当前位置:文档之家› 南京工业大学概率论与数理统计试题及答案2

南京工业大学概率论与数理统计试题及答案2

南京工业大学概率论与数理统计试题及答案2
南京工业大学概率论与数理统计试题及答案2

南京工业大学 概率统计 试题(A )卷(闭)

2006 -2007 学年第 二 学期 使用班级 江浦校区05级

所在院(系) 班 级 学号 姓名 题号 一 二 三 四 五

七 八 九 总分 得分

一、填空题(每空2分,计14分):

1. 设P (A )=

4

1

,P (B )=31,P (A

B )=

2

1

,则P (AB )= ;P (A ∪B )= 。 2. 设随机变量ξ的概率密度为???<<=.

,0,

10,2)(其它x x x f , 以η表示对ξ的三次独立重

复观察中事件{ξ≤

2

1

}出现的次数,则P {η=2}= 。 3.若随机变量ξ在(0,5)上服从均匀分布,则方程4x 2+4ξx +ξ+2=0有实根的概率

是 。

4.设总体X ~),(2

σμN ,其中μ未知,2

σ已知,(X 1,X 2,X 3)是样本。作样本函数如

下:①321313234X X X +-;②∑=-n i i X n 12)(1μ;③3213

2

3231X X X -+;

3213

1

3232X X X -+。这些函数中是统计量的有 ;是μ的无偏估计量的有 ;最有效的是 。

二、选择题(每题3分,计9分):

1.设随机变量ξ服从正态分布),(2

σμN ,则随σ的增大,概率

}|{|σμξ<-P 。

(A )单调增大 (B )单调减小 (C )保持不变 (D )增减不定

2.如果随机变量ξ与η满足)()(ηξηξ-=+D D ,则下列式子肯定正确的是 。 (A )ξ与η相互独立 (B )ξ与η不相关 (C )0=ηD (D )0=?ηξD D 3. 在假设检验中,H 0为原假设,备择假设H 1,则称( )为犯第一类错误。 (A ) H 0为真,接受H 0 (B ) H 0为假,拒绝H 0 (C ) H 0为真,拒绝H 0 (D ) H 0为假,接受H 0

三.(10分)一个工厂有甲、乙、丙三个车间生产同一种螺钉,每个车间的产量分别占产量的25%、35%、40%,如果每个车间成品中的次品率分别占产量的5%、4%、2%。 (1)从全厂产品中任意抽出一个螺钉,试问它是次品的概率是多少?

(2)从全厂产品中如果抽出的一个恰好是次品,试问这个次品是由甲车间生产的概率是多少?

四.(12分)设连续型随机变量ξ的分布函数为:??

??

?

≤>+=-

.

0,0,0,)(2

2

x x Be A x F x 若若 试求1)系数A 及B ;2)随机变量ξ的概率密度;3)随机变量ξ落在区间(9ln ,4ln )内的概率。

五. (7分)设ξ和η是两个独立的随机变量,ξ在[0,1]上服从均匀分布,η的概率密度

为:??

???≤>=-,0,0,0,

21)(2

y y e y f y

η

(1)求ξ和η的联合概率密度;(2)求}{ηξ≥P 。

六.(14分)设二维随机变量(ξ,η)有联合概率密度:

??????∈=.),(,

0,

),( ,163),(G y x G y x xy

y x f

其中G 为20≤≤x 及2

0x y ≤≤所围的区域。试求ξE ,ηE ,ξD ,ηD ,Cov (ξ,η),ξηρ。并考察ξ与η独立性。

七. (12分)设总体X 的概率密度为=)(x f ?

??<<+.,0;

10,)1(其它x x θθ

其中1->θ是未知参数,X 1,X 2,…,X n 是来自总体X 的一个容量为n 的简单随机样

本。试分别求θ的矩估计量和极大似然估计量。

八.(10分)已知总体),(~2

σμN X 。试分别在下列条件下求指定参数的置信区间:

(1)2σ未知,n =21,2.13=x ,s 2=5,α=0.05。求μ的置信区间。 (2)μ未知,n =12,s 2=1.356,α=0.02。求2σ的置信区间。 (已知0860.2)20(025.0=t ,0796

.2)21(025.0=t ,725.24)11(2

01.0=χ,

053.3)11(299.0=χ,217.26)12(201.0=χ,571.3)12(299.0=χ)

九.(12分)某化工厂为了考察某新型催化剂对某化学反应生成物浓度的影响,现作若干试验,测得生成物浓度 (单位:%)为

使用新型催化剂(X ):34 35 30 32 33 34

不使用新型催化剂(Y ):29 27 32 31 28 31 32

假定该化学反应的生成物浓度X 、Y 依次服从),(211σμN 及),(2

2

2σμN 。取显著性水平=0.01。

(1)检验假设22210:σσ=H ,2

2211:σσ≠H ;

(2)若(1)0H 成立,再检验210

:μμ≤'H ,211:μμ>'H 。 (51.14)5,6(,46.11)6,5(005.0005.0==F F ,72.2)11(,1058.3)11(01.0005.0==t t )

南京工业大学 概率统计 试题(A )卷(闭)

标准答案

2006 -2007 学年第 二 学期 使用班级 江浦校区05级

一.填空(每个空格2分) 1.1/6、5/12。2. 9/64。3.0.6。4、①③④;①④;④。

二.选择(每题3分) 1. (C ) 、2 (B )、3(C )

三. 设A 1,A 2,A 3分别为{抽到的螺钉是由甲、乙、丙三个车间生产的},B 为{抽到一个是次品},则

0345.0100

2

10040100410035100510025)|()()()1(31=?+?+?=?=∑=i i i A B P A P B P

(2)由贝叶斯公式可得362.00345

.010*******)

|()()|()()|(31

111≈?

=

??=∑=i i

i

A B P A P A B P A P B A P 。 四. 由于F(x)在(-∞,+∞)内连续,所以 )(lim 0

x F x +→=)(lim 2

02x x Be

A -

→++

=A+B=F(0)=0.

又 )(lim x F x +∞

→=)(lim 2

2

x x Be A -+∞→+=A=1,于是,B=-1,F(x)=?????

≤>--.0,

0,

0,122

x x e x

若若

由连续型随机变量密度函数)(x ?=F ’(x),有 )(x ?=???

??≤>-.0,

0,0,2

2

x x xe x 若若

P{9ln 4ln <

)=.6

13121=-

五.(1)因 在(0,1)上服从均匀分布,故

???<<=其它0101)(x x f ξ,且?????≤>=-00

21)(2

y y e y f y

η

和相互独立,所以 ?????><<==-其它0

,1021)()(),(2y x e y f x f y x f y

ηξ

(2)为求}{ηξ≥P ,其积分区域为}),{(y x y x G ≥=,它与f (x ,y )的非零区域D 的交

}0,10),{(x y x y x D G ≤<<<=?,故有

????-≥==≥1002

21),(}{dy e dx dxdy y x f P x

y

y

x ηξ12)1(10212

?-=--=--e dx e x 。

六. 7/1216

3),(2002

????===∞+∞-∞+∞-dy xy x dx dxdy y x xf E x ξ;3),(22==??+∞∞-+∞∞-dxdy y x f x E ξ

()49/37/123)(2

2

2=-=-=ξξξE E D ; 同理,2=ηE ,5/4=ηD

又 9

32163)(2002

=?=??x

xydy xy dx E ξη,故638724932)(),(=-=?-=ηξξηηξE E E Cov

于是5738.03

5

94)

5/4)(49/3(63/8),(==

=

?=η

ξηξρξηD D cov ;由于05738.0≠=ξηρ,故与

不独立。

七.总体X 的数学期望E (X )=?

-dx x xf )(=

dx x ?

++1

1)1(θθ=

21++θθ,则EX

EX --=11

2θ ,用X 替代X ,得未知参数θ的矩估计量为 ).1/()12(^

X X --=θ

设x 1,x 2,…x n 是X 1,X 2,…X n 相应于的样本值,则似然函数为

??

???<<+=∏=.,0;

10,)()1(1

其他i n

i i n x x L θθ 当00,且 ),ln ()1ln(ln 1

=++=n

i i x n L θθ,ln 1

ln 1

∑=+

+=n

i i

x n

d L d θθ令

,0ln =θ

d L

d 解得θ的极大似然估计值为).ln /(

11

^

∑=--=n

i i

x n θ从而得θ的极大似然估计量为).ln /(11

^

∑=--=n

i i

X n θ

八. (1)由题设2σ未知,故μ的置信度为1-α的置信区间为n

S n t X )

1(2-±α

又α=0.05得临界值 0860.2)20()1(025.02/===-t n t α。于是μ的置信区间为(12.16,14.24)。

(2)因题设μ未知,故2

σ的置信度为1-α的置信区间为???

?

??-----)1()1(,)1()1(2

212222n S n n S n ααχχ 由α=0.02得临界值 725.24)11()1(2

01.02

2==-χχαn ,053.3)11()1(2

99.0221==--χχαn 。 代入公式算得得置信度为1-α=0.98的2σ的置信区间是(0.60, 4.89)。

九.首先对样本数据进行处理:n 1=6,x =33,2.321=s ;n 2=7,y =30,422=s 。

(1)关于方差的双侧检验:待验假设)1(0H :2221σσ=,)1(1H :2221σσ≠。

由于题设中1、2未知,故检验用统计量为)1,1(~2122

2

1--=n n F S S F 。由=0.05

得临界值:07.051

.141

)5,6(1)6,5(005.0995.0===F F ,46.11)6,5(005.0=F 。而统计量的观察值

为:8.04

2

.32221===s s f 。

因为)6,5()6,5(005.0995.0F f F <<,故考虑接受)1(0H 。于是,转入第2步检验。 (2)关于均值的单侧检验:待验假设)2(0H :21μμ≤,)2(1H :21μμ>(单边右侧检验)。 由(1)的检验可知,二总体方差未知且可以认为是相等的,故选用统计量

)2(~112

)1()1(212

12122

221

1-++-+-+--=

n n t n n n n S

n S n Y

X T ,

由=0.01得临界值72.2)11()2(01.021==-+t n n t α,将x 、y 、21s 、22s 代入统计量得观测值为

828.27

1

612764)17(2.3)16(30

33=+

-+?-+?--=

t ,

因72.2)11(828.201.0=>=t t ,故拒绝)2(0H ,即可以认为新型催化剂对生成物浓度的提高

有显著效果。

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计练习题4答案

概率论与数理统计练习题4答案

试卷答案 第 1 页 (共 9 页) 概率论与数理统计 练习题4答案 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、若P(A)=0.3,()0.1P AB =,则P(AB)=__________. 答案:0.2 2、每次试验的成功率为(01)p p <<,进行重复独立试验,直到第10次试验才取得4次试验成功的概率为( )。 A 、4 4610 (1)C p p - C 、3469(1)C p p - C 、4469(1)C p p - D 、336 9(1)C p p - 答案:B 3、若标准正态分布的函数0,1 () F x ,当x a =和x a =-时 相等,且0,1 (0.5)0.6915F =,则0,1() F a 的值是( )。 A 、0.6915 B 、0.5 C 、0 D 、0.3930 答案:B 4、设,ξη相互独立,并服从区间[0,1]上的均匀分布则( )。 A 、ζξη=+服从[0,2]上的均匀分布, B 、ζξη=-服从[- 1,1]上的均匀分布,

试卷答案第 1 页(共 9 页)

试卷答案 第 1 页 (共 9 页) A 、 12 12223 4 ~(2) () X X t X X -+ B 1 22 1 ~(1) n i i n t n X =--∑ C 、 3 21 24 (1)3~(3, 3) i i n i i n X F n X ==--∑∑ D 122 21 2 ~(2) t X X + 答案:D 9、设1 2 ,,,n X X X ???是来自正态总体2 (,)N μσ的简单随机 样本,2 σ未知,X 是样本均值。 ()22 111n i i s X X n ==--∑若用 X k X k n n ?-+ ? 作为μ的1α-置信区间,则k 应取正 态分布的分位数( )。 A 、12 1.96, u α- =或t 分布的分位数 B 、()11t n α -- C 、 1 t α - D 、1 2 (1) t n α-- 答案:D 10、当正态总体X 的方差2 ()D X σ=未知,检验期望 EX μ=用的统计量是( )。 A () ()02 21(1) n k k x n n x x μ=--?? - ??? ∑ B 、 ()()01 2 21n k k x n x x μ=-?? - ??? ∑

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

第一章 概率论与数理统计1

概 率 论 第一章 随机事件与概率 例1 设B A ,为随机事件,已知() 4.0,6.0)(, 5.0)(===A B P B p A P ,求 1) )(B A P + 2) )(B A P 3) ()B A P 4) )(B A P - 5) )(B A P + 例2 6个不同的球,投入编号为1到7的7个空盒中,求下列事件的概率:1) 1号到6号盒中各有一个球 2) 恰有6个盒中各有1个球 3) 1号盒内有2个球 例3 袋中有两个5分的,三个贰分的,五个1分的钱币。任取其中5个,求钱额总数超过壹角的概率。 例4 验收一批共有60件的可靠配件,按验收规则,随机抽验3件,只要3件中有一件不合格就拒收整批产品,假设,检验时,不合格品被误判为合格品的概率为0.03 ,而合格品被判为不合格品的概率为0.01,如果在60件产品中有3件不合格品,问这批产品被接收的概率是多少? 例5 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有2件残品,且含0,1和2件残品的箱各占80%,15%和5%。现随意抽取一箱,从中随意检验4只,若未发现残品则通过验收,否则逐一检验并更换。试求:1)一次通过验收的概率 2)通过验收的箱中确无残品的概率。 例6 一个医生已知某疾病的自然痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定10人中至少有4人治好,则认为这种药有效,反之,则无效,求:1)虽然新药有效,且把痊愈的概率提高到35%,但经过验收被否定的概率;2)新药完全无效,但经过试验被认为有效的概率。 例7 设B A ,是两个事件,0)(,0)(21>=>=P B P P A P ,且121>+P P ,证明:1 211)(P P A B P --≥ 例8 已知161)()(,0)(,41)()()(==== ==BC P AB P AB P C P B P A P ,求C B A ,,全不发生的概率。 例9 在长度为a 的线段内任取两点,将其分成三段,求它们能构成三角形的概率。 例10 设有三门炮同时对某目标射击,命中的概率分别为0.2,0.3,0.5,目标命中一发被击毁的概率是0.2,命中两发被击毁的概率为0.6,命中三发被击毁的概率为0.9,求三门炮在一次射击中击毁目标的概率。 例11 假设一厂家生产的仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,调试后以概率0.80可以出厂,并以概率0.20定为不合格品而不能出厂。现该厂生产了) 2n(n ≥

数三概率论与数理统计教学大纲

数三《概率论与数理统计》教学大纲 教材:四川大学数学学院邹述超、何腊梅:《概率论与数理统计》,高等教育出版社出,2002年8月。 参考书:袁荫棠:《概率论与数理统计》(修订本),中国人民大学出版社。 四川大学数学学院概率统计教研室:《概率论与数理统计学习指导》 总学时:60学时,其中:讲课50学时,习题课10学时。 学分:3学分。 说明: 1.生源结构:数三的学生是由高考文科生和一部分高考理科生构成。有些专业全是文科生或含极少部分理科生(如:旅游管理,行政管理),有些专业约占1/4~1/3的理科生(国贸,财政学,经济学),有些专业全是理科生(如:国民经济管理,金融学)。 2.高中已讲的内容:高中文、理科都讲了随机事件的概率、互斥事件的概率、独立事件的概率,即教材第一章除条件概率以及有关的内容以外,其余内容高中都讲了。高中理科已讲离散型随机变量的概率分布(包括二项分布、几何分布)和离散型随机变量的期望与方差,统计基本概念、频率直方图、正态分布、线性回归。而高中文科则只讲了一点统计基本概念、频率直方图、样本均值和样本方差的简单计算。 3.基本要求:学生的数学基础差异大,不同专业学生对数学课重视程度的差异大,这就给讲授这门课带来一定的难度,但要尽量做到“分层次”培养学生。高中没学过的内容要重点讲解,学过的内容也要适当复习或适当增加深度。讲课时,既要照顾数学基础差的学生,多举基本例子,使他们掌握大纲要求的基本概念和方法;也要照顾数学基础好的学生,使他们会做一些综合题以及简单证明题。因为有些专业还要开设相关的后继课程(如:计量经济学),将用到较多的概率统计知识;还有一部分学生要考研,数三的概率考研题往往比数一的难。 该教材每一章的前几节是讲述基本概念和方法,习题(A)是针对基本方法的训练而编写的,因此,这一部分内容须重点讲解,并要求学生必须掌握;每一章的最后一节是综合例题,习题(B)具有一定的综合性和难度,可以选讲部分例题,数学基础好的学生可选做(B)题。 建议各章学时分配(+号后面的是习题课学时): 第一章随机事件及其概率 一、基本内容 随机事件的概念及运算。概率的统计定义、古典定义及公理化定义。概率的基本性质、加法公式、条件概率与乘法公式、全概率公式、贝叶斯公式。事件的独立性,独立随机试验、

概率论与数理统计期末试卷及答案(最新11)

湖北汽车工业学院 概率论与数理统计考试试卷 一、(本题满分24,每小题4分)单项选择题(请把所选答案填在答题卡指定位置上): 【C 】1.已知A 与B 相互独立,且0)(>A P ,0)(>B P .则下列命题不正确的是 )(A )()|(A P B A P =. )(B )()|(B P A B P =. )(C )(1)(B P A P -=. )(D )()()(B P A P AB P =. 【B 】2.已知随机变量X 的分布律为 则)35(+X E 等于 )(A 8. )(B 2. )(C 5-. )(D 1-. 【A 】3.设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ,而 }5{},4{21+≥=-≤=μμY P p X P p ,则 )(A 对任何实数μ,都有21p p =. )(B 对任何实数μ,都有21p p <. )(C 只对μ的个别值,才有21p p =. )(D 对任何实数μ,都有21p p >. 【C 】4.在总体X 中抽取样本,,,321X X X 则下列统计量为总体均值μ的无偏估计量的是 )(A 3213211X X X ++= μ. )(B 2223212X X X ++=μ. )(C 3333213X X X ++=μ. )(D 4 443214X X X ++=μ. 【D 】5. 设)(~n t X ,则~2 X )(A )(2n χ. )(B )1(2χ. )(C )1,(n F . )(D ),1(n F . 【B 】6.随机变量)1,0(~N X ,对于给定的()10<<αα,数αu 满足αα=>)(u u P , 若α=<)(c X P ,则c 等于 )(A 2αu . )(B )1(α-u . )(C α-1u . )(D 21α-u . 二、(本题满分24,每小题4分)填空题(请把你认为正确的答案填在答题卡指定位置上): 1. 设样本空间{},2,3,4,5,6 1=Ω,{},21=A ,{},32=B ,{},54=C ,则=)(C B A {},3,4,5,61. 2. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门都不及格的占 3%。已知一学生数学不及格,那么他语文也不及格的概率是 5 1 . 3. 设离散型随机变量X 的分布列为{}k a k X P ?? ? ??==31, ,3,2,1=k ,则=a 2. 4. 已知2)(-=X E ,5)(2 =X E ,那么=-)32015(X D 9.

概率论与数理统计答案精选

习 题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大 号码,写出随机变量X 的分布律. 【解】 故所求分布律为 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 4.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N ,

试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33 (0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时 间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率.

27173概率论与数理统计第4章练习题

第四章 随机变量的数字特征 且E (X )=1,则常 数 x = 21.已知随机变量X 的分布律为 则

20.设随机变量X 的概率密度为?? ? ??≤≤=,,0;10,2)(其他x x x f 则E (|X |)=______. 7.设随机变量X 服从参数为2 1 的指数分布,则E (X )=( ) A. 4 1 B. 2 1 C. 2 D.4 29.假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。问小店应组织多少货源,才能使平均收益最大? 29.设某型号电视机的使用寿命X 服从参数为1的指数分布(单位:万小时). 求:(1)该型号电视机的使用寿命超过t (t >0)的概率; (2)该型号电视机的平均使用寿命. 求: (1)常数a ,b ; (2)X 的分布函数F (x ); (3)E (X ). 二、方差 127.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A.E (X )=0.5,D (X )=0.5 B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4 D.E (X )=2,D (X )=2 8.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则E (Z 2)=( ) A.1 B.4 C.5 D.6 28.设随机变量X 的概率密度为 ? ? ?≤≤-=.,x ,cx x f 其他; )(0222 试求:(1)常数c ;(2)E (X ),D (X );(3)P {|X -E (X )| < D (X )}. 7.设随机变量X~N (1,22),Y~N (1,2),已知X 与Y 相互独立,则3X-2Y 的方差为( ) A .8 B .16

《概率论与数理统计》课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数 之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和: C B A ++,C AB +,AC B -. 解:如图: 6. 若事件C B A ,,满足C B C A +=+,试问B A =是否成立?举例说明。

11概率论与数理统计试卷及答案

福州大学概率论与数理统计试卷A (20130702) 附表: (Φ 2.5)=0.9937, (Φ3)=0.9987,09.2)19(025.0=t 一、 单项选择(共18分,每小题3分) 1.设随机变量X 的分布函数为()F x ,则以下说法错误的是( ) (A )()()F x P X x =≤ (B )当12x x <时,12()()F x F x < (C )()1,()0F F +∞=-∞= (D )()F x 是一个右连续的函数 2.设,A B 独立,则下面错误的是( ) (A) B A ,独立 (B) B A ,独立 (C) )()()(B P A P B A P = (D)φ=AB 3. 设X 与Y 相互独立,且3 1 )0()0(= ≥=≥Y P X P ,则=≥)0},(max{Y X P ( ) (A )91 (B )95 (C )98 (D )3 1 4. 设128,,,X X X K 和1210,,,Y Y Y L 分别是来自正态总体()21,2N -和()2,5N 的样本,且相互独立,21S 和22S 分别为两个样本的样本方差,则服从(7,9)F 的统计量是( ) (A )222152S S (B ) 212254S S (C )222125S S (D )2 22 145S S 5. 随机变量)5.0,1000(~B X ,由切比雪夫不等式估计≥<<)600400(X P ( ) (A)0.975 (B)0.025 (C)0.5 (D) 0.25 6.设总体),(~2 σμN X ,n X X X ,,,21Λ为X 的一组样本, X 为样本均值,2 s 为样本 方差,则下列统计量中服从)(2n χ分布的是( ). (A) 1--n s X μ (B) 2 2)1(σs n - (C) n s X μ - (D) ∑=-n i i X 1 22)(1μσ 学院 专业 级 班 姓 名 学 号

概率论与数理统计exc32stu2017519

概率论与数理统计 exc 32 一、 单项选择题 1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是(A ) A .(|)0P A B = 1 B .P (B |A )=0 √ C .P (AB )=0 √ D .P (A ∪B )=1√ 2.() f x 任何一个连续型随机变量的密度函数一定满足()A +- () () 1 () () 0() 1 () ()0A f x dx B C f x D f x ∞ ∞ =≤≤>? 在定义域内单调不减 3.设二维随机变量(X ,Y)的分布律为 且X 与Y 相互独立,则下列结论正确的是( C ) 0.4,0.6A a b ==. 0.1,0.9B a b =-=. 0.2,0.3C a b ==. 0.6,0. D a b == . 4.设随机变量X 服从参数为0.5的泊松分布,则E (X )=( B ) 11 . . . 2 . 442A B C D 泊松分布的期望和方差都是λ 5.设(X ,Y )为二维随机变量,且D (X )>0,D (Y )>0,则下列等式成立的是( ) A .)()()(Y E X E XY E ?= B .)()(Cov Y D X D (X,Y)XY ??=ρ C .)()()(Y D X D Y X D +=+ D .),(Cov 2)2,2(Cov Y X Y X = 6.设A ,B 为两个随机事件,且P (AB )>0,则P (B |AB )=( ) A .P (A ) B .P (AB ) C .P (A |B ) D .1 7.设离散型随机变量X 的分布律为10120.20.10.30.4X P ?-? ??? ,则 1{}1P X -<≤=( )。 A .0.3 B .0.4 C .0.6 D .0.7 8. 设随机变量X ~B (8,2 1 ),Y ~N (2,9),又E (XY )=12,则X 与Y 的协方差(,)Cov X Y =( )

概率论与数理统计课本_百度文库

第二章随机变量及其分布第一节随机变量及其分布函数 一、随机变量 随机试验的结果是事件,就“事件”这一概念而言,它是定性的。要定量地研究随机现象,事件的数量化是一个基本前提。很自然的想法是,既然试验的所有可能的结果是知道的,我们就可以对每一个结果赋予一个相应的值,在结果(本事件)数值之间建立起一定的对应关系,从而对一个随机试验进行定量的描述。 例2-1 将一枚硬币掷一次,观察出现正面H、反面T的情况。这一试验有两个结果:“出现H”或“出现T”。为了便于研究,我们将每一个结果用一个实数来代表。比如,用数“1”代表“出现H”,用数“0”代表“出现T”。这样,当我们讨论试验结果时,就可以简单地说成结果是1或0。建立这种数量化的关系,实际上就相当于引入一个变量X,对于试验的两个结果,将X的值分别规定为1或0。如果与样本空间 { } {H,T}联系起来,那么,对于样本空间的不同元素,变量X可以取不同的值。因此,X是定义在样本空间上的函数,具体地说是 1,当 H X X( ) 0,当 T 由于试验结果的出现是随机的,因而X(ω)的取值也是随机的,为此我们称 X( )X(ω)为随机变量。 例2-2 在一批灯泡中任意取一只,测试它的寿命。这一试验的结果(寿命)本身就是用数值描述的。我们以X记灯泡的寿命,它的取值由试验的结果所确定,随着试验结果的不同而取不同的值,X是定义在样本空间 {t|t 0}上的函数 X X(t) t,t 因此X也是一个随机变量。一般地有 定义2-1 设 为一个随机试验的样本空间,如果对于 中的每一个元素 ,都有一个实数X( )与之相对应,则称X为随机变量。 一旦定义了随机变量X后,就可以用它来描述事件。通常,对于任意实数集合L,X在 L上的取值,记为{X L},它表示事件{ |X( ) L},即 。 {X L} { |X( ) L} 例2-3 将一枚硬币掷三次,观察出现正、反面的情况。设X为“正面出现”的次数,则X是一个随机变量。显然,X的取值为0,1,2,3。X的取值与样本点之间的对应关系如表2-1所示。 表2-1 表2-1

《概率论与数理统计》袁荫棠 中国人民大学出版社 课后答案 概率论第一章

概论论与数理统计 习题参考解答 习题一 8.掷3枚硬币,求出现3个正面的概率. 解:设事件A ={出现3个正面} 基本事件总数n =23,有利于A 的基本事件数n A =1,即A 为一基本事件, 则.125.08 121)(3====n n A P A 9.10把钥匙中有3把能打开门,今任取两把,求能打开门的概率. 解:设事件A ={能打开门},则为不能打开门 A 基本事件总数,有利于的基本事件数,210C n =A 27C n A =467.0157910212167)(21027==××?××==C C A P 因此,.533.0467.01(1)(=?=?=A P A P 10.一部四卷的文集随便放在书架上,问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解:设A ={能打开门},基本事件总数,2412344=×××==P n 有利于A 的基本事件数为,2=A n 因此,.0833.012 1)(===n n A P A 11.100个产品中有3个次品,任取5个,求其次品数分别为0,1,2,3的概率. 解:设A i 为取到i 个次品,i =0,1,2,3, 基本事件总数,有利于A i 的基本事件数为5100C n =3 ,2,1,0,5973==?i C C n i i i 则w w w .k h d a w .c o m 课后答案网

00006.098 33512196979697989910054321)(006.0983359532195969739697989910054321)(138.098 33209495432194959697396979899100543213)(856.033 4920314719969798991009394959697)(5100297335100 39723225100 49711510059700=××==××?××××××××====××= ×××××?××××××××====×××=×××××××?××××××××=×===××××=××××××××===C C n n A P C C C n n A P C C n n A P C C n n A P 12.N 个产品中有N 1个次品,从中任取n 个(1≤n ≤N 1≤N ),求其中有k (k ≤n )个次品的概率.解:设A k 为有k 个次品的概率,k =0,1,2,…,n ,基本事件总数,有利于事件A k 的基本事件数,k =0,1,2,…,n ,n N C m =k n N N k N k C C m ??=11因此,n k C C C m m A P n N k n N N k N k k ,,1,0,)(11?===??13.一个袋内有5个红球,3个白球,2个黑球,计算任取3个球恰为一红,一白,一黑的概率.解:设A 为任取三个球恰为一红一白一黑的事件, 则基本事件总数,有利于A 的基本事件数为, 310C n =121315C C C n A =则25.04 12358910321)(310121315==×××××××===C C C C n n A P A 14.两封信随机地投入四个邮筒,求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解:设A 为前两个邮筒没有信的事件,B 为第一个邮筒内只有一封信的事件,则基本事件总数,1644=×=n 有利于A 的基本事件数,422=×=A n 有利于B 的基本事件数, 632=×=B n 则25.041164)(====n n A P A .375.083166)(====n n B P B w w w .k h d a w .c o m 课后答案网

概率论与数理统计1_8课后习题答案

第一章 思 考 题 1.事件的和或者差的运算的等式两端能“移项”吗?为什么? 2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个 能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率ΛΛ1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把 它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表: 67 5844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗? 答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等, 或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗? 5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不 相容事件又有何区别和联系? 6.条件概率是否是概率?为什么? 习 题 1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次 答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次 答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω== (3)调查城市居民(以户为单位)烟、酒的年支出 答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时, 样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥ 2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB (4) “三人中恰好有一人中靶”: ;C B A C B A C B A Y Y (5)“ 三人中至少有一人中靶”: ;C B A Y Y

概率论与数理统计4-1

牡丹江师范学院教案 教研室:教师姓名:授课时间:

教研室主任签字年月日

讲授内 容 备注 1、 随机变量:在试 验的结果中能取得 不 同数值的量, X =X ( 3 ) , 3 自变 量,X 是函数。 2、 随机变量与随机 事件的关系。 3、 随机变量的特

⑴ 对于样本空间'1 - > -00 / .01/ '11; |0,■ = 11; 我们有X = 1, ? = - 01 ; 2, ? = 00- ⑵对于样本空间门二',12「13「14厂’15厂’23「’24厂’25厂’34「35厂’45』 13, '14 0, :;:;45; 我们有X =了1,;1 :;l14,「15J '24, W '34厂’ 2,■ - '12 / '13 / '23- 14,15,24,25,34,35, 例2(38页)观察放射性物质在一段时间内放射的粒子数, 随机 变量Y,则由§ 1.2例3可知: 设为样本空间0 = { 3 0, 3 1, 3 2,…} 则有丫= i,3 = 3 i (i = 0,1,2,…)由于试验的结果的出现具有一定的概率,所以X取每个值或每个确定范围内的值也有一定的概率。 例3(38页)测量车床加工的零件的直径,设为随机变量Z(mm, 则有§ 1.2例4知: 样本空间Q = { 3 x | a w x w b}, 则有Z= x, 3 = 3x (a w x w b) 上面的三个例子中,试验的结果与数量直接有关,当试验的结果 与数量无直接联系时,也可以引进随机变量,并且随机变量取不同的数值来表示试验的结果。即把试验结果数值化。例如,裁判员在运动 场上不叫运动员的名字而叫号码一样,二者建立了一种对应关系。例4 (38页)任意抛掷一枚硬币,由§ 1.2例1知: 样本空间门-「「J, 3仁徽花向上; 3 2:字向上; 0 co = co 引进如下的随机变量:X二' [1,? = 2 ■1 这个随机变量X实际上就是表示在抛掷硬币的一次试验中徽花 向上的次数。 我们指出,在试验的结果中,随机变量取得某一数值x,记作X 二x,是一个随机事件;同样,随机变量X取得不大于实数x的值, 记作X < x,随机变量X取得区间(X1,X2),记作x 1

概率论与数理统计第一章

一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 6.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 7.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A =( ) .A .B .C .D 8.设A ,B 是两个随机事件,且00,)|()|(A B P A B P =,则必有 ( ) (A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠ (C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠

相关主题
文本预览
相关文档 最新文档