8]。ZnO存在很多浅施主缺陷主要有氧空位V0和锌间隙Zni,使得ZnO偏离化学计量比表现为n型本身就有透明导电性,但高温下400K电稳定性不好同时红外反射率较低。 ZnO有较大的耦合系数;ZnO中掺杂Li 或Mg 时可作为铁电材料;ZnO与Mn元素合金化后是一种具有磁性的半导体材料;高质量的单晶或纳米结构ZnO可用于蓝光或紫外发光二极管(LEDs)和激光器(LDs);通过能带工程,如在ZnO中掺入适量的MgO或CdO形成三元合金,可以实现其禁带宽度在2.8~4.0 eV 之间的调控。通过掺杂III 族元素(B、Al、Ga、In、Sc、Y)或IV 族元素(Si、Ge、Ti、Zr、Hf)以及VII 族元素(F)之后,ZnO有优良的导电性,同时也有可见光高透过性,可用作透明导电氧化物薄膜材料,应用于平板显示器、薄膜太阳电池等多个领域[9]。ZnO基薄膜在氢等离子气氛下的化学稳定性良好,并且原材料丰富、价廉、无毒,所以近年来ZnO基透明导电薄膜被研究应用于薄膜太阳电池的透明电极[10]。 2.透明导电薄膜

透明导电膜知识培训

新业务知识教材—透明导电膜部分 一、触摸屏发展的背景 二、触摸屏的原理以及发展历程 1、触摸屏—绝对定位元件 2、触摸屏的种类以及工作原理 3、各种方式触摸屏的特点比较以及应用的领域 三、透明导电膜的功能以及材料组成 1、透明导电膜在触摸屏中的作用 2、透明导电膜的材料特点 四、透明导电膜的技术要求 1、透明导电膜的技术要求 2、透明导电膜的技术指标 五、透明导电膜的生产工艺 1、溅射法生产工艺介绍 2、涂布法生产工艺介绍 3、其他方法简介 六、触摸屏的发展趋势以及面临的问题

触摸屏及透明导电膜知识简介 前言 随着计算机技术的快速发展,人机界面的沟通成了计算机技术的一个热点,触摸 屏凭着优秀的人机沟通方式,成为了当今发展最快的技术。 触摸屏主要应用于个人便携式信息产品(如使用手写输入技术的PC、PDA、AV 等)之外,应用领域遍及信息家电、公共信息(如电子政务、银行、医院、电力等部 门的业务查询等)、电子游戏、通讯设备、办公室自动化设备、信息收集设备及工业设备等等。2009年全球触摸屏产值达43亿美元,估计2016年将成长到140 亿美元,年复合成长率达18%。国内市场约占全球市场的20%,约为8.6亿美元。 第一章:触摸屏发展的背景 在人类渴求讯息实时联系与传递的欲望下,个人化电子用品未来将有爆发性的需求。然而,在机动与方便性的诉求下,个人化的电子工具通常使用在不安稳的场合, 如何快速简便的使用随身的电子工具,是使用者最大期待。其中最大的障碍在于人与 机器间的沟通。所以,是否具有快速简便的人机沟通接口,将是未来电子化产品最重 要的功能。 如果说1964年鼠标的发明,把电脑操作带入了一个新的时代,那么触摸屏的出现,则使图形化的人机交互界面变得更为直观易用。1971 年,美国人SamHurst发明了世界上第一个触摸传感器。虽然这个仪器和我们今天看到的触摸屏并不一样,却被视为触 摸屏技术研发的开端。 当年,SamHurst 在肯尼迪大学当教师,因为每天要处理大量的图形数据而不胜其烦,就开始琢磨怎样提高工作效率,用最简单的方法搞定这些该死的图形。他把自己 的三间地下室改造成了车间,一间用来加工木材,一间制造电子元件,一间用来装配这些零件,并最终制造出了最早的触摸屏。这种最早的触摸屏被命名为“AccuTouch”,由于是手工组装,一天生产几台设备。不久,SamHurst 成立了自己的公司,并和西门 子公司合作,不断完善这项技术。这个时期的触摸屏技术主要被美国军方采用,直到1982 年,Sam Hurst的公司在美国一次科技展会上展出了33 台安装了触摸屏的电视机,平民百姓才第一次亲手“摸”到神奇的触摸屏。触摸屏早期多被装于工控计算机、

导电玻璃

NSG玻璃:FTO导电玻璃,厚度为2.2mm,透光率大于90%,电阻为15欧,大小为200mm*150mm,也可以根据用户要求订做。导电玻璃为掺杂氟的SnO2导电玻璃(SnO2:F),简称为FTO,其综合性能常用直属FTC来评价:FTC=T10/RS。T是薄膜的透光率RS是薄膜的方阻值;在光学应用方面,则要求其对可见光有好的透射性和对红外有良好的反射性。对其基本要求是:①表面方阻低,②透光率高,③面积大、重量轻,④易加工、耐冲击。 Characteristics of NSG TCO TCO Tvis (%) Haze (%) Sheet Resistance(ohms/sq) High Transmission Type(for tandem) 80 to 82 11 to 16 11 to 14 High Transmission Type(for a-Si) 80 to 82 8 to 13 8 to 11 Normal TCO(for a-Si) 79 to 81 8 to 12 8 to 11 TCO镀膜玻璃的特性及种类 在太阳能电池中,晶体硅片类电池的电极是焊接在硅片表面的导线,前盖板玻璃仅需达到高透光率就可以了。薄膜太阳能电池是在玻璃表面的导电薄膜上镀制p-i-n半导体膜,再镀制背电极。 透明导电氧化物的镀膜原料和工艺很多,通过科学研究进行不断的筛选,目前主要有以下三种TCO玻璃与光伏电池的性能要求相匹配。 ITO镀膜玻璃是一种非常成熟的产品,具有透过率高,膜层牢固,导电性好等特点,初期曾应用于光伏电池的前电极。但随着光吸收性能要求的提高,TCO玻璃必须具备提高光散射的能力,而ITO镀膜很难做到这一点,并且激光刻蚀性能也较差。铟为稀有元素,在自然界中贮存量少,价格较高。ITO应用于太阳能电池时在等离子体中不够稳定,因此目前ITO镀膜已非光伏电池主流的电极玻璃。 SnO2镀膜也简称FTO,目前主要是用于生产建筑用Low-E玻璃。其导电性能比ITO略差,但具有成本相对较低,激光刻蚀容易,光学性能适宜等优点。通过对普通Low-E的生产技术进行升级改进,制造出了导电性比普通Low-E好,并且带有雾度的产品。利用这一技术生产的TCO玻璃已经成为薄膜光伏电池的主流产品。 氧化锌基薄膜的研究进展迅速,材料性能已可与ITO相比拟,结构为六方纤锌矿型。其中铝掺杂的氧化锌薄膜研究较为广泛,它的突出优势是原料易得,制造成本低廉,无毒,易于实现掺杂,且在等离子体中稳定性好。预计会很快成为新型的光伏TCO产品。目前主要存在的问题是工业化大面积镀膜时的技术问题。 光伏电池对TCO镀膜玻璃的性能要求 1.光谱透过率为了能够充分地利用太阳光,TCO镀膜玻璃一定要保持相对较高的透过率。目前,产量最多的薄膜电池是双结非晶硅电池,并且已经开始向非晶/微晶复合电池转化。因此,非晶/微晶复合叠层能够吸收利用更多的太阳光,提高转换效率,即将成为薄膜电池的主流产品。 2.导电性能TCO导电薄膜的导电原理是在原本导电能力很弱的本征半导体中掺入微量的其他元素,使半导体的导电性能发生显著变化。这些微量元素被称为杂质,掺杂后的半导体称为杂质半导体。氧化铟锡(ITO)透明导电玻璃就是将锡元素掺入到氧化铟中,提高导电率,它的导电性能在目前是最好的,最低电阻率达10-5Ωcm量级。 3.雾度为了增加薄膜电池半导体层吸收光的能力,光伏用TCO玻璃需要提高对透射光的散射能力,这一能力用雾度(Haze)来表示。雾度即为透明或半透明材料的内部或表面由于光漫射造成的云雾状或混浊的外观。以漫射的光通量与透过材料的光通量之比的百分率表示。 一般情况下,普通镀膜玻璃要求膜层表面越光滑越好,雾度越小越好,但光伏用TCO玻璃则要求有一定的光散射能力。目前,雾度控制比较好的商业化TCO玻璃是AFG的PV-TCO玻璃,雾度值一般为

透明导电薄膜的制备和性能测试

四级物理实验“透明导电薄膜的制备和性能测试”预习内容中国科大物理系薄膜测试实验室,2002年2月 许小亮 第一部分预备知识:半导体的结构及导电性 一. 半导体的晶体结构 1.晶格、晶向、晶面和它们的标志

一. 半导体的晶体结构 2.半导体的另几种常见结构 (1)闪锌矿结构 III族元素Al,Ga,In和V族元素P,As等合成的III-V族化合物半导体,绝大多数具有闪锌矿结构(与金刚石结构相比,有何异同?)。 (2)纤锌矿型和氯化钠型结构

二. 半导体中的电子状态和能带1.原子的能级和晶体的能带

2.半导体中的电子状态和能带 (1) 波矢空间,布里渊区,能量与波矢的关系 波矢--对于晶格常数为a的无限大晶体:k = n / 2a (n = 0, ±1, ±2, ±3, ...) 对于边长L = a的有限晶胞:kx = n x/L, k y = n y/L, k z = n z/L E(k) = E (k + n/a) 是k的周期性函数,通过求解Schrodinger方程而得到其解。 (左图中虚线代表自由电子的E与k的关系:E = h2k2 / 2m0, m0是电子的静止质量)

(2)绝缘体、半导体和导体的能带之简单比较 绝缘体与半导体的导带没有填电子,不同的是在禁带宽度上的差异:绝缘体的禁带宽度为10eV量级;而半导体的禁带宽度为1eV量级。 在一定温度T下电子从价带越过禁带激发到导带而成为自由电子的浓度为: n i = (N C N V)1/2exp(-E g / 2k0T ) 其中N C = 2(2m n*k0T)3/2 / h3,N V = 2(2m p*k0T)3/2 / h3. E g = E g(0) + βT, β = dE g / dT m n*是电子的有效质量,m p*是空穴的有效质量. 不含杂质的半导体称为本征半导体,其对应的n i为本征载流子浓度。 Ge,Si和GaAs的本征载流子浓度分别为2.4x1012cm-3, 7.8x109cm-3,和2.3x106cm-3.

透明导电薄膜的研究现状及应用

透明导电薄膜的研究现状及应用 李世涛乔学亮陈建国 (武汉华中科技大学模具技术国家重点实验室) 摘要:综述了当前透明导电薄膜的最新研究和应用状况,重点讨论了ITO膜的光电性能和当前的研究焦点。指出了目前需要进一步从材料选择、工艺参数制定、多层膜光学设计等方面来提高透明导电膜的综合性能,使其可见光平均透光率达到92%以上,从而满足高尖端技术的需要。 关键词:透明导电,薄膜,平均透光率,ITO,电导率 1 前言 透明导电薄膜的种类有很多,但氧化物膜占主导地位(例如ITO和AZO膜)。氧化铟锡(IndiumTinOxide简称为ITO)薄膜、氧化锌铝(Al-dopedZnO,简称AZO)膜都是重掺杂、高简并n型半导体。就电学和光学性能而言,它是具有实际应用价值的透明导电薄膜。金属氧化物透明导电薄膜(TCO:TransparentandConductiveOxide的缩写)的研究比较早,Bakdeker于1907年第一个报道了CdO透明导电薄膜。从此人们就对透明导电薄膜产生了浓厚的兴趣,因为从物理学角度看,透明导电薄膜把物质的透明性和导电性这一矛盾两面统一起来了。1950年前后出现了硬度高、化学稳定的SnO2基和综合光电性能优良的In2O3基薄膜,并制备出最早有应用价值的透明导电膜NESA(商品名)-SnO2薄膜。ZnO基薄膜在20世纪80年代开始研究得火热。TCO薄膜为晶粒尺寸数百纳米的多晶;晶粒取向单一,目前研究较多的是ITO、FTO(Sn2O:F)。1985年,TakeaOjioSizoMiyata首次用汽相聚合方法合成了导电的PPY-PVA复合膜,从而开创了导电高分子的光电领域,更重要的是他们使透明导电膜由传统的无机材料向加工性能较好的有机材料方面发展。 透明导电膜以其接近金属的导电率、可见光范围内的高透射比、红外高反射比以及其半导体特性,广泛地应用于太阳能电池、显示器、气敏元件、抗静电涂层以及半导体/绝缘体/半导体(SIS)异质结、现代战机和巡航导弹的窗口等。由于ITO薄膜材料具有优异的光电特性,因而近年来得以迅速发展,特别是在薄膜晶体管(TFT)制造、平板液晶显示(LCD)、太阳电池透明电极以及红外辐射反射镜涂层、火车飞机用玻璃除霜、建筑物幕墙玻璃等方面获得广泛应用,形成一定市场规模。 制备透明导电薄膜的方法很多:物理汽相沉积(PVD)(喷涂法、真空蒸发、磁控溅射、高密度等离子体增强(HDPE)蒸发、脉冲激光沉积(PulsedLaserDeposition,简称PLD)技术、化学汽相沉积(CVD)、原子层外延(ALE)技术、反应离子注入以及溶胶-凝胶(Sol-Gel)技术等。然而,适合于批量生产且已经形成产业的工艺,只有磁控溅射法和溶胶-凝胶法。特别是,溅射法由于具有良好的可控性和易于获得大面积均匀的薄膜,而被广泛应用于显示器件中ITO薄膜的制备。美欧和日本均在发展ITO产业,其中日本夏普、日本电气和东芝三大公司都在其工厂内开发ITO薄膜。深圳几家导电玻璃公司在进口和国产生产线上制造LCD用导电玻璃。而AZO薄膜由于其在实用上还有许多问题,现在还处于研究阶段。综上所述,ITO薄膜性能优异,制

AZO透明导电膜的光电性能研究

Material Sciences 材料科学, 2018, 8(4), 401-411 Published Online April 2018 in Hans. https://www.doczj.com/doc/d213792532.html,/journal/ms https://https://www.doczj.com/doc/d213792532.html,/10.12677/ms.2018.84045 Study on the Photoelectric Properties of AZO Transparent Conductive Films Yu Wang1, Yunpeng Yu1, Hanyan Zhang2, Gang Lin2, Congkang Xu3, Jiangyong Wang1* 1Shantou University, Shantou Guangdong 2Shantou Goworld-Display Co., Ltd., Shantou Guangdong 3Wuxi Xumatic Co., Ltd., Wuxi Jiangsu Received: Mar. 29th, 2018; accepted: Apr. 21st, 2018; published: Apr. 28th, 2018 Abstract In this paper, ZnO thin films doped Al2O3(AZO) were prepared on glass substrate by radio fre-quency magnetron sputtering. The photoelectric properties of AZO thin films were characterized by four-point probe, XRD and spectrophotometer. The optimal sputtering and annealing parame-ters for the best performance AZO thin films with transmittance up to 90% and square resistance as low as 15 Ω/□ were obtained. Keywords ZnO, Doping, Sputtering, Square Resistance, Transmittance AZO透明导电膜的光电性能研究 王宇1,余云鹏1,张汉焱2,林钢2,徐从康3,王江涌1* 1汕头大学,广东汕头 2汕头超声显示器有限公司,广东汕头 3无锡舒玛天科新能源技术有限公司,江苏无锡 收稿日期:2018年3月29日;录用日期:2018年4月21日;发布日期:2018年4月28日 摘要 本文采用射频磁控溅射法在玻璃衬底表面制备了Al2O3掺杂的ZnO薄膜(AZO膜),使用四探针薄膜方阻仪、XRD和分光光度计对AZO薄膜光电性能进行了表征分析。研究了制备参数和退火条件对AZO薄膜光电性*通讯作者。

光电显示用透明导电膜及玻璃

光电显示用透明导电膜及玻璃(ITO)的原理 ITO导电玻璃是在钠钙基或硅硼基基片玻璃的基础上,利用磁控溅射的方法镀上一层氧化铟锡(俗称ITO)膜加工制作成的。液晶显示器专用ITO导电玻璃,还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。高档液晶显示器专用ITO玻璃在溅镀ITO层之前基片玻璃还要进行抛光处理,以得到更均匀的显示控制。液晶显示器专用ITO玻璃基板一般属超浮法玻璃,所有的镀膜面为玻璃的浮法锡面。因此,最终的液晶显示器都会沿浮法方向,规律的出现波纹不平整情况。 在溅镀ITO层时,不同的靶材与玻璃间,在不同的温度和运动方式下,所得到的ITO层会有不同的特性。一些厂家的玻璃ITO层常常表面光洁度要低一些,更容易出现“麻点”现象;有些厂家的玻璃ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。 ITO导电层的特性: ITO膜层的主要成份是氧化铟锡。在厚度只有几千埃的情况下,氧化铟透过率高,氧化锡导电能力强,液晶显示器所用的ITO玻璃正是一种具有高透过率的导电玻璃。由于ITO具有很强的吸水性,所以会吸收空气中的水份和二氧化碳并产生化学反应而变质,俗称“霉变”,因此在存放时要防潮。 ITO层在活性正价离子溶液中易产生离子置换反应,形成其它导电和透过率不佳的反应物质,所以在加工过程中,尽量避免长时间放在活性正价离子溶液中。 ITO层由很多细小的晶粒组成,晶粒在加温过程中会裂变变小,从而增加更多晶界,电子突破晶界时会损耗一定的能量,所以ITO导电玻璃的ITO层在600度以下会随着温度的升高,电阻也增大。 ITO导电玻璃的分类: ITO导电玻璃按电阻分,分为高电阻玻璃(电阻在150~500欧姆)、普通玻璃(电阻在60~150欧姆)、低电阻玻璃(电阻小于60欧姆)。高电阻玻璃一般用于静电防护、触控屏幕制作用;普通玻璃一般用于TN类液晶显示器和电子抗干扰;低电阻玻璃一般用于STN 液晶显示器和透明线路板。 ITO导电玻璃按尺寸分,有14”x14”、14”x16”、20”x24”等规格;按厚度分,有2.0mm、1.1mm、0.7mm、0.55mm、0.4mm、0.3mm等规格,厚度在0.5mm以下的主要用于STN液晶显示器产品。 ITO导电玻璃按平整度分,分为抛光玻璃和普通玻璃。

透明导电薄膜

透明导电薄膜 引言:透明导电薄膜作为一种具有低电阻和高透光率的薄膜材料。被应用于显示器、太阳能电池、抗静电涂层、带电防护膜等各种光电材料中。目前广泛研究和应用的透明导电薄膜主要为In2O3∶Sn(ITO)、Sb∶SnO2(ATO)和ZnO∶A1(ZAO)等无机氧化物透明导电薄膜。氧化物薄膜具有透光性好、电阻率低和化学稳定性较好等优点但是作为无机材料,氧化物薄膜的脆性大、韧性差、合成温度高、且和柔性衬底的结合性较差。这些缺点限制了它们的进一步应用。例如.可折叠显示屏上要求透明导电薄膜具有可弯曲性.飞机有机玻璃窗户表面用于加热除霜的薄膜必须与有机基底结合牢固等。 薄膜的组成,设备和制作工艺 首先在室温下将3-巯丙基三甲氧基硅烷(MPTMS)和醋酸以一定物质的量比混合.并搅拌5 h后得到无机前驱体溶液。然后,用传统乳液聚合法制备得到十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺。将一定量的导电聚苯胺溶于氯仿和间甲酚的混合溶剂中,并搅拌3 h;然后混合聚苯胺溶液和无机前驱体溶液。搅拌并陈化6 h后得到有机一无机杂化溶胶溶液实验中醋酸和MPTMS的物质的量比为0.1~1.0,定义为H1~H10:间甲酚与MPTMS的物质的量比为3~7,定义为M3~M7:聚苯胺和二氧化硅的质量比为15/85~50/50,定义为P15~P50。其中,溶胶溶液的浓度为0.5mol.L-1。 实验采用提拉法制备薄膜将用超声清洗并干燥的普通载玻片在杂化溶胶溶液中浸泡20 s后匀速提拉.控制提拉速度为1mm.s-1。然后将沉积有薄膜的载玻片在80℃烘箱中干燥30 min,并在室温中冷却后,重复浸渍提拉干燥过程,制备5层厚度的导电薄膜,最后在80℃烘箱中干燥。 薄膜分析方法、结果及性能 图1为3-巯丙基三甲氧基硅烷(MPTMS)、十二烷基苯磺酸掺杂的聚苯胺(DBSA—PANI)和H4M5P30干凝胶样品的红外光谱图。在MPTMS的红外图谱中,2850和810 cm一分别为硅氧烷的C,H和SiO,C振动吸收峰 1 084 cm一为Si,O基团的吸收峰。在2566 cm处的一个小吸收峰为MPTMS有机链中SH 的吸收峰。同时在DBSA.PANI的红外谱图中,1575和l471 cm一处的吸收峰分别对应聚苯胺中C=C吸收的醌式和苯式结构。为导电聚苯胺的特征吸收峰。此外l 122、l 327和l026 em一处的吸收峰分别为N-Q=N、C—N和S=O吸收峰。当导电聚苯胺和无机前驱体反应杂化后.聚苯胺链中C=C吸收的醌式和苯式结构所对应的峰位移至1580和1454.1 327 cm一所对应的C.N双峰红移至1 249 Cm.同时MPTMS中2 566 cm 所对应的SH吸收峰消失.说明3一巯丙基三甲氧基硅烷中的SH基团已和聚苯胺中氨基基团形成键合.得到杂化结构。另外在杂化干凝胶的红外谱图中,1 149和1 031 cm处出现了一个较大的双峰结构,主要为Si.0.Si结构的振动吸收峰此峰覆盖了聚苯胺的N=Q=N吸收峰原MPTMS 在810 cm 处的SiO—C吸收峰消失。Si.0一si峰的出现和SiO.C峰的消失充分说明硅的网络结构的形成从红外谱图分析看出,用溶胶一凝胶法可以得到无机网络完整的PANI—SiO 杂化材料。

相关主题
文本预览
相关文档 最新文档