当前位置:文档之家› 文献综述-蛋白质的乳化性质

文献综述-蛋白质的乳化性质

文献综述-蛋白质的乳化性质
文献综述-蛋白质的乳化性质

文献综述

蛋白乳化性质的研究

摘要:乳化性质是蛋白质的一项重要功能性质,包括乳化活性和乳化稳定性。本文主要通过对蛋白乳化性质的介绍,综述了其测定方法、不同的处理方式和不同的物化因素对乳化性的影响。

关键词:蛋白质乳化性测定方法影响因素

1 前言

乳化性质(Emulsibility)是蛋白质的一项重要的功能性质,是指油品和水形成乳状液的能力,包括乳化活性(Emulsifying Properties)和乳化稳定性(Emulsifying stability)两个方面。乳化活性是指蛋白质在促进油水混合时,单位质量的蛋白质(g)能够稳定的油水界面的面积(m2);乳化稳定性是指蛋白质维持油水混合不分离的乳化特性对外界条件的抗应变能力。

蛋白质乳化性是指蛋白质能使油与水形成稳定的乳化液而起乳化剂的作用[1]。

2 乳化性质的测定方法

乳化活性的测定方法

分光光度法

阮诗丰[2]等人采用722S型分光光度计对大豆分离蛋白乳化活性进行了测定。课题中具体的试验方法如下:用微量取样器取出底部的乳状液50μL,用%(W/V)SDS(十二烷基硫酸钠)溶液稀释到一定倍数后放入比色皿中,以相同的SDS溶液作参比液,立即测定其在500nm处的吸光度A。根据赵国华等[3]的方法进行简化,乳化活性EA用零时刻的吸光度来表征:

EA=A

或用乳化活性指数,即每克蛋白质的乳化面积来表示[4]:

10000 C N

A

2

303

.2

EAI500

?

??

?

?

=

φ

式中:C:溶液中样品蛋白质浓度;Φ:油相体积分数;N:稀释倍数

用分光光度计法测定多种大豆分离蛋白的乳化活性,每种测定均重复多次,计算结果的标准方差(SD:Standard deviation)和变异系数(CV:coefficient of variation)来反映此测定方法重复性。

邓塔[5]等人在研究大豆蛋白乳化性质的课题中,以脱脂大豆粉为实验对象,取一定体积质量分数为%的蛋白质溶液,加入同体积的大豆色拉油,以6400r/min 的速度高速搅拌2min,之后在0min取样100,以%(w/v)SDS(十二烷基磺酸钠,pH=)稀释50倍,以SDS溶液为空白,测定500nm处的吸光度值,以0min的吸光度值表示乳化性(EA)。

电导法

称取一定量的大豆分离蛋白,溶解后使蛋白质溶液浓度在 %~%( w/v),10000 r/min 高速搅拌,同时用蠕动泵以 mL/min的速度匀速向其中滴加大豆色拉油,用雷磁数据采集软件采集电导值数据,当电导值发生突变时,停止加油,

记录耗油量 V

k

。测定不同质量的蛋白质乳化油脂的量,通过多组数据进行回归分析,计算出蛋白质的乳化能力 EC[6]:

Y=aX+b

其中

Y:总耗油量Vk(mL)

X:蛋白质量M(g)

A:该种蛋白质的EC(mL/g)

乳化稳定性的测定方法

分光光度法

分光光度法测蛋白乳化稳定性的原理是乳化性越好,颗粒越小,吸光度越小;乳化稳定性越好,吸光度随时间的变化越小,也即是粒径变化不大。

高丽[7]等人对大豆蛋白乳化稳定性进行了研究,课题中以优质大豆为研究对象,采用分光光度法测定的大豆蛋白的乳化稳定性。具体方法如下:将豆乳用蒸馏水稀释28倍,用离心机以4000r/min 离心5min ,于785nm 波长下测定离心前后的吸光度A 。用下式计算豆奶的稳定性

R =A 2/A 1

式中,R 为稳定性系数;A 2为离心后的吸光度;A 1为离心前的吸光度。R≤1,

R 值越大,说明豆乳的稳定性越好。

管军军[8]等人采用分光光度法对大豆分离蛋白的乳化稳定性进行了测定,结果表明,用吸光值比K 可较好地表示乳化稳定性。取9 %(W/V)待测样品蛋白液(样品蛋白溶于 mol/L 、磷酸缓冲液中),加入3 mL 大豆色拉

油,在10 000 r/min ,25℃下搅拌1 min ,分别在搅拌后0 min 、5 min 取样。以%(W/V)SDS 稀释50倍,测定在500 nm 处的吸光值,以SDS 溶液为空白,以0时刻的吸光值表示乳化性(EA)。乳化稳定性(ES)用乳化稳定指数(ESI)表示:

A

T A ESI 0???= 式中:A 0———0时刻的吸光值;

ΔT———时间差,min ;

ΔA———ΔT 内的吸光值差

上式可写成:

T A A t ??-=???=0

t 01A -A T A ESI 式中:At ———t 时刻的吸光值。

令K=A t /A 0,则当ΔT 一定时,K 与ESI 成正比关系。为了避免计算时出

现ΔA 为0及负值,我们引进吸光值比K 来描述乳化稳定性,这里K=A 5/A 0(A 5为t=5 min 时的吸光值)。

顾楠[9]等人在研究不同处理方式对鹰嘴豆分离蛋白乳化性质的影响实验课题中,采用分光光度法测定乳化稳定和乳化活性。具体方法如下:取一定量的鹰嘴豆分离蛋白溶于100mL 的蒸馏水( 或一定离子强度的盐溶液) 中,调节所需的pH ,量取一定体积的大豆色拉油于蛋白溶液,以10000r/min 的速度高速搅拌 2min ,制成白色乳状液。分别在0min 和15min 时取乳状液置于50mL 的容量瓶中,加入%(w/v)SDS 溶液定容并摇匀,以%SDS 溶液作空白,在500nm 处测定其吸光度

A ,其中0min 时吸光度A 0表示为乳化活性EA ,乳化稳定性用ES 表示:

%100A A %ES 0

15?=)( 式中:A 0:乳化液在0min 时的吸光值;;A 15:乳化液在静置15min 后的吸光

值。

分光光度法测定蛋白质的EA (乳化活性)和ESI (乳化稳定性)时,要选择合适的吸光度测定值范围,一般应在~之间。

离心法

配制 1 %(w/v) 的蛋白质溶液,用 mol/L 的氢氧化钠调至 ,取一定体积的蛋白质溶液和同体积的大豆色拉油混合,以 10000 r/min 的速度高速搅拌1 min ,所得乳状液移3支10 mL 的离心管中,在70 ℃的水浴中恒温25 min ,用自来水冷却至室温,然后在2000 r/min 的速度下离心10 min ,根据乳化层体积计算乳化稳定性[6]。

100%?=总体积

乳化层体积)乳化稳定性( 混浊度法

张根生[10]等人在大豆分离蛋白乳化性的研究中采用混浊度法对蛋白乳化性进行测定。在L 、磷酸钠缓冲液中配制 1%大豆分离蛋白溶液(W/V),加入大豆色拉油 L ,均质后形成均匀的乳化液。分别在0min 和10min 取1ml 新制备的乳化液,加99ml 蒸馏水稀释100 倍,然后取1ml 被稀释的乳化液加入到39ml 的十二烷基磺酸钠(SDS 1g/kg)稀释40倍,最终稀释度为4000倍。将最后溶液在500nm 下测定吸光值(测定9次取平均值)。EAI 和ESI 采用如下公式进行计算:

10

00t ESI A A Α-?= 式中,ESI —乳化稳定性(min ):

A 0—均质后迅速被稀释的乳化液的吸光值;

A 10—乳化液在静止10min 后的吸光值;

t —时间(本实验是10min)

10000

C A T 2EAI 0?Φ????=稀释倍数 式中,EAI —乳化活性(ml/g);

T=;

C —乳化液形成前蛋白质水溶液中蛋白浓度(g/ml);

Φ—乳化液中油的体积分数(本实验是;

稀释倍数是 4000

3 不同物化因素对乳化性质的影响

pH 值

顾楠[9]等人研究鹰嘴豆分离蛋白乳化性时,采用不同pH 值梯度对其进行测定。pH 值范围选定为3、5、7、9、11,分别测量在不同pH 处理过后的蛋白的乳化活性和乳化稳定性。结果如下:

图1 pH 对鹰嘴豆分离蛋白乳化活性及乳化稳定性的影响

在图中很明显的看出pH 为5时,蛋白溶解度最小,即鹰嘴豆分离蛋白的等电点,此时蛋白溶解度最差,表面电荷为零,亲水能力下降,吸附在油-水界面上的蛋白含量减少,故乳化活性降低;在静置的过程中,由于不存在静电排斥作用,蛋白质进一步在油-水界面重排乳化,同时在油-水界面堆积促进了高弹性膜的形成,阻止油滴聚集上浮从而提高了乳状液的稳定性。pH 从等电点向两侧变

化,蛋白质的溶解度增大,蛋白质向油-水界面扩张能力增强,界面面积增大,乳化活力又开始增强,乳化稳定性又逐渐下降。

邓塔[5]等人在研究大豆乳化性质的课题中,采用不同梯度的pH值对大豆蛋白粉进行处理,加热温度为60℃下,采用1mol/L的盐酸调节大豆蛋白溶液的pH,范围为,处理30min,测定其乳化性。结果如图:

在此反应温度下,随着酸处理pH降低,大豆蛋白的溶解性降低,经酸处理时11S和7S发生变性,其中11S基本是全部变性,而7S是部分变性。变性蛋白在高温下运动加剧而发生聚集,使蛋白质分子疏水性/亲水性比值降低,减少油表面结合,影响蛋白质乳化性。同时蛋白质分子柔韧性降低,在界面不能迅速展开,影响大豆蛋白的乳化性。另一方面可能是在一定浓度下的大豆蛋白溶液随pH升高,发生羧基去质子化,电荷排布改变,有利于乳化性的提高。

图1 pH值对乳化性的影响

含油量

顾楠[9]等人在研究鹰嘴豆分离蛋白的乳化性时,设置不同梯度的含油量,分别为10、15、20、25、30mL,测定其乳化活性和乳化稳定性,结果如下:

图2 加油量对鹰嘴豆分离蛋白乳化活性及乳化稳定性的影响

因为蛋白质是油和水的两亲物质,可自发地迁移至油-水界面,降低表面张力,形成稳定的乳状液,随着加油量的增加,所形成的界面面积增大,因而乳化活力增大;而且随着加油量的增加,乳化稳定性呈现减小的趋势,因为当油含量增高时,乳状液油滴形成的保护膜较薄,导致蛋白质相互聚集下沉或油滴相互聚集上浮,从而使乳状液失去稳定性,故乳状液的稳定性随油量的增加而降低。

离子浓度

顾楠[9]等人在研究鹰嘴豆分离蛋白乳化性质时,选用不同梯度的离子浓度,分别为、、、、L的NaCl溶液,测定乳化活性和乳化稳定性。结果如下:盐浓度可以对蛋白表面疏水性和结构产生影响。在低盐浓度时,溶液中的Na+通过离子键吸附在蛋白质表面,中和蛋白质表面的负电荷,使蛋白质的亲水性降低,疏水性增强,造成蛋白质构象发生变化,形成更加刚性的结构,使蛋白质的溶解性降低,从而使扩散到油-水体系中的蛋白质减少,界面面积减少,乳化活力下降。随着NaCl浓度的升高,更多的Na+吸附至蛋白质表面,使蛋白质的亲水性增加,蛋白质分子溶剂化,使蛋白质的溶解性增大,从而使扩散到油-水体系中的蛋白质增多,界面面积增大,乳化活力上升。

图3 NaCl浓度对鹰嘴豆分离蛋白乳化活性及乳化稳定性的影响邓塔[5]等人采用不同浓度的NaCl处理改性后(加热温度为50℃、pH=、加热时间为60min)的大豆蛋白,分别向5份%的大豆蛋白溶液中添加不同剂量的NaCl,形成%、%、%、%、%系列浓度。不同浓度的Na+对改性大豆蛋白乳化性影响见图4:适当浓度的Na+形成水合盐与蛋白质分子上带电基团微结合,提高了蛋白质

结合水的能力,促进大豆蛋白溶解度增加和改善分子柔韧性,使其表面活性得到充分展示。

图4 Na+对改性蛋白乳化性的影响

4 不同的处理方式对蛋白乳化性质的影响

微波处理对蛋白质乳化性质的影响

顾楠[9]等人对鹰嘴豆分离蛋白应用不同处理方式,并研究了这些处理方式对蛋白乳化性质的影响。课题中取100ml浓度为%(w/v)的蛋白质溶液,用 L的NaOH 调节pH为,然后置于微波炉中处理,微波炉功率为800w,处理时间分别为0、20、40、6080、100s,处理完后加入20mL大豆色拉油,高速搅拌后根据中所述方法测定EA和ES。

测定结果如下图所示:

从图中可以很明确的看出整体趋势呈增加后减少,在微波处理时间为60s 时,乳化活性和乳化稳定性都达到最大值。文中分析其原因是,蛋白分子在微波场的诱导下产生极化现象,使维持蛋白空间结构的非共价键(疏水相互作用、二硫键、静电相互作用)被破坏,蛋白分子部分展开,分子的柔性提高,更多的蛋白分子结合到油-水界面,同时,蛋白分子内部的疏水残基暴露在蛋白表面,蛋白表面的疏水性增强,故蛋白的乳化活性和乳化稳定性增强。但是,当微波处理的时间进一步延长时,蛋白分子进一步展开,极化的蛋白分子之间相互吸引,通过疏水相互作用、二硫键、静电相互作用及氢键等重新形成分子聚集体,分子的柔性降低,表面疏水性减弱,蛋白表面积缩小,故乳化性及乳化稳定性呈下降趋

势。

图1 微波处理对鹰嘴豆分离蛋白乳化活性和乳化稳定性的影响

超声波处理对蛋白乳化性质的影响

顾楠[9]等人的研究中采用超声波对鹰嘴豆分离蛋白进行处理,观察超声波不同的处理时间对其乳化活性及乳化稳定性质的影响。试验方法类同微波处理,所选用的超声波功率密度为cm2,处理时间分别为0、1、2、3、4、5min,结果如下:

从图中明确看出,处理时间为4min时,乳化活性和乳化稳定性达到最大值。这是因为在超声波作用下,蛋白质分子的结构变得疏松,使疏水性多肽部分展开朝向脂质,极性部分朝向水相,故乳化活力增加。但继续延长超声波处理时间,蛋白质变性程度增大,不溶性蛋白质含量增多,乳化活力及乳化稳定性随之又降低。

图2 超声波处理对鹰嘴豆分离蛋白乳化活性和乳化稳定性的影响

超高压处理对蛋白乳化性质的影响

顾楠[9]等人在研究鹰嘴豆分离蛋白的课题中,采用不同梯度的超高压进行处理,压力梯度为100、200、300、400、500MPa,处理时间均为15min。测定结果如下:

图3 超高压处理对鹰嘴豆分离蛋白乳化活性和乳化稳定性的影响在压力为400MPa时,其乳化活力和乳化稳定性达到最大值,这是由于超高压使蛋白质结构发生了变化,蛋白质分子内部疏水相互作用逐渐受到破坏,更多的疏水性区域暴露,增加了蛋白的表面疏水性,疏水基团的暴露使蛋白质更易于吸附至油-水界面上并展开,从而提高了乳化性。随着压力的进一步增加,蛋白发生进一步聚集使得溶解性下降,导致吸附到油-水界面上的蛋白浓度下降,所以乳化性和乳化稳定性又出现下降。

加热时间对蛋白乳化性质的影响

邓塔[5]等人采用不同梯度的加热时间对大豆蛋白进行处理,在60℃,pH=5的条件下,处理10~60min大豆蛋白溶液,测定其乳化性。结果如图:

图2 加热时间对乳化性的影响

适当热处理初始阶段蛋白质受热而发生部分变性,多肽链展开增加了分子柔顺性,有利于蛋白质分子在界面快速展开,乳化性得到显著提高。随时间的延长,变性的蛋白质减少,其乳化性增加变缓。

参考文献

[1] 郭兴凤,阮诗丰. 影响大豆分离蛋白乳化稳定性测定的几种因素研究[J]. 食品研究与开发,2006,27(6):59-61.

[2] 阮诗丰,郭兴凤,周媛媛,等. 分光光度法大豆分离蛋白乳化活性的研究[J]. 河南工业大学学报(自然科学报),2005,26(5):65-67.

[3] 赵国华,明建,陈宗道. 酶解大豆分离蛋白乳化特性的研究[J]. 中国粮油学报,2002,17(2):48~50.

[4] 江志炜,沈蓓英,潘秋琴. 蛋白质加工技术[M]. 北京:化学化工出版社,2002:192.

[5] 邓塔, 李军生,阎柳娟,等. 大豆蛋白乳化性质的研究[J]. 食品工业科技,2013,34(02):90-93.

[6] 郭兴凤,慕运动,阮诗丰. 不同测定方法对大豆分离蛋白乳化性测定结果的影响[J]. 食品研究与开发,2007,28(02):129-131.

[7] 高丽,张声华. 大豆蛋白乳化稳定性的研究[J]. 食品工程,2009(6):110-113.

[8] 管军军,裘爱泳,周瑞宝. 提高大豆分离蛋白乳化性及乳化稳定性的研究[J]. 中国油脂,2003,28(11):38-42.

[9] 顾楠,张子沛,吴锦波,等. 不同处理方式对鹰嘴豆分离蛋白乳化性质的影响[J]. 食品工业科技,2011,32(12):158-161.

[10] 张根生,岳晓霞,李继光,等. 大豆分离蛋白乳化性影响因素的研究[J]. 食品科学,2006,27(07):48-51.

蛋白质功能的检测

蛋白质功能性质的检测 班级: 姓名: 学号: 1、实验目的 通过本实验定性地了解蛋白质的主要功能性质。 2、实验原理 蛋白质的功能性质是指食品体系在加工、贮藏、制备和消费过程中蛋白质对食品产生需要特征的那些物理、化学性质。这些性质对食品的质量及风味起着重要的作用。蛋白质的功能性质与蛋白质在食品体系中的用途有着十分密切的关系,是开发和有效利用蛋白质资源的重要依据。 蛋白质的功能性质可分为水化性质、表面性质、蛋白质-蛋白质相互作用的有关性质三个主要类型。主要包括吸水性、溶解性、保水性、分散性、粘度和粘着性、乳化性、起泡性、凝胶作用等。蛋白质的功能性质及其变化规律非常复杂,受多种因素的相互影响,比如,蛋白质种类、蛋白浓度、温度、溶剂、pH、离子强度等。 本实验以卵蛋白为例,通过某些定性实验来认识蛋白质的主要功能性质。3、实验材料、试剂和仪器 3.1 实验材料 (1)2%蛋清蛋白溶液:取2g蛋清加98ml蒸馏水稀释,过滤取清夜。 (2)卵黄蛋白:鸡蛋除蛋清后剩下的蛋黄捣碎。 3.2 试剂 (1) 硫酸铵、饱和硫酸铵溶液 (2) 氯化钠、饱和氯化钠溶液 (3) 花生油 (4) 酒石酸 3.3 仪器 (1) 刻度试管 (2) 100ml烧杯 (3) 冰箱 4、操作步骤 4.1 蛋白质水溶性的测定

在10ml刻度试管中加入0.5ml蛋清蛋白,加入5ml水,摇匀,观察其水溶性,有无沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。 取上述蛋白质的氯化钠溶液3ml,加入3ml饱和硫酸铵溶液,观察球蛋白的沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白质在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。 4.2 蛋白质乳化性的测定 取0.5ml卵黄蛋白于10ml刻度试管中,加入4.5ml水和5滴花生油;另取5ml水于10ml刻度试管中,加入5滴花生油;再将两支试管用力振摇2~3min,然后将两支试管放在试管架上,每隔15min观察一次,共观察4次,观察油水是否分离。 4.3蛋白质起泡性的测定 (1) 在二个100ml的烧杯中,各加入2%的蛋清蛋白溶液30ml,一份用玻璃棒不断搅打1~2min;另一份用吸管不断吹入空气泡1~2min,观察泡沫的生成、泡沫的多少及泡沫稳定时间的长短。 (2) 在二支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,一支放入冰箱中冷至10℃,另一支保持常温(30~35℃),以相同的方式振摇1~2min,观察泡沫产生的数量及泡沫稳定性有何不同。 (3) 在三支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,其中一支试管加入酒石酸0.1g,一支加入氯化钠0.1g;另一支作对照用,以相同的方式振摇1~2min,观察泡沫的多少及泡沫稳定性有何不同。 4.4蛋白质凝胶作用的测定 在试管中加入1ml蛋清蛋白,再加1ml水和几滴饱和食盐水至溶解澄清,放入沸水中,加热片刻观察凝胶的形成。 5、实验结果及分析 5.1白质水溶性的测定 现象:蛋清蛋白加入水,有白色沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。在蛋白质水溶液中,加入少量的中性盐(如氯化钠),会增加蛋白质分子表面的电荷,增强蛋白质分子与水分子的作用,从而使蛋白质在水溶液中的溶解度增大。加入粉末硫酸铵至饱和,摇匀,白色絮状物从溶液中析出。

实验三 蛋白质的两性反应和等电点的测定

实验三蛋白质的两性反应和等电点的测定 一、目的和要求 1.了解蛋白质的两性解离性质。 2.初步学会测定蛋白质等电点的方法。 二、原理 蛋白质由许多氨基酸组成,虽然绝大多数的氨基与羧基成肽键结合,但是总有一定数量自由的氨基与羧基,以及酚基等酸碱基团,因此蛋白质和氨基酸一样时两性电解质。调节溶液的酸碱度达到一定的氢离子浓度时,蛋白质分子所带的正电荷和负电荷相等,以兼性离子状态存在,在电场内该蛋白质分子既不向阴极移动,也不向阳极移动,这时溶液的PH值称为该蛋白质的等电点(PI)。当溶液的PH低于蛋白质等电点时,即在氢离子较多的条件下,蛋白质分子带正电荷成为阳离子;当溶液的PH高于蛋白质等电点时,即在氢氧根离子较多的条件下,蛋白质分子带负电荷成为阴离子。 在等电点时蛋白质溶解度最小,容易沉淀析出。 三、试剂和器材 1.试剂 0.5%酪蛋白溶液;酪蛋白醋酸钠溶液; 0.04%溴甲酚绿指示剂; 0.02N盐酸; 0.1N醋酸溶液; 0.01N醋酸溶液;1N醋酸溶液; 0.02N氢氧化钠溶液 2.器材

试管及试管架;滴管;吸量管( 1、5ml) 四、操作方法 1.蛋白质的两性反应 (1)取1支试管,加 0.5%酪蛋白溶液20滴和 0.04%溴甲酚绿指示剂5-7滴,混匀。观察溶液呈观的颜色,并说明原因。 (2)用细滴管缓慢加入 0.02N盐酸溶液,随滴随摇,直至有明显的大量沉淀发生,此时溶液的PH 接近与酪蛋白的等电点。观察溶液颜色的变化。 (3)继续滴入 0.02N盐酸溶液,观察沉淀和溶液颜色的变化,并说明原因。 (4)再滴入 0.02N氢氧化钠溶液进行中和,观察是否出现沉淀,解释其原因。 继续滴入 0.02N氢氧化钠溶液,为什么沉淀又会溶液?溶液的颜色如何变化?说明了什么问题? 2.酪蛋白等电点的测定 (1)取9支粗细相近的干燥试管,编号后按下表的顺序准确地加入各种试剂。 加入每种试剂后应混合均匀。 试管编号9

实验四 蛋白质功能性质的测定-revised

实验四蛋白质功能性质的测定 (一)实验目的: 以蛋清蛋白、卵黄蛋白、大豆分离蛋白和明胶为原料,了解蛋白质的功能性质及其影响因素。 (二)实验原理: 蛋白质的功能性质一般是指能使蛋白质成为人们所需要的食品特征而具有的物理化学性质,即食品加工、贮藏、销售过程中发生作用的那些物理化学性质,这些性质对食品的质量及风味起着重要的作用。蛋白质的功能性质与蛋白质在食品体系中的用途有着十分密切的关系,是开发和有效利用蛋白质资源的重要依据。 蛋白质的功能性质可分为水化性质、表面性质、蛋白质-蛋白质相互作用的有关性质三个主要类型。主要包括吸水性、溶解性、保水性、分散性、粘度和粘着性、乳化性、起泡性、凝胶作用等。蛋白质的功能性质及其变化规律非常复杂,受多种因素的相互影响,比如,蛋白质种类、蛋白浓度、温度、溶剂、pH、离子强度等。 (二)实验材料和试剂: 蛋清蛋白; 2%蛋清蛋白溶液:取2g蛋清加98g蒸馏水稀释,过滤取清液; 5%蛋清蛋白溶液:取5g蛋清加98g蒸馏水稀释,过滤取清液; 卵黄蛋白:鸡蛋除蛋清后剩下的蛋黄捣碎。 大豆分离蛋白粉; 1M盐酸;1M氢氧化钠;饱和氯化钠溶液;饱和硫酸铵溶液;酒石酸;硫酸铵;氯化钠;氯化钙饱和溶液;水溶性曙红Y;明胶。 (三)仪器设备: 100ml/50ml烧杯、普通玻璃试管、刻度试管、50ml塑料离心管、pH试纸、恒温水浴锅、天平等。 (四)实验步骤: 1. 蛋白质的水溶性 ⑴在50mL的小烧杯中加入0.5mL蛋清蛋白并加入5mL水,摇匀,观察其水溶性,有无沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。 取上述蛋白质的氯化钠溶液3mL,加入3mL饱和的硫酸铵溶液,观察球蛋白的沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。 ⑵在四个试管中各加入0.15g大豆分离蛋白粉,分别加入5mL水,5mL饱和食盐水,5mL 1mol?mL-1的氢氧化钠溶液,5mL 1mol?mL-1的盐酸溶液,摇匀,在温水浴中温热片刻,观察大豆蛋白在不同溶液中的溶解度。 在第1、2支试管中加入饱和硫酸铵溶液3mL,析出大豆球蛋白沉淀。第3、4支试管中分别用1mol?mL-1盐酸及1mol?mL-1氢氧化钠中和至pH4~4.5 (用pH试纸测定),观察沉淀的生成,解释大豆蛋白的溶解性及pH对大豆蛋白溶解性的影响。 2. 蛋白质的乳化性 取2.5g卵黄蛋白加入250ml三角锥形瓶中,加入47.5mL水,0.25g氯化钠,混合均匀后,一边摇匀一边加入植物油10mL,加完后,手握锥形瓶,较强烈的振荡5min使其分散成均匀的乳状液,静置10min,待泡沫大部分消除后,观察乳化效果,油相和水相是否出现分层?从乳化层中取出10mL于玻璃试管中,加入少量水溶性曙红Y溶液数滴,将染色均匀,取一

糖类、油脂、蛋白质的性质教案

糖类、油脂、蛋白质的性质教 案(总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

糖类、油脂、蛋白质的性质 知识与技能 1.了解糖类、油脂、蛋白质的存在及来源。 2. 探究糖类、油脂和蛋白质的典型化学性质,了解糖类、油脂和蛋白质 的共同性质与特征反应。 过程与方法 1.通过糖类、油脂和蛋白质分子结构的解析、比较过程,培养学生的抽象 思维和逻辑思维能力; 2.从实验现象到糖类、油脂和蛋白质典型性质的推理,使学生体会科学研 究的方法。 情感、态度与价值观 1.通过糖类、油脂和蛋白质的典型性质的探究过程,使学生从中体会到严 谨求实的科学态度。 2.结合糖类、油脂和蛋白质与社会生活的密切联系,使学生领悟到化学现 象与化学本质在实际生活中的重要作用,培养学以致用的辩证认识。 教学重点:糖类、油脂和蛋白质的主要性质。 教学难点:1.葡萄糖与弱氧化剂氢氧化铜的反应。 2.油脂的水解反应。 一、糖类、油脂、蛋白质的性质 导入:上节课我们学习了糖类、油脂、蛋白质的化学组成,它们的分子结构都比较复杂,然而结构决定性质,那它们有什么样的性质,我们又该如何去鉴别它们呢?下面我们一起来进行探究。 1.糖类、油脂、蛋白质的特征反应 【实验3—5】

(1)葡萄糖的特征反应:在碱性、加热的条件下: ①葡萄糖△ 新制??????→?2 Cu(OH)砖红色沉淀 ②葡萄糖△ 银氨溶液 ????→?光亮的银镜 应用:上述两反应,常用于鉴别葡萄糖。 (2)淀粉的特征反应:在常温下,淀粉遇碘变蓝色。(淀粉遇到I 2单质才变 蓝色,而遇到化合态的碘如I -、IO -3等不变色。) 应用:用碘水检验淀粉的存在,也可用淀粉检验碘(I 2)的存在。 (3)蛋白质的特征反应 ①颜色(显色)反应:(含有本环结构的蛋白质) 蛋白质 ? ???→?3 HNO 浓变黄色 ②灼烧反应:灼烧蛋白质,产生烧焦羽毛的气味 应用:上述练反应常用于鉴别蛋白质 2.糖类、油脂、蛋白质的水解反应 (1)糖类的水解反应: 【实验3—6】

蛋白质结构及性质论文

蛋白质结构及性质论文 ——动科一班黄细旺(1207010127)&冯志(1207010126) 摘要:蛋白质结构及其理化性质 关键词:蛋白质、结构、理化性质 前言: 蛋白质分子是由许多氨基酸通过肽键相连形成的生物大分子。人体内具有生理功能的蛋白质都是有序结构,每种蛋白质都有其一定的氨基酸百分组成及氨基酸排列顺序,以及肽链空间的特定排布位置。因此由氨基酸排列顺序及肽链的空间排布等所构成的蛋白质分子结构,才真正体现蛋白质的个性,是每种蛋白质具有独特生理功能的结构基础。 蛋白质结构 蛋白质分子结构分成一级、二级、三级、四级结构四个层次,后三者统称为高级结构或空间构象。并非所有的蛋白质都有四级结构,由一条肽链形成的蛋白质只有一级、二级和三级结构,由二条或二条以上多肽链形成的蛋白质才可能有四级结构。 1.蛋白质的一级结构 蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构。一级结构的主要化学键是肽键,有些蛋白质还包含二硫键,它是由两个半胱氨酸巯基脱氢氧化而成。 2.蛋白质的二级结构 蛋白质的二级是指蛋白质分子中某一段肽链的局部空间结构,也就是该段肪酸主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链构象。 (一)肽单元20世纪30年代末L.Panling和R.B.Cory应用X线衍射技术研究氨基酸和寡肽的晶体结构其目的是要获得一组标准键长和键角以推导肽的构象最终提出了肽单元概念。他们发现参与肽健的6个原子位于同一平面Cα1和Cα2在平面上所处的位置为反构型,此同一平面上的6个原子构成了所谓的肽单元其中肽键(C-N)的键长为0132nm.介于C-N的单健长(0149nm)和双键长(0127nm)之问,所以有一定程度双键性能,不能自由旋转。而Cα分别与N和羰基碳相连的键都是典型的单键可以自由旋转。 (二)α-螺旋Paulαing和Core根据实验数据提出了两种肽链局部主链原子空间构象的分子模型,称为α-螺旋和β-折叠,它们是蛋白质二级结构的主要形式,在α-螺旋结构中多肽键的主链围绕中心轴是有规律的螺旋式上升,螺旋的走向为顺时钟方向即右手螺旋,其氨基酸恻键伸向螺旋外侧。每36个氨基酸残基螺旋上升一圈,螺距为0.54nm。a一螺旋的每个肽键N-H和第四个的羧基氧形成氨键,氢键的方向与螺旋长轴基本平行。肽链中的全部肽键都可形成氢键以稳固α-螺旋结构。肌红蛋白和血红蛋白分子中有许多肽链段落呈a一螺旋结构,毛发的角蛋白、肌肉的肌球蛋白以及血凝块中的纤维蛋白它们的多肽链几乎全长

生物化学知识点与题目 第四章 蛋白质化学.

第四章蛋白质化学 知识点: 一、氨基酸 蛋白质的生物学功能 氨基酸:酸水解:破坏全部色氨酸以及部分含羟基氨基酸。碱水解:所有氨基酸产生外消旋。氨基酸的分类:非极性氨基酸(8种):Ala、V al、Leu、Ile、Pro、Met、Phe、Trp;极性氨基酸(12种):带正电荷氨基酸Lys、Arg、His;带负电荷氨基酸Asp和Glu;不带电荷氨基酸Ser、Thr、Tyr、Asn、Gln、Cys、Gly。 非蛋白质氨基酸: 氨基酸的酸碱性质: 氨基酸的等电点,氨基酸的可解离基团的pK值,pI的概念及计算, 高于等电点的任何pH值,氨基酸带有净负电荷,在电场中将向正极移动。 氨基酸的光吸收性:芳香族侧链有紫外吸收,280nm, 氨基酸的化学反应:α-氨基酸与水合茚三酮试剂共热,可发生反应,生成蓝紫化合物。茚三酮与脯氨酸和羟脯氨酸反应则生成黄色化合物。 二、结构与性质 肽:基本概念;肽键;肽;氨基酸残基;谷胱甘肽;肽键不能自由转动,具有部分双键性质;肽平面 蛋白质的分子结构:一级结构,N-末端分析,异硫氰酸苯酯法;C-末端分析,肼解法 蛋白质的二级结构:是指蛋白质分子中多肽链骨架的折叠方式,包括α螺旋、β折叠和β转角等。 超二级结构:超二级结构是指二级结构的基本结构单位(α螺旋、β折叠等)相互聚集,形成有规律的二级结构的聚集体。 结构域: 蛋白质的三级结构:蛋白质的三级结构指多肽链中所有氨基酸残基的空间关系,其具有二级结构或结构域。 球状蛋白质分子的三级结构特点:大多数非极性侧链(疏水基团)总是埋藏在分子内部,形成疏水核;大多数极性侧链(亲水基团),总是暴露在分子表面,形成一些亲水区。 蛋白质的四级结构:蛋白质的四级结构是由两条或两条以上各自独立具有三级结构的多肽链(亚基)通过次级键相互缔合而成的蛋白质结构。变构蛋白、变构效应;血红蛋白氧合曲线。维持蛋白质分子构象的化学键:氢键,疏水键,范德华力,盐键,二硫键等 三、蛋白质的分子结构与功能的关系 蛋白质的分子结构与功能的关系:一级结构决定高级结构,核糖核酸酶的可逆变性;变性、复性、镰刀型红细胞贫血症的生化机理; 四、蛋白质的性质及分离纯化 胶体性质:双电层,水化层;1. 透析;2. 盐析;3. 凝胶过滤; 酸碱性质:1. 等电点沉淀;2. 离子交换层析;3. 电泳 蛋白质的变性:蛋白质变性后,二、三级以上的高级结构发生改变或破坏,但共价键不变,一级结构没有破坏。

实验2蛋白质功能性质的检测

蛋白质功能性质的检测 一、实验目的 通过本实验定性地了解蛋白质的主要功能性质。 一、实验原理 蛋白质的功能性质一般是指能使蛋白质成为人们所需要的食品特征而具有的物理化学性质,这些性质对食品的质量及风味起着重要的作用。蛋白质的功能性质可分为水化性质、表面性质、蛋白质-蛋白质相互作用的有关性质三个主要类型。主要包括吸水性、溶解性、保水性、分散性、粘度和粘着性、乳化性、起泡性、凝胶作用等。蛋白质的功能性质及其变化规律非常复杂,受多种因素的相互影响,比如,蛋白质种类、蛋白浓度、温度、溶剂、pH、离子强度等。 三、实验材料、试剂和仪器 1. 实验材料 (1)2%蛋清蛋白溶液:取2g蛋清加98ml蒸馏水稀释,过滤取清夜。 (2)卵黄蛋白:鸡蛋除蛋清后剩下的蛋黄捣碎。 2. 试剂 (1) 硫酸铵、饱和硫酸铵溶液 (2) 氯化钠、饱和氯化钠溶液 (3) 花生油 (4) 酒石酸 3. 仪器 (1) 刻度试管 (2) 100ml烧杯 (3) 冰箱 四、操作步骤 1. 蛋白质水溶性的测定 在10ml刻度试管中加入0.5ml蛋清蛋白,加入5ml水,摇匀,观察其水溶性,有无沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。 取上述蛋白质的氯化钠溶液3ml,加入3ml饱和硫酸铵溶液,观察球蛋白的

沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白质在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。 2.蛋白质乳化性的测定 取0.5ml卵黄蛋白于10ml刻度试管中,加入4.5ml水和5滴花生油;另取5ml水于10ml刻度试管中,加入5滴花生油;再将两支试管用力振摇2~3min,然后将两支试管放在试管架上,每隔15min观察一次,共观察4次,观察油水是否分离。 3. 蛋白质起泡性的测定 (1) 在二个100ml的烧杯中,各加入2%的蛋清蛋白溶液30ml,一份用玻璃棒不断搅打1~2min;另一份用吸管不断吹入空气泡1~2min,观察泡沫的生成、泡沫的多少及泡沫稳定时间的长短。 (2) 在二支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,一支放入冰箱中冷至10℃,另一支保持常温(30~35℃),以相同的方式振摇1~2min,观察泡沫产生的数量及泡沫稳定性有何不同。 (3) 在三支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,其中一支试管加入酒石酸0.1g(较多),一支加入氯化钠0.1g(较多);另一支作对照用(),以相同的方式振摇1~2min,观察泡沫的多少及泡沫稳定性有何不同。 4. 蛋白质凝胶作用的测定 在试管中加入1ml蛋清蛋白,再加1ml水和几滴饱和食盐水至溶解澄清,放入沸水中,加热片刻观察凝胶的形成。 五、实验结果及分析 1. 蛋白质水溶性的测定 蛋清蛋白加入水,有白色沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。在蛋白质水溶液中,加入少量的中性盐[即稀浓度],如氯化钠,会增加蛋白质分子表面的电荷,增强蛋白质分子与水分子的作用,从而使蛋白质在水溶液中的溶解度增大。加入粉末硫酸铵至饱和,摇匀,白色絮状物从溶液中析出。 蛋白质在水溶液中的溶解度取决于蛋白质分子表面离子周围的水分子数目,亦即主要是由蛋白质分子外周亲水基团与水形成水化膜的程度以及蛋白质分子

蛋白质结晶方法探究

蛋白质结晶方法探究 发表时间:2018-08-20T14:56:45.123Z 来源:《医药界》2018年1月下作者:高铨,解婧妍 [导读] 有机大分子蛋白质是生命物质基础,其基本组成单位是氨基酸,是构成细胞的基本有机物,是生命活动的主要承担者。它与生命以及各种生命活动紧密联系,几乎参与了全部生理过程。蛋白质还是大多数食品的主要成分,是一类重要的产能营养素。(西北工业大学陕西西安 710072) 本文相关工作受到国家级大学生创新创业训练计划(新型CDM结晶板悬滴法对蛋白质结晶影响,资助号#201710699109)支持。【摘要】有机大分子蛋白质是生命物质基础,其基本组成单位是氨基酸,是构成细胞的基本有机物,是生命活动的主要承担者。它与生命以及各种生命活动紧密联系,几乎参与了全部生理过程。蛋白质还是大多数食品的主要成分,是一类重要的产能营养素。蛋白质的复杂结构决定了其功能的复杂性,鉴于此,要研究蛋白质的具体功能及其应用的前提是解析出高分辨率的三维结构。 【关键词】蛋白质结晶 X射线衍射晶体质量 引言 目前,测定蛋白质空间结构的有效方法主要有X射线衍射技术、核磁共振技术及电镜技术。电镜法研究不染色的蛋白质分子结构明显的困难是样品对电子损伤的高敏感性和样品在真空中三维结构的改变。核磁共振技术解析蛋白质的结构虽不需结晶,可研究动力学,但因分子量的限制,且需要标记。因此,解析蛋白质的结构最有力的方法首推X射线衍射技术,它能精确确定生物大分子中各原子坐标,确定共价键键长、键角。 据PDB数据库的统计,超过88%的蛋白质是由X射线衍射技术得到的,所以充分利用这项技术对于开展后续研究十分重要。X射线衍射技术解析蛋白质结构需获得蛋白质晶体,而这种晶体不是普通的晶体,它必须具有足够大小和质量才能保证数据收集的准确性。因此,得到符合要求的晶体成为了整个衍射过程的关键,是最终决定结构解析成功与否的因素。获得可以用于X射线衍射的高质量蛋白质晶体也成为晶体学领域追求的目标。 蛋白质结晶过程是蛋白质分子在溶液中析出的过程。蛋白质分子首先在其过饱和溶液中形成晶核,之后由于溶液中蛋白质浓度降低,蛋白质结晶生长趋于平稳,具体表现是蛋白质不再形核,晶体逐渐长大。这个过程中要想获得高质量的蛋白质晶体一般需要考虑一些问题,如如何获得高纯度的蛋白质溶液,选择什么结晶方法能获得质量好的晶体。本文基于此,对现有结晶方法进行总结,并介绍一些在蛋白质结晶领域的新技术。 1 传统结晶方法 A. 批量结晶法 该方法是最古老也是最简单的方法,蛋白溶液和结晶试剂开始就在确定的浓度下混合,其中蛋白质溶液一定是处于过饱和状态[1]。混合溶液一般处于密封的体系下,溶液各种参数都不变化,形成的晶体也不溶解。这种方法也有一个比较明显的缺点,由于这种方法需要大量且纯净的蛋白质晶体,但多数纯化得的蛋白质最终量都是非常少,所以,该方法未被大量使用,取代的是微量批量结晶法[2],该方法只需非常少量的结晶液,结晶液滴混合后被分配到低密度的石蜡油和硅胶的混合物中。因液滴的密度要大,故整个过程都在石蜡油中进行,在这种混合物中的结晶效果等同于蒸汽扩散结晶,同时又可以防止溶剂挥发、空气污染和外界晃动,方便装置的移动,但溶液包含小分子有机物的实验不能用此方法,因为他们会溶解入油滴中。 B. 气相扩散法 气相扩散法主要是利用在蛋白质和沉淀剂混合的液滴中,沉淀剂的浓度低于晶体形核所需要的浓度,导致水分子不断从低浓度的液滴向高浓度的液池扩散,液滴中的蛋白质浓度逐渐增加并于沉淀剂结合,进而实现结晶。 气相扩散法的优点在于晶体生长的过程缓慢,蛋白有足够的时间在晶格中堆积,节省样品而且可有效利用储存空间。 C. 平衡透析法 平衡透析法需要用半透膜在装置里形成一个分隔面,在左右两边分别是蛋白质溶液和结晶试剂,因为两边存在浓度梯度,所以在结晶试剂里的小分子如离子、添加剂和缓冲剂就会通过半透膜进入到样品区,样品区的沉淀剂浓度逐渐增加。与此同时,由于蛋白质分子属于大分子,不能通过半透膜,由于结晶试剂里的小分子在样品区的浓度逐渐增加,蛋白质浓度就会逐渐下降,最终达到过饱和状态形核结晶。这种方法可以用于大规模的结晶实验,但要注意的是不是所有的结晶试剂都能应用此方法。 D. 液-液扩散法 又叫自由界面扩散法,这个方法是利用扩散作用而达到体系平衡并析出蛋白质晶体的过程。通常是将样品蛋白质溶液和结晶液在一个毛细管状的容器中,两者存在着浓度梯度,通过缓慢的扩散,整个系统自发的选择形核和晶体生长的过饱和状态。这种方法在确定了沉淀剂、pH和缓冲液后,可以作为筛选条件的微调实验。 2新技术的应用 一些生物结构科学家通过将传统方法和现在最新技术相结合,在传统的基础上提出了一系列有关于蛋白质结晶的新方法,提高了蛋白质结晶的质量。 由于蛋白质晶体生长是在晶核的基础上进行的,晶核的质量直接影响到蛋白质量。由于高质量的晶核是在较低的过饱和的状态下形成的,条件比较难控制。因此在2004年Ireton等学者利用低分辨率的晶体作为籽晶,导入到新结晶溶液中得到了适于衍射的高分辨率晶体[3]。D’ Arcy 等人在此基础上用导入籽晶的方法对牛胰岛素等5种蛋白结晶条件进行了筛选,发现导入籽晶可以有效的提升使蛋白质结晶筛选的成功率[4]。 共结晶技术近年来也成为提高蛋白质结晶质量的一种常用方法。有些晶体在与核苷酸、协同因子或是一些小分子可以稳定存在。Schartman等学者通过计算的方法证明共结晶技术可稳定晶体热力学性质,从而更易得到晶体[5]。实验证明这种方法尤其适用于配体溶解度很低或者蛋白质分子容易聚合的情况下,可以显著提高结晶成功率,尤其是一些膜蛋白只有与配体共结晶后才能得到晶体。

蛋白质的性质和分类

蛋白质凭借游离的氨基和羧基而具有两性特征,在等电点易生成沉淀。不同的蛋白质等电点不同,该特性常用作蛋白质的分离提纯。生成的沉淀按其有机结构和化学性质,通过pH的细微变化可复溶。蛋白质的两性特征使其成为很好的缓冲剂,并且由于其分子量大和离解度低,在维持蛋白质溶液形成的渗透压中也起着重要作用。这种缓冲和渗透作用对于维持内环境的稳定和平衡具有非常重要的意义。 在紫外线照射、加热煮沸以及用强酸、强碱、重金属盐或有机溶剂处理蛋白质时,可使其若干理化和生物学性质发生改变,这种现象称为蛋白质的变性。酶的灭活,食物蛋白经烹调加工有助于消化等,就是利用了这一特性。 (二)蛋白质的分类 简单的化学方法难于区分数量庞杂、特性各异的这类大分子化合物。通常按照其结构、形态和物理特性进行分类。不同分类间往往也有交错重迭的情况。一般可分为纤维蛋白、球状蛋白和结合蛋白三大类。 1.纤维蛋白包括胶原蛋白、弹性蛋白和角蛋白。 (1) 胶原蛋白胶原蛋白是软骨和结缔组织的主要蛋白质,一般占哺乳动物体蛋白总量的30%左右。胶原蛋白不溶于水,对动物消化酶有抗性,但在水或稀酸、稀碱中煮沸,易变成可溶的、易消化的白明胶。胶原蛋白含有大量的羟脯氨酸和少量羟赖氨酸,缺乏半胱氨酸、胱氨酸和色氨酸。 (2) 弹性蛋白弹性蛋白是弹性组织,如腱和动脉的蛋白质。弹性蛋白不能转变成白明胶。 (3) 角蛋白角蛋白是羽毛、毛发、爪、喙、蹄、角以及脑灰质、脊髓和视网膜神经的蛋白质。它们不易溶解和消化,含较多的胱氨酸(14-15%)。粉碎的羽毛和猪毛,在15-20磅蒸气压力下加热处理一小时,其消化率可提高到70-80%,胱氨酸含量则减少5-6%。 2.球状蛋白 (1) 清蛋白主要有卵清蛋白、血清清蛋白、豆清蛋白、乳清蛋白等,溶于水,加热凝固。 (2) 球蛋白球蛋白可用5-10%的NaCl溶液从动、植物组织中提取;其不溶或微溶于水,可溶于中性盐的稀溶液中,加热凝固。血清球蛋白、血浆纤维蛋白原、肌浆蛋白、豌豆的豆球蛋白等都属于此类蛋白。 (3) 谷蛋白麦谷蛋白、玉米谷蛋白、大米的米精蛋白属此类蛋白。不溶于水或中性溶液,而溶于稀酸或稀碱。 (4) 醇溶蛋白玉米醇溶蛋白、小麦和黑麦的麦醇溶蛋白、大麦的大麦醇溶蛋白属此类蛋白。不溶于水、无水乙醇或中性溶液,而溶于70-80%的乙醇。 (5) 组蛋白属碱性蛋白,溶于水。组蛋白含碱性氨基酸特别多。大多数组蛋白在活细胞中与核酸结合,如血红蛋白的珠蛋白和鲭鱼精子中的鲭组蛋白。 (6) 鱼精蛋白鱼精蛋白是低分子蛋白,含碱性氨基酸多,溶于水。例如鲑鱼精子中的鲑精蛋白、鲟鱼的鲟精蛋白、鲱鱼的鲱精蛋白等。鱼精蛋白在鱼的精子细胞中与核酸结合。 球蛋白比纤维蛋白易于消化,从营养学的角度看,氨基酸含量和比例也较纤维蛋白更理想。 3. 结合蛋白 结合蛋白是蛋白部分再结合一个非氨基酸的基团(辅基)。如核蛋白(脱氧核糖核蛋白、核糖体),磷蛋白(酪蛋白、胃蛋白酶),金属蛋白(细胞色素氧化酶、铜蓝蛋白、黄嘌呤氧化酶),脂蛋白(卵黄球蛋白、血中β1-脂蛋白),色蛋白(血红蛋白、细胞色素C、黄素蛋白、视网膜中与视紫质结合的水溶性蛋白)及糖蛋白(γ球蛋白、半乳糖蛋白、甘露糖蛋白、氨基糖蛋白)。

实验十 蛋白质功能性质的检测

实验十
蛋白质功能性质的检测
*** 2014305004**
2014 级食品科学与工程*班
一、实验目的 通过本实验定性地了解蛋白质的主要功能性质。
二、实验原理 蛋白质的功能性质一般是指能使蛋白质成为人们所需要的食品特征而具有的物 理化学性质,即对食品的加工、贮藏、销售过程中发生作用的那些性质,这些性 质对食品的质量和风味起着重要的作用。 蛋白质的功能性质与蛋白质在食品体系 中的用途有着十分密切的关系,是开发和有效利用蛋白质资源的重要依据。 蛋白质的功能性质可分为水化性质、表面性质、蛋白质-蛋白质相互作用的 有关性质三个主要类型,主要包括有吸水性、溶解性、保水性、分散性、粘度和 粘着性、乳化性、起泡性、凝胶作用等。
三、实验材料、试剂和仪器 1. 实验材料 (1) 2%蛋清蛋白溶液:取 2g 蛋清加 98ml 蒸馏水稀释,过滤取清夜。 (2) 卵黄蛋白:鸡蛋除蛋清后剩下的蛋黄捣碎。 2. 试剂 硫酸铵、饱和硫酸铵溶液;氯化钠、饱和氯化钠溶液;花生油;酒石酸 3. 仪器 刻度试管;100ml 烧杯;冰箱
四、操作步骤 1. 蛋白质水溶性的测定 在 10ml 刻度试管中加入 0.5ml 蛋清蛋白,加入 5ml 水,摇匀,观察其水溶 性,有无沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白 质的氯化钠溶液。

取上述蛋白质的氯化钠溶液 3ml,加入 3ml 饱和硫酸铵溶液,观察球蛋白的 沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋 清蛋白质在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。 2. 蛋白质乳化性的测定 取 0.5ml 卵黄蛋白于 10ml 刻度试管中,加入 4.5ml 水和 5 滴花生油;另取 5ml 水于 10ml 刻度试管中,加入 5 滴花生油;再将两支试管用力振摇 2~3min, 然后将两支试管放在试管架上,每隔 15min 观察一次,共观察 4 次,观察油水是 否分离。 3. 蛋白质起泡性的测定 (1) 在二个 100ml 的烧杯中,各加入 2%的蛋清蛋白溶液 30ml,一份用玻璃 棒不断搅打 1~2min;另一份用吸管不断吹入空气泡 1~2min,观察泡沫的生成、 泡沫的多少及泡沫稳定时间的长短。 (2) 在二支 10ml 刻度试管中,各加入 2%的蛋清蛋白溶液 5ml,一支放入冰 箱中冷至 10℃,另一支保持常温(30~35℃) ,以相同的方式振摇 1~2min,观察 泡沫产生的数量及泡沫稳定性有何不同。 (3) 在三支 10ml 刻度试管中,各加入 2%的蛋清蛋白溶液 5ml,其中一支试 管加入酒石酸 0.1g,一支加入氯化钠 0.1g;另一支作对照用,以相同的方式振摇 1~2min,观察泡沫的多少及泡沫稳定性有何不同。 4. 蛋白质凝胶作用的测定 在试管中加入 1ml 蛋清蛋白, 再加 1ml 水和几滴饱和食盐水至溶解澄清, 放 入沸水中,加热片刻观察凝胶的形成。
五、实验结果与分析 1.蛋白质水溶性的测定 水中 现象 产生白色沉淀 加入饱和氯化钠后 沉淀溶解,澄清溶液 加入饱和硫酸铵后 出现白色絮状物
蛋清蛋白加入水有白色沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇 匀, 得到澄清的蛋白质的氯化钠溶液。这是因为加入中性盐会增加蛋白质分子表 面的电荷, 增强蛋白质分子与水分子的作用,从而使蛋白质分子在水溶液中溶解

青稞蛋白质理化特性研究

青稞蛋白质理化特性研究 摘要选取青藏区的7个主要青稞品种(藏青148、藏青25、藏青320、北青6号、冬青8号、昆仑12、喜拉19),采用碱溶酸沉法提取青稞蛋白,对分离得到的蛋白质进行化学组分和功能性质的测定,分析比较7个品种间吸水性、吸油性及溶解性的差异,结果表明:在酸性条件下昆仑12的溶解性最好,在碱性条件下喜拉19、昆仑12、藏青148的溶解性优于其他4个品种;喜拉19的吸水性最佳,为2.86 g/g,藏青320的吸水性与吸油性相对较优异,昆仑12的吸水性与吸油性较差。 关键词青稞;蛋白质;理化特性;化学组分;吸水性;吸油性 青稞又称米大麦、裸麦、裸大麦,属于禾本科小麦族大麦属,主要生长在我国西北、西南地区,特别是西藏、青海、甘肃等偏远山区和牧区,是一种重要的高原谷类作物,也是藏区农牧民的主要粮食作物和动物饲料来源。同时由于青稞的生长区域较为偏远,病虫害的发生也较少,所以生长期内一般不施用农药。因此,青稞是高原地区真正无污染的绿色食品。同时青稞中蛋白质含量高,在谷物中仅低于小麦和燕麦,而且氨基酸配比合理,人体必需氨基酸较为齐全[1]。因此,青稞作为一种优质的蛋白质来源将会受到越来越多的关注。 蛋白质的功能性质决定着蛋白质在食品加工中的特性及应用范围,而蛋白质的功能性质不但与其来源有关,本质上更是由蛋白质自身理化性质及结构特性等决定,其中溶解性是蛋白质的一个重要的功能特性,大量的研究发现蛋白质的功能性与溶解性有着密切的联系,可通过蛋白质的溶解性来体现其功能性质[2]。因此,研究蛋白质的溶解性具有重要的意义。 1 材料与方法 1.1 试验材料 1.1.1 供试材料。试验材料为7个不同品种青稞蛋白:藏青148、藏青25、藏青320、北青6号、冬青8号、昆仑12、喜拉19,由西藏农牧科学院研究所提供,经粉碎后过60目筛备用。试剂有精炼一级大豆油;盐酸、氢氧化钠、硼酸、硼砂、硫酸铜、硫酸钾、浓硫酸,均为分析纯。 1.1.2 仪器与设备。HR-200电子分子天平(东生兴业有限公司);TDL-5-A 台式离心机(上海安亭科学仪器厂);101-1AB型电热鼓风干燥箱(天津市泰斯特仪器有限公司);HYP-314消化炉(上海纤检仪器有限公司);Foss凯氏定氮仪(瑞典富斯-特卡脱公司);PB-10 pH计(赛多利斯科学仪器有限公司);LGJ-25C 冷冻干燥机(北京四环科学仪器厂有限公司)。 1.2 试验方法

蛋白质功能性质一 实验

实验十一蛋白质的功能性质(一) ——水溶性、乳化性、起泡性、凝胶作用 一、实验原理 所谓蛋白质的功能性质,是指能使蛋白质成为人们所需要的食品特征而具有的物理化学性质,即在食品的加工、贮藏、销售过程中发生有利作用的那些性质,这些性质对食品的质量及风味起着重要的作用。蛋白质的功能性质与蛋白质在食品体系中的用途有着十分密切的关系,成为开发和有效利用蛋白质资源的重要依据。 蛋白质的功能性质可分为水化性质、表面性质、蛋白质—蛋白质相互作用的有关性质共三大主要类型。具体的功能性质,主要包括吸水性、溶解性、保水性、分散性、粘度和粘着性、乳化性、起泡性、凝胶作用等。 本实验以卵蛋白、大豆蛋白为例,通过某些定性实验来认识蛋白质的主要功能性质。 二、实验材料和试剂 材料:蛋清蛋白; 试剂: 1)2%蛋清蛋白溶液:取2g蛋清加98g蒸留水稀释,过滤取清液; 2)卵黄蛋白:鸡蛋除去蛋清后剩下的蛋黄捣碎; 3)分离大豆蛋白粉; 4)其它:1mol/L HCl,1mol/L NaOH,饱和氯化钠溶液,饱和硫酸铵溶液,酒石酸,硫酸铵,氯化钠,δ—葡萄糖酸内酯,氯化钙饱和溶液,水溶性红色素,明胶。 三、实验步骤 (一)蛋白质的水溶性 1、在50mL的小烧杯中,加入0.5mL蛋清蛋白,加入5mL水,摇匀,观察其水溶性,有无沉淀生成。再向溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。 取上述蛋白质的氯化钠溶液3mL,加入3mL饱和的硫酸铵溶液,观察球蛋白的沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白质在水中及氯化钠溶液中的溶解度、以及蛋白质沉淀的原因。 2、在4支试管中各加入0.1~0.2g大豆分离蛋白粉,分别加入5mL水,5mL饱和食盐水,5mL 1mol/L NaOH,5mL 1mol/L HCl;摇匀,在温水浴中温热片刻,观察大豆蛋白在不同溶液中的溶解度。向第一、二支试管加入3mL饱和硫酸铵溶液,析出大豆球蛋白沉淀;向第三、四支试管中分别用1mol/L NaOH、1mol/L HCl中和至pH 4~4.5,观察沉淀的生成,解释大豆蛋白的溶解性以及pH值对大豆蛋白溶解性的影响。 (二)蛋白质的乳化性 1、取5g卵黄蛋白,加入250mL的烧杯中,加入95mL水、0.5g氯化钠,用电动搅拌器搅匀后,加搅拌加滴加植物油10mL,滴加完后,强烈搅拌5min,使其充分分散成均匀的乳状液,静置10min,等泡沫大部分消除后,取出10 mL,加入少量水溶性色素染色,不断搅拌直至染色均匀,取一滴乳状液在显微镜下仔细观察,被染色部分为水相,未被染色部分为油相,根据显微镜下观察所得到的染料分布,确定该乳状液是属于水包油型还是油包水型。

蛋白质的结构和性质教案 高中化学

高二化学第四章第三节蛋白质的结构和性质 一、内容及其解析 1、内容:这节我们学习蛋白质的组成与性质,本节内容主要分为:①、从蛋白质在生物界的广泛存在引入,介绍“蛋白质是生命的基础”;②、介绍蛋白质的组成;③、介绍蛋白质的性质;④、介绍蛋白质的用途。 2、分析:“氨基酸的组成”是本节学习的难点,因为氨基酸的分子结构对于学生来说是陌生的。氨基酸属于多官能团化合物,教学中可考虑用迁移、替代、延伸的方法让学生轻松的接受。蛋白质的性质是本节的重点,可考虑用边讲边演示的方法进行,或边讲边做试验、边讨论的教学方法。 二、目标及其解析 1、目标 ⑴、使学生学习蛋白质是生命最基本的物质基础。 ⑵、学习蛋白质的组成、性质及用途。 ⑶、学习酶的特性与广泛的用途。 2、分析 ⑴、通过蛋白质在生物界里的广泛存在作简单的介绍,得出“蛋白质是生命的基础,没有蛋白质就没有生命”这一重要结论。 ⑵、蛋白质的组成及性质是本节的难点及重点,可用通过阅读课本相关内容及习题讲解来突破难点、突出重点,让学生轻松接受。 ⑶、联系生活、生产和社会,渗透相关学科知识,让学生真正了解蛋白质重要而广泛的用途,以体现化学教育的经济价值、社会价值和人文价值。 三、教学问题诊断分析 学生在学习氨基酸的组成上可能会出现障碍,以为氨基酸的分子结构对于学生来说是陌生的,且氨基酸属于多官能团化合物。同时在学习蛋白质的性质上也可能会出现困难,要克服以上困难我们可借助实验来帮助学生理解,根据实验现象来得出结论的教学方法。 四、教学支持条件分析 在课本演示实验的基础上,增添多媒体来教学。 五、教学过程设计 【引入】师生活动复习上节课内容氨基酸。 【板书】一、蛋白质的组成 【师】请同学们阅读课本88页,回答下列问题。 蛋白质的定义:蛋白质是由氨基酸分子经过缩合后通过肽键构成的天然有机高分子化合物。 1. 构成蛋白质的基础物质是什么? 2 蛋白质的组成元素主要有哪些? 3、蛋白质的结构 【学生活动】 【师生互动】解决以上问题。

蛋白质功能性质的检测实验报告

华南农业大学实验报告 专业班次 13食工1班组别 题目蛋白质功能性质的检测姓名黄俊怡日期 一、实验目的 通过本实验定性地了解蛋白质的主要功能性质。 二、实验原理 蛋白质的功能性质一般是指能使蛋白质成为人们所需要的食品特征而具有的物理化学性质,即对食品的加工、贮藏、销售过程中发生作用的那些性质,这些性质对食品的质量和风味起着重要的作用。蛋白质的功能性质与蛋白质在食品体系中的用途有着十分密切的关系,是开发和有效利用蛋白质资源的重要依据。 蛋白质的功能性质可分为水化性质、表面性质、蛋白质-蛋白质相互作用的有关性质三个主要类型,主要包括有吸水性、溶解性、保水性、分散性、粘度和粘着性、乳化性、起泡性、凝胶作用等。 三、实验材料、试剂和仪器 1. 实验材料 (1)2%蛋清蛋白溶液:取2g蛋清加98ml蒸馏水稀释,过滤取清夜。 (2)卵黄蛋白:鸡蛋除蛋清后剩下的蛋黄捣碎。 2. 试剂 (1) 硫酸铵、饱和硫酸铵溶液 (2) 氯化钠、饱和氯化钠溶液 (3) 花生油 (4) 酒石酸 3. 仪器 (1) 刻度试管 (2) 100ml烧杯

(3) 冰箱 四、实验步骤 1. 蛋白质水溶性的测定 在10ml刻度试管中加入蛋清蛋白,加入5ml水,摇匀,观察其水溶性,有无沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。 取上述蛋白质的氯化钠溶液3ml,加入3ml饱和硫酸铵溶液,观察球蛋白的沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白质在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。 2. 蛋白质乳化性的测定 取卵黄蛋白于10ml刻度试管中,加入水和5滴花生油;另取5ml水于10ml刻度试管中,加入5滴花生油;再将两支试管用力振摇2~3min,然后将两支试管放在试管架上,每隔15min观察一次,共观察4次,观察油水是否分离。 3. 蛋白质起泡性的测定 (1) 在二个100ml的烧杯中,各加入2%的蛋清蛋白溶液30ml,一份用玻璃棒不断搅打1~2min;另一份用吸管不断吹入空气泡1~2min,观察泡沫的生成、泡沫的多少及泡沫稳定时间的长短。 (2) 在二支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,一支放入冰箱中冷至10℃,另一支保持常温(30~35℃),以相同的方式振摇1~2min,观察泡沫产生的数量及泡沫稳定性有何不同。 (3) 在三支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,其中一支试管加入酒石酸,一支加入氯化钠;另一支作对照用,以相同的方式振摇1~2min,观察泡沫的多少及泡沫稳定性有何不同。 4. 蛋白质凝胶作用的测定 在试管中加入1ml蛋清蛋白,再加1ml水和几滴饱和食盐水至溶解澄清,放入沸水中,加热片刻观察凝胶的形成。

研究蛋白质与蛋白质相互作用方法总结-实验步骤

研究蛋白质与蛋白质相互作用方法总结-实验步骤 蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。(另补充2:检测两种蛋白质之间相互作用的实验方法比较) 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。

相关主题
文本预览
相关文档 最新文档