当前位置:文档之家› 探究实验:蛋白质的性质

探究实验:蛋白质的性质

探究实验:蛋白质的性质
探究实验:蛋白质的性质

探究蛋白质的性质实验

一、实验目的

通过本实验定性地了解蛋白质的主要功能性质。

实验准备:鸡蛋白溶液的配制:把一只鸡蛋的两端各扎一个小孔。从上面的孔吹气,使鸡蛋白从下面的孔流入量筒中。取5毫升蛋白,放入烧杯中,加30毫升蒸馏水,即成1:6的鸡蛋白胶体溶液。

二、实验步骤与实验方法

(一)、蛋白质的盐析

实验用品:鸡蛋白溶液、饱和硫酸铵或硫酸钠溶液、试管、胶头滴管等。

实验方法:

1、取一只试管注入2毫升的鸡蛋白溶液,慢慢的沿着试管壁加入2~4毫升饱和硫酸铵溶液,便有乳白色的沉淀析出。(为什么?因为盐析作用)说明:向蛋白质溶液中加入某些浓的无机盐溶液后,可以使蛋白质凝聚而从溶液中析出,只种作用叫做盐析。

2、将2毫升的带沉淀的溶液加入6~8毫升的蒸馏水中,沉淀逐渐溶解,证明盐析是个可逆过程。

实验结论:盐析出的蛋白质仍然可以溶解在水中,说明蛋白质盐析后并不影响原来蛋白质的性质。

(二)蛋白质的变性

实验用品:鸡蛋白溶液、硫酸铜、甲醛、酒精灯、试管夹等

实验方法:

1、加热:取一只试管加入2毫升鸡蛋白,把试管放在酒精灯上加热,看到

的现象是蛋白质凝结。把凝结的蛋白质放入盛有蒸馏水的试管中,凝结

的蛋白不溶解。说明:蛋白质受热后会发生变性;受热作用下蛋白质的

变性是不可逆的。

2、加入重金属盐:取一只试管加入2毫升鸡蛋白,用滴管滴入重金属盐如

硫酸铜,试管中的蛋白质凝结。把凝结的蛋白质放入盛蒸馏水的试管中,凝结的蛋白质不溶解。说明:在重金属盐的作用下的蛋白质的变性是不

可逆的。

3、加入有机化合物:取一只试管加入2毫升鸡蛋白,用滴管加入2毫升的

甲醛溶液,看到的现象是试管中的蛋白质凝结。把凝结的蛋白质放入盛

蒸馏水的试管中,凝结的蛋白质不溶解。

实验结论:蛋白质变性的条件是受热、重金属盐以及一些有机化合物如甲醛、苯甲酸等。

(三)、蛋白质的颜色反应

实验用品:鸡蛋白溶液、浓硝酸、酒精灯、试管、试管夹等。

实验方法:取一只试管加入1毫升的鸡蛋白溶液,用滴管滴入几滴浓硝酸,震荡,无明显现象,用酒精灯微热后,蛋白质凝结,变黄。

实验说明:浓酸能使蛋白质变性,且硝酸能使蛋白质变黄。此实验常用来验证蛋白质的存在。

问题思考:

1、蛋白质的盐析和变性是否影响了原来蛋白质的性质?

2、如何检验豆腐中蛋白质的存在?(滴加浓硝酸,看到豆腐呈现黄色,说

明豆腐中的蛋白质和浓硝酸发生了颜色反应。)

3、怎样区别棉线和毛线?(棉线的成分主要是纤维素,毛线的成分是蛋白质,用灼烧的方法可以鉴别纤维素和蛋白质,蛋白质灼烧有烧焦羽毛的气味。)

蛋白质的临床意义

蛋白质是什么 尿液里面出现蛋白质称为蛋白尿,也即尿蛋白。正常尿液中含少量小分子蛋白质,一般检测不出来,当尿中蛋白质增加时,尿常规检查可以检测出蛋白质呈阳性,通常用“+”表示。 可以导致蛋白尿的原因很多,它们包括:功能性蛋白尿、体位性蛋白尿或病理性蛋白尿。常见有:剧烈运动后,发热的极期,进食高蛋白饮食;胡桃夹现象;各种肾脏病和肾血管病等。 蛋白尿的分类有哪些 1. 功能性蛋白尿 功能性蛋白尿是一种轻度(24小时尿蛋白定量一般不超过0.5~1克)、暂时性蛋白尿,原因去除后蛋白尿会迅速消失。常发生于青壮年,可见于精神紧张、严重受寒或受热、长途行军、强体力劳动、充血性心衰、进食高蛋白饮食后。2. 体位性蛋白尿 清晨尿液无尿蛋白,起床活动后逐渐出现蛋白尿,长时间站立、行走或加强脊柱前凸姿势时,尿蛋白含量会增多,平卧休息1小时后尿蛋白含量会减少或消失,多发生于瘦长体型的青年或成人。反复体位性蛋白尿,需注意除外肾病,如胡桃夹现象(又叫左肾静脉压迫综合征,是因主动脉和肠系膜上动脉挤压左肾静脉所致)。

3. 病理性蛋白尿 蛋白尿持续存在,尿中蛋白含量较多,尿常规检查常合并有血尿、白细胞尿和管型尿。并可伴有其他肾脏病表现,如高血压、水肿等。病理性蛋白尿主要见于各种肾小球、肾小管间质疾病、遗传性肾病、肾血管疾病和其他肾脏病。 尿蛋白检测阳性怎么办 尿蛋白检测如果出现阳性结果,应进一步检查或复查。 首先要排除一些生理因素造成的暂时性尿蛋白阳性,如妊娠、剧烈运动后、受寒、精神紧张、体位变化、青少年快速生长期等;如果尿液内混入了阴道分泌物或混入了精子,被一些其他物质污染也可造成假阳性,应注意复查和观察。 持续的阳性结果特别是加号较多时,提示可能患有急、慢性肾炎、肾盂肾炎、肾结核、肾肿瘤、各种原因引起的肾病综合征、系统性红斑狼疮、糖尿病肾病、泌尿系炎症、肾移植术后的排异反应等。 出现的蛋白尿还有可能是某些病理反应造成的,如高烧、高血压、膀胱炎、尿道炎、肿瘤、骨髓瘤、输血反应等。 偶然一次尿蛋白检测结果为阳性时应注意观察和复查,排除有关的生理因素,可以请教医生或做进一步其他的检查以确定病因。

实验三 蛋白质的两性反应和等电点的测定

实验三蛋白质的两性反应和等电点的测定 一、目的和要求 1.了解蛋白质的两性解离性质。 2.初步学会测定蛋白质等电点的方法。 二、原理 蛋白质由许多氨基酸组成,虽然绝大多数的氨基与羧基成肽键结合,但是总有一定数量自由的氨基与羧基,以及酚基等酸碱基团,因此蛋白质和氨基酸一样时两性电解质。调节溶液的酸碱度达到一定的氢离子浓度时,蛋白质分子所带的正电荷和负电荷相等,以兼性离子状态存在,在电场内该蛋白质分子既不向阴极移动,也不向阳极移动,这时溶液的PH值称为该蛋白质的等电点(PI)。当溶液的PH低于蛋白质等电点时,即在氢离子较多的条件下,蛋白质分子带正电荷成为阳离子;当溶液的PH高于蛋白质等电点时,即在氢氧根离子较多的条件下,蛋白质分子带负电荷成为阴离子。 在等电点时蛋白质溶解度最小,容易沉淀析出。 三、试剂和器材 1.试剂 0.5%酪蛋白溶液;酪蛋白醋酸钠溶液; 0.04%溴甲酚绿指示剂; 0.02N盐酸; 0.1N醋酸溶液; 0.01N醋酸溶液;1N醋酸溶液; 0.02N氢氧化钠溶液 2.器材

试管及试管架;滴管;吸量管( 1、5ml) 四、操作方法 1.蛋白质的两性反应 (1)取1支试管,加 0.5%酪蛋白溶液20滴和 0.04%溴甲酚绿指示剂5-7滴,混匀。观察溶液呈观的颜色,并说明原因。 (2)用细滴管缓慢加入 0.02N盐酸溶液,随滴随摇,直至有明显的大量沉淀发生,此时溶液的PH 接近与酪蛋白的等电点。观察溶液颜色的变化。 (3)继续滴入 0.02N盐酸溶液,观察沉淀和溶液颜色的变化,并说明原因。 (4)再滴入 0.02N氢氧化钠溶液进行中和,观察是否出现沉淀,解释其原因。 继续滴入 0.02N氢氧化钠溶液,为什么沉淀又会溶液?溶液的颜色如何变化?说明了什么问题? 2.酪蛋白等电点的测定 (1)取9支粗细相近的干燥试管,编号后按下表的顺序准确地加入各种试剂。 加入每种试剂后应混合均匀。 试管编号9

糖类、油脂、蛋白质的性质教案

糖类、油脂、蛋白质的性质教 案(总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

糖类、油脂、蛋白质的性质 知识与技能 1.了解糖类、油脂、蛋白质的存在及来源。 2. 探究糖类、油脂和蛋白质的典型化学性质,了解糖类、油脂和蛋白质 的共同性质与特征反应。 过程与方法 1.通过糖类、油脂和蛋白质分子结构的解析、比较过程,培养学生的抽象 思维和逻辑思维能力; 2.从实验现象到糖类、油脂和蛋白质典型性质的推理,使学生体会科学研 究的方法。 情感、态度与价值观 1.通过糖类、油脂和蛋白质的典型性质的探究过程,使学生从中体会到严 谨求实的科学态度。 2.结合糖类、油脂和蛋白质与社会生活的密切联系,使学生领悟到化学现 象与化学本质在实际生活中的重要作用,培养学以致用的辩证认识。 教学重点:糖类、油脂和蛋白质的主要性质。 教学难点:1.葡萄糖与弱氧化剂氢氧化铜的反应。 2.油脂的水解反应。 一、糖类、油脂、蛋白质的性质 导入:上节课我们学习了糖类、油脂、蛋白质的化学组成,它们的分子结构都比较复杂,然而结构决定性质,那它们有什么样的性质,我们又该如何去鉴别它们呢?下面我们一起来进行探究。 1.糖类、油脂、蛋白质的特征反应 【实验3—5】

(1)葡萄糖的特征反应:在碱性、加热的条件下: ①葡萄糖△ 新制??????→?2 Cu(OH)砖红色沉淀 ②葡萄糖△ 银氨溶液 ????→?光亮的银镜 应用:上述两反应,常用于鉴别葡萄糖。 (2)淀粉的特征反应:在常温下,淀粉遇碘变蓝色。(淀粉遇到I 2单质才变 蓝色,而遇到化合态的碘如I -、IO -3等不变色。) 应用:用碘水检验淀粉的存在,也可用淀粉检验碘(I 2)的存在。 (3)蛋白质的特征反应 ①颜色(显色)反应:(含有本环结构的蛋白质) 蛋白质 ? ???→?3 HNO 浓变黄色 ②灼烧反应:灼烧蛋白质,产生烧焦羽毛的气味 应用:上述练反应常用于鉴别蛋白质 2.糖类、油脂、蛋白质的水解反应 (1)糖类的水解反应: 【实验3—6】

蛋白质的重要性

蛋白质的重要性 身体除了水之外,最大的组成成分就是蛋白质,约占身体的17%。头发、指甲、皮肤及肌肉组织几乎完全由蛋白质构成。活的细胞需要蛋白质作为它们的构架,生物体如果缺少了蛋白质就无法生存。 蛋白质的来源 自然界中,蛋白质都是与脂肪或碳水化合物以脂蛋白或糖蛋白的形式出现,蛋清、乳酪及瘦肉中的蛋白质,是我们所能发现最纯的蛋白质。植物能够合成它们本身所需的蛋白质,但是动物就必需由食物中获得。在所有的生物组织中,我们都可发现蛋白质的存在,所以在生长发育的过程中,蛋白质是特别地重要,对于年轻的生命,富含蛋白质的食物来源尤为重要;植物的种子,如坚果、豆类及谷类,情形也是一样的。动物性的蛋白质来源包括所有的肉类、家禽及鱼类等食物。 蛋白质的种类 人体内的蛋白质是由22种氨基酸所组成,这22种氨基酸广泛地分布在大部的动物和植物性食物中,其中有9种是人类生存所必需的氨基酸,而且完全要由食物所供给,其他的氨基酸则可以由身体自行合成。 22种氨基酸名称如下: 异亮氨酸*、亮氨酸*、赖氨酸*、]蛋氨酸*、苯丙氨酸*、苏氨酸*、色氨酸*、缬氨酸*、丙氨酸、天门冬氨酸、胱氨酸、谷氨酸、天冬酰胺酸、半胱氨酸、谷酰胺、甘氨酸、鸟氨酸、脯氨酸、丝氨酸、酪氨酸、精氨酸、组氨酸+ [注] * 为必需氨基酸;+为儿童必需氨基酸,成年人可自行由食物合成。 由名字上我们知道,氨基酸必定含有一个氨基及一个羧基,他们的化学式分别是NH2及COOH。不同的氨基酸,它们所含的碳、氢及氧的组成也不一样,其中蛋氨酸及胱氨酸还含有硫原子。 我们知道,所有的英文单词都是由26个字母以不同的组合方式构成的,蛋白质也是一样,上千种蛋白质是由氨基酸以各种不同的方式组合而成的。牛奶中的蛋白质与小麦中的蛋白质不同,因为它们所含的氨基酸及种类不同。同样地,体内各部位地蛋白质也不尽相同,比如,肝中的蛋白质与肌肉中的蛋白质就不一样。牛奶中所含的蛋白质(酪蛋白)或蛋清中所含的蛋白质(卵蛋白),都是由数百个甚至数千个氨基酸所构成,极为复杂。 负责构建及修补的蛋白质 我们已经知道蛋白质如何通过酶分解成氨基酸,然后由消化壁吸收。当它

蛋白质结晶方法探究

蛋白质结晶方法探究 发表时间:2018-08-20T14:56:45.123Z 来源:《医药界》2018年1月下作者:高铨,解婧妍 [导读] 有机大分子蛋白质是生命物质基础,其基本组成单位是氨基酸,是构成细胞的基本有机物,是生命活动的主要承担者。它与生命以及各种生命活动紧密联系,几乎参与了全部生理过程。蛋白质还是大多数食品的主要成分,是一类重要的产能营养素。(西北工业大学陕西西安 710072) 本文相关工作受到国家级大学生创新创业训练计划(新型CDM结晶板悬滴法对蛋白质结晶影响,资助号#201710699109)支持。【摘要】有机大分子蛋白质是生命物质基础,其基本组成单位是氨基酸,是构成细胞的基本有机物,是生命活动的主要承担者。它与生命以及各种生命活动紧密联系,几乎参与了全部生理过程。蛋白质还是大多数食品的主要成分,是一类重要的产能营养素。蛋白质的复杂结构决定了其功能的复杂性,鉴于此,要研究蛋白质的具体功能及其应用的前提是解析出高分辨率的三维结构。 【关键词】蛋白质结晶 X射线衍射晶体质量 引言 目前,测定蛋白质空间结构的有效方法主要有X射线衍射技术、核磁共振技术及电镜技术。电镜法研究不染色的蛋白质分子结构明显的困难是样品对电子损伤的高敏感性和样品在真空中三维结构的改变。核磁共振技术解析蛋白质的结构虽不需结晶,可研究动力学,但因分子量的限制,且需要标记。因此,解析蛋白质的结构最有力的方法首推X射线衍射技术,它能精确确定生物大分子中各原子坐标,确定共价键键长、键角。 据PDB数据库的统计,超过88%的蛋白质是由X射线衍射技术得到的,所以充分利用这项技术对于开展后续研究十分重要。X射线衍射技术解析蛋白质结构需获得蛋白质晶体,而这种晶体不是普通的晶体,它必须具有足够大小和质量才能保证数据收集的准确性。因此,得到符合要求的晶体成为了整个衍射过程的关键,是最终决定结构解析成功与否的因素。获得可以用于X射线衍射的高质量蛋白质晶体也成为晶体学领域追求的目标。 蛋白质结晶过程是蛋白质分子在溶液中析出的过程。蛋白质分子首先在其过饱和溶液中形成晶核,之后由于溶液中蛋白质浓度降低,蛋白质结晶生长趋于平稳,具体表现是蛋白质不再形核,晶体逐渐长大。这个过程中要想获得高质量的蛋白质晶体一般需要考虑一些问题,如如何获得高纯度的蛋白质溶液,选择什么结晶方法能获得质量好的晶体。本文基于此,对现有结晶方法进行总结,并介绍一些在蛋白质结晶领域的新技术。 1 传统结晶方法 A. 批量结晶法 该方法是最古老也是最简单的方法,蛋白溶液和结晶试剂开始就在确定的浓度下混合,其中蛋白质溶液一定是处于过饱和状态[1]。混合溶液一般处于密封的体系下,溶液各种参数都不变化,形成的晶体也不溶解。这种方法也有一个比较明显的缺点,由于这种方法需要大量且纯净的蛋白质晶体,但多数纯化得的蛋白质最终量都是非常少,所以,该方法未被大量使用,取代的是微量批量结晶法[2],该方法只需非常少量的结晶液,结晶液滴混合后被分配到低密度的石蜡油和硅胶的混合物中。因液滴的密度要大,故整个过程都在石蜡油中进行,在这种混合物中的结晶效果等同于蒸汽扩散结晶,同时又可以防止溶剂挥发、空气污染和外界晃动,方便装置的移动,但溶液包含小分子有机物的实验不能用此方法,因为他们会溶解入油滴中。 B. 气相扩散法 气相扩散法主要是利用在蛋白质和沉淀剂混合的液滴中,沉淀剂的浓度低于晶体形核所需要的浓度,导致水分子不断从低浓度的液滴向高浓度的液池扩散,液滴中的蛋白质浓度逐渐增加并于沉淀剂结合,进而实现结晶。 气相扩散法的优点在于晶体生长的过程缓慢,蛋白有足够的时间在晶格中堆积,节省样品而且可有效利用储存空间。 C. 平衡透析法 平衡透析法需要用半透膜在装置里形成一个分隔面,在左右两边分别是蛋白质溶液和结晶试剂,因为两边存在浓度梯度,所以在结晶试剂里的小分子如离子、添加剂和缓冲剂就会通过半透膜进入到样品区,样品区的沉淀剂浓度逐渐增加。与此同时,由于蛋白质分子属于大分子,不能通过半透膜,由于结晶试剂里的小分子在样品区的浓度逐渐增加,蛋白质浓度就会逐渐下降,最终达到过饱和状态形核结晶。这种方法可以用于大规模的结晶实验,但要注意的是不是所有的结晶试剂都能应用此方法。 D. 液-液扩散法 又叫自由界面扩散法,这个方法是利用扩散作用而达到体系平衡并析出蛋白质晶体的过程。通常是将样品蛋白质溶液和结晶液在一个毛细管状的容器中,两者存在着浓度梯度,通过缓慢的扩散,整个系统自发的选择形核和晶体生长的过饱和状态。这种方法在确定了沉淀剂、pH和缓冲液后,可以作为筛选条件的微调实验。 2新技术的应用 一些生物结构科学家通过将传统方法和现在最新技术相结合,在传统的基础上提出了一系列有关于蛋白质结晶的新方法,提高了蛋白质结晶的质量。 由于蛋白质晶体生长是在晶核的基础上进行的,晶核的质量直接影响到蛋白质量。由于高质量的晶核是在较低的过饱和的状态下形成的,条件比较难控制。因此在2004年Ireton等学者利用低分辨率的晶体作为籽晶,导入到新结晶溶液中得到了适于衍射的高分辨率晶体[3]。D’ Arcy 等人在此基础上用导入籽晶的方法对牛胰岛素等5种蛋白结晶条件进行了筛选,发现导入籽晶可以有效的提升使蛋白质结晶筛选的成功率[4]。 共结晶技术近年来也成为提高蛋白质结晶质量的一种常用方法。有些晶体在与核苷酸、协同因子或是一些小分子可以稳定存在。Schartman等学者通过计算的方法证明共结晶技术可稳定晶体热力学性质,从而更易得到晶体[5]。实验证明这种方法尤其适用于配体溶解度很低或者蛋白质分子容易聚合的情况下,可以显著提高结晶成功率,尤其是一些膜蛋白只有与配体共结晶后才能得到晶体。

青稞蛋白质理化特性研究

青稞蛋白质理化特性研究 摘要选取青藏区的7个主要青稞品种(藏青148、藏青25、藏青320、北青6号、冬青8号、昆仑12、喜拉19),采用碱溶酸沉法提取青稞蛋白,对分离得到的蛋白质进行化学组分和功能性质的测定,分析比较7个品种间吸水性、吸油性及溶解性的差异,结果表明:在酸性条件下昆仑12的溶解性最好,在碱性条件下喜拉19、昆仑12、藏青148的溶解性优于其他4个品种;喜拉19的吸水性最佳,为2.86 g/g,藏青320的吸水性与吸油性相对较优异,昆仑12的吸水性与吸油性较差。 关键词青稞;蛋白质;理化特性;化学组分;吸水性;吸油性 青稞又称米大麦、裸麦、裸大麦,属于禾本科小麦族大麦属,主要生长在我国西北、西南地区,特别是西藏、青海、甘肃等偏远山区和牧区,是一种重要的高原谷类作物,也是藏区农牧民的主要粮食作物和动物饲料来源。同时由于青稞的生长区域较为偏远,病虫害的发生也较少,所以生长期内一般不施用农药。因此,青稞是高原地区真正无污染的绿色食品。同时青稞中蛋白质含量高,在谷物中仅低于小麦和燕麦,而且氨基酸配比合理,人体必需氨基酸较为齐全[1]。因此,青稞作为一种优质的蛋白质来源将会受到越来越多的关注。 蛋白质的功能性质决定着蛋白质在食品加工中的特性及应用范围,而蛋白质的功能性质不但与其来源有关,本质上更是由蛋白质自身理化性质及结构特性等决定,其中溶解性是蛋白质的一个重要的功能特性,大量的研究发现蛋白质的功能性与溶解性有着密切的联系,可通过蛋白质的溶解性来体现其功能性质[2]。因此,研究蛋白质的溶解性具有重要的意义。 1 材料与方法 1.1 试验材料 1.1.1 供试材料。试验材料为7个不同品种青稞蛋白:藏青148、藏青25、藏青320、北青6号、冬青8号、昆仑12、喜拉19,由西藏农牧科学院研究所提供,经粉碎后过60目筛备用。试剂有精炼一级大豆油;盐酸、氢氧化钠、硼酸、硼砂、硫酸铜、硫酸钾、浓硫酸,均为分析纯。 1.1.2 仪器与设备。HR-200电子分子天平(东生兴业有限公司);TDL-5-A 台式离心机(上海安亭科学仪器厂);101-1AB型电热鼓风干燥箱(天津市泰斯特仪器有限公司);HYP-314消化炉(上海纤检仪器有限公司);Foss凯氏定氮仪(瑞典富斯-特卡脱公司);PB-10 pH计(赛多利斯科学仪器有限公司);LGJ-25C 冷冻干燥机(北京四环科学仪器厂有限公司)。 1.2 试验方法

蛋白质的性质实验(二)

蛋白质的性质实验(二) 蛋白质的等电点测定和沉淀反应 一、蛋白质等电点的测定 1.目的 (1)了解蛋白质的两性解离性质。 (2)学习测定蛋白质等电点的一种方法。 2.原理 蛋白质是两性电解质。在蛋白质溶液中存在下列平衡: 蛋白质分子的解离状态和解离程度受溶液的酸碱度影响。当溶液的pH达到一定数值时,蛋白质颗粒上正负电荷的数目相等,在电场中,蛋白质既不向阴极移动,也不向阳极移动,此时溶液的pH值称为此种蛋白质的等电点。不同蛋白质各有其特异的等电点。在等电点时,蛋白质的理化性质都有变化,可利用此种性质的变化测定各种蛋白质的等电点。最常用的方法是测其溶解度最低时的溶液pH值。 本实验借观察在不同pH溶液中的溶解度以测定酪蛋白的等电点。用醋酸和醋酸钠(醋酸钠混合在酪蛋白溶液中)配制成各种不同pH值的缓冲液。向诸缓冲溶液中加入酪蛋白后,沉淀出现最多的缓冲液的pH值即为酪蛋白的等电点。 3.器材 4.试剂 (1)0.4%酪蛋白醋酸钠溶液 200mL 取0.4g酪蛋白,加少量水在乳钵中仔细地研磨,将所得的蛋白质悬胶液移入200 mL锥形瓶内,用少量40~50 ℃的温水洗涤乳钵,将洗涤液也移入锥形瓶内。加入10 mL1 mol/L醋酸钠溶液。把锥形瓶放到50℃水浴中,并小心地旋转锥形瓶,直到酪蛋白完全溶解为止。将锥形瓶内的溶液全部移至 100 mL容量瓶内,加水至刻度,塞紧玻塞,混匀。 5.操作 (1)取同样规格的试管4支,按下表顺序分别精确地加入各试剂,然后混匀。

(2)向以上试管中各加酪蛋白的醋酸钠溶液1mL,加一管,摇匀一管。此时1、2、3、4 管的pH依次为5.9、5.3、4.7、3.5。观察其混浊度。静置10分钟后,再观察其混浊度。最混浊的一管的pH即为酪蛋白的等电点。 二、蛋白质的沉淀及变性 1.目的 (1)加深对蛋白质胶体溶液稳定因素的认识。 (2)了解沉淀蛋白质的几种方法及其实用意义。 (3)了解蛋白质变性和沉淀的关系。 2.原理 在水溶液中的蛋白质分子由于表面生成水化层和双电层而成为稳定的亲水胶 体颗粒,在一定的理化因素影响下,蛋白质颗粒可因失去电荷和脱水而沉淀。 蛋白质的沉淀反应可分为两类。 (1)可逆的沉淀反应此时蛋白质分子的结构尚未发生显著变化,除去引起沉淀的因素后,蛋白质的沉淀仍能溶解于原来的溶剂中,并保持其天然性质而不变性。如大多数蛋白质的盐析作用或在低温下用乙醇(或丙酮)短时间作用于蛋白质。提纯蛋白质时,常利用此类反应。 (2)不可逆沉淀反应此时蛋白质分子内部结构发生重大改变,蛋白质常变性而沉淀,不再溶于原来溶剂中。加热引起的蛋白质沉淀和凝固,蛋白质和重金属离子或某些有机酸的反应都属于此类。 蛋白质变性后,有时由于维持溶液稳定的条件仍然存在(如电荷),并不析出。因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已变性。

蛋白质的结构和性质教案 高中化学

高二化学第四章第三节蛋白质的结构和性质 一、内容及其解析 1、内容:这节我们学习蛋白质的组成与性质,本节内容主要分为:①、从蛋白质在生物界的广泛存在引入,介绍“蛋白质是生命的基础”;②、介绍蛋白质的组成;③、介绍蛋白质的性质;④、介绍蛋白质的用途。 2、分析:“氨基酸的组成”是本节学习的难点,因为氨基酸的分子结构对于学生来说是陌生的。氨基酸属于多官能团化合物,教学中可考虑用迁移、替代、延伸的方法让学生轻松的接受。蛋白质的性质是本节的重点,可考虑用边讲边演示的方法进行,或边讲边做试验、边讨论的教学方法。 二、目标及其解析 1、目标 ⑴、使学生学习蛋白质是生命最基本的物质基础。 ⑵、学习蛋白质的组成、性质及用途。 ⑶、学习酶的特性与广泛的用途。 2、分析 ⑴、通过蛋白质在生物界里的广泛存在作简单的介绍,得出“蛋白质是生命的基础,没有蛋白质就没有生命”这一重要结论。 ⑵、蛋白质的组成及性质是本节的难点及重点,可用通过阅读课本相关内容及习题讲解来突破难点、突出重点,让学生轻松接受。 ⑶、联系生活、生产和社会,渗透相关学科知识,让学生真正了解蛋白质重要而广泛的用途,以体现化学教育的经济价值、社会价值和人文价值。 三、教学问题诊断分析 学生在学习氨基酸的组成上可能会出现障碍,以为氨基酸的分子结构对于学生来说是陌生的,且氨基酸属于多官能团化合物。同时在学习蛋白质的性质上也可能会出现困难,要克服以上困难我们可借助实验来帮助学生理解,根据实验现象来得出结论的教学方法。 四、教学支持条件分析 在课本演示实验的基础上,增添多媒体来教学。 五、教学过程设计 【引入】师生活动复习上节课内容氨基酸。 【板书】一、蛋白质的组成 【师】请同学们阅读课本88页,回答下列问题。 蛋白质的定义:蛋白质是由氨基酸分子经过缩合后通过肽键构成的天然有机高分子化合物。 1. 构成蛋白质的基础物质是什么? 2 蛋白质的组成元素主要有哪些? 3、蛋白质的结构 【学生活动】 【师生互动】解决以上问题。

蛋白质的性质和分类

蛋白质凭借游离的氨基和羧基而具有两性特征,在等电点易生成沉淀。不同的蛋白质等电点不同,该特性常用作蛋白质的分离提纯。生成的沉淀按其有机结构和化学性质,通过pH的细微变化可复溶。蛋白质的两性特征使其成为很好的缓冲剂,并且由于其分子量大和离解度低,在维持蛋白质溶液形成的渗透压中也起着重要作用。这种缓冲和渗透作用对于维持内环境的稳定和平衡具有非常重要的意义。 在紫外线照射、加热煮沸以及用强酸、强碱、重金属盐或有机溶剂处理蛋白质时,可使其若干理化和生物学性质发生改变,这种现象称为蛋白质的变性。酶的灭活,食物蛋白经烹调加工有助于消化等,就是利用了这一特性。 (二)蛋白质的分类 简单的化学方法难于区分数量庞杂、特性各异的这类大分子化合物。通常按照其结构、形态和物理特性进行分类。不同分类间往往也有交错重迭的情况。一般可分为纤维蛋白、球状蛋白和结合蛋白三大类。 1.纤维蛋白包括胶原蛋白、弹性蛋白和角蛋白。 (1) 胶原蛋白胶原蛋白是软骨和结缔组织的主要蛋白质,一般占哺乳动物体蛋白总量的30%左右。胶原蛋白不溶于水,对动物消化酶有抗性,但在水或稀酸、稀碱中煮沸,易变成可溶的、易消化的白明胶。胶原蛋白含有大量的羟脯氨酸和少量羟赖氨酸,缺乏半胱氨酸、胱氨酸和色氨酸。 (2) 弹性蛋白弹性蛋白是弹性组织,如腱和动脉的蛋白质。弹性蛋白不能转变成白明胶。 (3) 角蛋白角蛋白是羽毛、毛发、爪、喙、蹄、角以及脑灰质、脊髓和视网膜神经的蛋白质。它们不易溶解和消化,含较多的胱氨酸(14-15%)。粉碎的羽毛和猪毛,在15-20磅蒸气压力下加热处理一小时,其消化率可提高到70-80%,胱氨酸含量则减少5-6%。 2.球状蛋白 (1) 清蛋白主要有卵清蛋白、血清清蛋白、豆清蛋白、乳清蛋白等,溶于水,加热凝固。 (2) 球蛋白球蛋白可用5-10%的NaCl溶液从动、植物组织中提取;其不溶或微溶于水,可溶于中性盐的稀溶液中,加热凝固。血清球蛋白、血浆纤维蛋白原、肌浆蛋白、豌豆的豆球蛋白等都属于此类蛋白。 (3) 谷蛋白麦谷蛋白、玉米谷蛋白、大米的米精蛋白属此类蛋白。不溶于水或中性溶液,而溶于稀酸或稀碱。 (4) 醇溶蛋白玉米醇溶蛋白、小麦和黑麦的麦醇溶蛋白、大麦的大麦醇溶蛋白属此类蛋白。不溶于水、无水乙醇或中性溶液,而溶于70-80%的乙醇。 (5) 组蛋白属碱性蛋白,溶于水。组蛋白含碱性氨基酸特别多。大多数组蛋白在活细胞中与核酸结合,如血红蛋白的珠蛋白和鲭鱼精子中的鲭组蛋白。 (6) 鱼精蛋白鱼精蛋白是低分子蛋白,含碱性氨基酸多,溶于水。例如鲑鱼精子中的鲑精蛋白、鲟鱼的鲟精蛋白、鲱鱼的鲱精蛋白等。鱼精蛋白在鱼的精子细胞中与核酸结合。 球蛋白比纤维蛋白易于消化,从营养学的角度看,氨基酸含量和比例也较纤维蛋白更理想。 3. 结合蛋白 结合蛋白是蛋白部分再结合一个非氨基酸的基团(辅基)。如核蛋白(脱氧核糖核蛋白、核糖体),磷蛋白(酪蛋白、胃蛋白酶),金属蛋白(细胞色素氧化酶、铜蓝蛋白、黄嘌呤氧化酶),脂蛋白(卵黄球蛋白、血中β1-脂蛋白),色蛋白(血红蛋白、细胞色素C、黄素蛋白、视网膜中与视紫质结合的水溶性蛋白)及糖蛋白(γ球蛋白、半乳糖蛋白、甘露糖蛋白、氨基糖蛋白)。

蛋白质功能性质的检测实验报告

华南农业大学实验报告 专业班次 13食工1班组别 题目蛋白质功能性质的检测姓名黄俊怡日期 一、实验目的 通过本实验定性地了解蛋白质的主要功能性质。 二、实验原理 蛋白质的功能性质一般是指能使蛋白质成为人们所需要的食品特征而具有的物理化学性质,即对食品的加工、贮藏、销售过程中发生作用的那些性质,这些性质对食品的质量和风味起着重要的作用。蛋白质的功能性质与蛋白质在食品体系中的用途有着十分密切的关系,是开发和有效利用蛋白质资源的重要依据。 蛋白质的功能性质可分为水化性质、表面性质、蛋白质-蛋白质相互作用的有关性质三个主要类型,主要包括有吸水性、溶解性、保水性、分散性、粘度和粘着性、乳化性、起泡性、凝胶作用等。 三、实验材料、试剂和仪器 1. 实验材料 (1)2%蛋清蛋白溶液:取2g蛋清加98ml蒸馏水稀释,过滤取清夜。 (2)卵黄蛋白:鸡蛋除蛋清后剩下的蛋黄捣碎。 2. 试剂 (1) 硫酸铵、饱和硫酸铵溶液 (2) 氯化钠、饱和氯化钠溶液 (3) 花生油 (4) 酒石酸 3. 仪器 (1) 刻度试管 (2) 100ml烧杯

(3) 冰箱 四、实验步骤 1. 蛋白质水溶性的测定 在10ml刻度试管中加入蛋清蛋白,加入5ml水,摇匀,观察其水溶性,有无沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。 取上述蛋白质的氯化钠溶液3ml,加入3ml饱和硫酸铵溶液,观察球蛋白的沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白质在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。 2. 蛋白质乳化性的测定 取卵黄蛋白于10ml刻度试管中,加入水和5滴花生油;另取5ml水于10ml刻度试管中,加入5滴花生油;再将两支试管用力振摇2~3min,然后将两支试管放在试管架上,每隔15min观察一次,共观察4次,观察油水是否分离。 3. 蛋白质起泡性的测定 (1) 在二个100ml的烧杯中,各加入2%的蛋清蛋白溶液30ml,一份用玻璃棒不断搅打1~2min;另一份用吸管不断吹入空气泡1~2min,观察泡沫的生成、泡沫的多少及泡沫稳定时间的长短。 (2) 在二支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,一支放入冰箱中冷至10℃,另一支保持常温(30~35℃),以相同的方式振摇1~2min,观察泡沫产生的数量及泡沫稳定性有何不同。 (3) 在三支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,其中一支试管加入酒石酸,一支加入氯化钠;另一支作对照用,以相同的方式振摇1~2min,观察泡沫的多少及泡沫稳定性有何不同。 4. 蛋白质凝胶作用的测定 在试管中加入1ml蛋清蛋白,再加1ml水和几滴饱和食盐水至溶解澄清,放入沸水中,加热片刻观察凝胶的形成。

研究蛋白质与蛋白质相互作用方法总结-实验步骤

研究蛋白质与蛋白质相互作用方法总结-实验步骤 蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。(另补充2:检测两种蛋白质之间相互作用的实验方法比较) 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。

糖类油脂蛋白质的性质教案

糖类、油脂、蛋白质的性质 知识与技能 1.了解糖类、油脂、蛋白质的存在及来源。 2. 探究糖类、油脂和蛋白质的典型化学性质,了解糖类、油脂和蛋白质的 共同性质与特征反应。 过程与方法 1.通过糖类、油脂和蛋白质分子结构的解析、比较过程,培养学生的抽象 思维和逻辑思维能力; 2.从实验现象到糖类、油脂和蛋白质典型性质的推理,使学生体会科学研 究的方法。 情感、态度与价值观 1.通过糖类、油脂和蛋白质的典型性质的探究过程,使学生从中体会到严 谨求实的科学态度。 2.结合糖类、油脂和蛋白质与社会生活的密切联系,使学生领悟到化学现 象与化学本质在实际生活中的重要作用,培养学以致用的辩证认识。 教学重点:糖类、油脂和蛋白质的主要性质。 教学难点:1.葡萄糖与弱氧化剂氢氧化铜的反应。 2.油脂的水解反应。 一、糖类、油脂、蛋白质的性质 导入:上节课我们学习了糖类、油脂、蛋白质的化学组成,它们的分子结构都比较复杂,然而结构决定性质,那它们有什么样的性质,我们又该如何去鉴别它们呢下面我们一起来进行探究。 1.糖类、油脂、蛋白质的特征反应 【实验3—5】

(1)葡萄糖的特征反应:在碱性、加热的条件下: ①葡萄糖△ 新制??????→?2Cu(OH)砖红色沉淀 ②葡萄糖△银氨溶液 ????→?光亮的银镜 应用:上述两反应,常用于鉴别葡萄糖。 (2)淀粉的特征反应:在常温下,淀粉遇碘变蓝色。(淀粉遇到I 2单质才变蓝 色,而遇到化合态的碘如I -、IO -3等不变色。 ) 应用:用碘水检验淀粉的存在,也可用淀粉检验碘(I 2)的存在。 (3)蛋白质的特征反应 ①颜色(显色)反应:(含有本环结构的蛋白质) 蛋白质????→?3HNO 浓变黄色 ②灼烧反应:灼烧蛋白质,产生烧焦羽毛的气味 应用:上述练反应常用于鉴别蛋白质 2.糖类、油脂、蛋白质的水解反应 (1)糖类的水解反应: 【实验3—6】 ①水解反应: C 12H 22O 11+H 2O ????→? 催化剂C 6H 12O 6 + C 6H 12O 6

实验一 蛋白质的两性性质和酪蛋白等电点的测定

实验一蛋白质的两性性质和酪蛋白等电点的测定 一、实验目的与要求 1.掌握蛋白质的两性解离性质; 2.熟练掌握测定蛋白质等电点的基本方法。 二、实验原理 蛋白质是由氨基酸组成的高分子化合物。虽然大多数的α-氨基和α-羧基成肽键结合,但仍有N末端的氨基和C末端的羧基存在,同时侧链上还有一些可解离基团。因此,蛋白质和氨基酸一样是两性电解质。调节蛋白质溶液的pH,可使蛋白质带上正电荷或负电荷;在某一pH时,其分子中所带的正电荷和负电荷相等,此时溶液中蛋白质以兼性离子形式存在。 在外加电场中蛋白质分子既不向正极移动也不向负极移动,此时溶液的pH 称为该蛋白质的等电点,蛋白质的溶解度最小。不同的蛋白质,因氨基酸的组成不同有不同的等电点。 三、实验材料、试剂与仪器 1.材料与试剂 NaOH、HCl、乙酸、溴甲酚绿、酪蛋白、精密pH试纸等。 0.5 %酪蛋白溶液: 0.5 g酪蛋白,先加入几滴1 mol/L的NaOH使其湿润,用玻璃棒搅拌研磨使成浆糊状,逐滴加入 0.01 mol/L的NaOH使其完全溶解后定容到100 mL.酪蛋白—乙酸钠溶液:将0.25 g酪蛋白加5 mL 1 mol/L的NaOH溶解,加20 mL水温热使其完全溶解后,再加入5 mL 1 mol/L的乙酸,混合后转入50 mL的容量瓶内,加水到刻度,混匀备用(pH应为8~ 8.5);

0.01%的溴甲酚绿溶液:将0.01g溴甲酚绿溶解于100mL含有 0.57mL 0.1mol/LNaOH的水中。该指示剂的变色范围是: 酸性(pH 3.8)为黄色,pH 5.4为蓝色; 0.02 mol/L的HCl溶液:将0.8 mL浓盐酸用蒸馏水稀释到480 mL即可; 0.02 mol/L的NaOH溶液:将0.8 g NaOH溶解于100 mL水中,最终加入到1000 mL; 0.1 mol/L的乙酸溶液: 将1 mL冰醋酸用水稀释到170 mL; 0.01 mol/L的乙酸溶液:将0.1 mL冰醋酸用水稀释到170 mL; 1 mol/L的乙酸溶液:1 mL冰醋酸(17 mol/L)加水到17 mL即可。 2.仪器 试管、滴管、移液管、pH试纸等。 四、实验方法与步骤 1.蛋白质的两性反应 1)取一支干净的试管,加入20滴 0.5 %的酪蛋白溶液,逐滴加入 0.01 %的溴甲酚绿溶液(约5~7滴),充分混合,观察溶液的颜色并解释(蓝色)。

高中生物生命活动的主要承担者--蛋白质教案

第4课时 第2节生命活动的主要承担者----蛋白质 【考点解读】 1.说明氨基酸的结构特点,以及氨基酸形成蛋白质的过程。 2.概述蛋白质的结构和功能。 3.认同蛋白质是生命活动的主要承担者。 4.关注蛋白质研究的新进展。 5.学习重点是氨基酸的结构特点,以及氨基酸形成蛋白质的过程和蛋白质的结构和功能。 6.学习难点是氨基酸形成蛋白质的过程和蛋白质结构多样性的原因。 【自主探究】

2、例题精析: 〖例1〗下列为某一多肽化合物的分子结构式,请回答有关问题: (1)上述结构中,代表氨基的结构式为_________;代表羧基的结构式为_________; 代表肽键的结构式为____________;其中________________、_____________为R基。 (2)上述化合物是由__________种氨基酸组成。 (3)该化合物是由______个氨基酸失去_______分子水形成的,该化合物称为________,这样的反应叫做___________。水分子中的氧来自于__________,氢来自于___________。 解析:(1)考查氨基酸的结构通式。 (2)氨基酸的种类是由R基决定的,根据R基结构可以数出有2种氨基酸。 (3)要知道构成该化合物的氨基酸的数目,应首先找到肽键(—CO—NH—)的位置,从图中可以看出有3个氨基酸通过2个肽键连接,肽的命名和构成该化合物的氨基酸的数目相同,因此该化合物称为三肽。脱水缩合时前一个氨基酸的—COOH提供羟基(—OH),后一个氨基酸的—NH2提供氢(—H),“—OH”和“—H”结合生成水。 答案:(1)—NH2—COOH —CO—NH——CH3—CH2OH (2)两(3)三两三肽脱水缩合—COOH —NH2和—COOH 〖例2〗某一条多肽链中共有肽键151个,则此分子中—NH2和—COOH的数目至少有()A.152;152 B.151;151 C. 1;1 D.2;2 解析:每两个相邻的氨基酸之间会形成一个肽键。因此在肽链的两端一定是(—NH2)和(—COOH),如果构成多肽的每个氨基酸分子的R基上没有(—NH2)和(—COOH),这时该多肽所含的(—NH2)和(—COOH)数最少。 答案:C 〖例3〗现已知构成蛋白质的氨基酸共20种,它们的平均分子量为128,由50个氨基酸形成的某蛋白质的一条多肽链的分子量是()A.6400 B.2560 C.5518 D.2218 解析:氨基酸形成蛋白质的过程是一个脱水缩合的过程,通过相邻的氨基酸脱去一分子水、形成肽键而连接起来。因此,在计算氨基酸一条多肽链的分子量时,仅仅算出氨基酸的总分子量是不够的,还要计算出脱去的水的分子量,两值相减才是多肽链的分子量。即:一条多肽链的分子量=氨基酸的总分子量-脱去的水的总分子量,因此本题的计算过程为:128×50-18×49=5518。 若为一条肽链时,则脱水数=肽键数= n-1 (n表示氨基酸数) 若为m条肽链时,则脱水数=肽键数= n-m (n表示氨基酸数, m表示肽链数) 答案:C 【自我诊断】

探究实验:蛋白质的性质

探究蛋白质的性质实验 一、实验目的 通过本实验定性地了解蛋白质的主要功能性质。 实验准备:鸡蛋白溶液的配制:把一只鸡蛋的两端各扎一个小孔。从上面的孔吹气,使鸡蛋白从下面的孔流入量筒中。取5毫升蛋白,放入烧杯中,加30毫升蒸馏水,即成1:6的鸡蛋白胶体溶液。 二、实验步骤与实验方法 (一)、蛋白质的盐析 实验用品:鸡蛋白溶液、饱和硫酸铵或硫酸钠溶液、试管、胶头滴管等。 实验方法: 1、取一只试管注入2毫升的鸡蛋白溶液,慢慢的沿着试管壁加入2~4毫升饱和硫酸铵溶液,便有乳白色的沉淀析出。(为什么?因为盐析作用)说明:向蛋白质溶液中加入某些浓的无机盐溶液后,可以使蛋白质凝聚而从溶液中析出,只种作用叫做盐析。 2、将2毫升的带沉淀的溶液加入6~8毫升的蒸馏水中,沉淀逐渐溶解,证明盐析是个可逆过程。 实验结论:盐析出的蛋白质仍然可以溶解在水中,说明蛋白质盐析后并不影响原来蛋白质的性质。 (二)蛋白质的变性 实验用品:鸡蛋白溶液、硫酸铜、甲醛、酒精灯、试管夹等 实验方法: 1、加热:取一只试管加入2毫升鸡蛋白,把试管放在酒精灯上加热,看到 的现象是蛋白质凝结。把凝结的蛋白质放入盛有蒸馏水的试管中,凝结 的蛋白不溶解。说明:蛋白质受热后会发生变性;受热作用下蛋白质的 变性是不可逆的。 2、加入重金属盐:取一只试管加入2毫升鸡蛋白,用滴管滴入重金属盐如 硫酸铜,试管中的蛋白质凝结。把凝结的蛋白质放入盛蒸馏水的试管中,凝结的蛋白质不溶解。说明:在重金属盐的作用下的蛋白质的变性是不 可逆的。 3、加入有机化合物:取一只试管加入2毫升鸡蛋白,用滴管加入2毫升的 甲醛溶液,看到的现象是试管中的蛋白质凝结。把凝结的蛋白质放入盛 蒸馏水的试管中,凝结的蛋白质不溶解。

蛋白质的理化性质(一)

蛋白质的理化性质(一) 关键词:蛋白质蛋白质是由氨基酸组成的大分子化合物,其理化性质一部分与氨基酸相似,如两性电离、等电点、呈色反应、成盐反应等,也有一部分又不同于氨基酸,如高分子量、胶体性、变性等。 一、蛋白质的胶体性质 蛋白质分子量颇大,介于一万到百万之间,故其分子的大小已达到胶粒1~100nm范围之内。球状蛋白质的表面多亲水基团,具有强烈地吸引水分子作用,使蛋白质分子表面常为多层水分子所包围,称水化膜,从而阻止蛋白质颗粒的相互聚集。 与低分子物质比较,蛋白质分子扩散速度慢,不易透过半透膜,粘度大,在分离提纯蛋白质过程中,我们可利用蛋白质的这一性质,将混有小分子杂质的蛋白质溶液放于半透膜制成的囊内,置于流动水或适宜的缓冲液中,小分子杂质皆易从囊中透出,保留了比较纯化的囊内蛋白质,这种方法称为透析(dialysis)。 蛋白质大分子溶液在一定溶剂中超速离心时可发生沉降。沉降速度与向心加速度之比值即为蛋白质的沉降系数S。校正溶剂为水,温度20℃时的沉降系数S20·w可按下式计算:式中X 为沉降界面至转轴中心的距离,W为转子角速度,W2X为向心加速度,dX/dt为沉降速度。单位用S,即Svedberg单位,为1×1013秒,分子愈大,沉降系数愈高,故可根据沉降系数来分离和检定蛋白质。 二、蛋白质的两性电离和等电点 蛋白质是由氨基酸组成的,其分子中除两端的游离氨基和羧基外,侧链中尚有一些解离基,如谷氨酸、天门冬氨酸残基中的γ和β-羧基,赖氨酸残基中的ε-氨基,精氨酸残基的胍基和组氨酸的咪唑基。作为带电颗粒它可以在电场中移动,移动方向取决于蛋白质分子所带的电荷。蛋白质颗粒在溶液中所带的电荷,既取决于其分子组成中碱性和酸性氨基酸的含量,又受所处溶液的pH影响。当蛋白质溶液处于某一pH时,蛋白质游离成正、负离子的趋势相等,即成为兼性离子(zwitterion,净电荷为O),此时溶液的pH值称为蛋白质的等电点(isoelectricpoint,简写pI)。处于等电点的蛋白质颗粒,在电场中并不移动。蛋白质溶液的pH 大于等电点,该蛋白质颗粒带负电荷,反之则带正电荷。各种蛋白质分子由于所含的碱性氨基酸和酸性氨基酸的数目不同,因而有各自的等电点。 凡碱性氨基酸含量较多的蛋白质,等电点就偏碱性,如组蛋白、精蛋白等。反之,凡酸性氨基酸含量较多的蛋白质,等电点就偏酸性,人体体液中许多蛋白质的等电点在pH5.0左右,所以在体液中以负离子形式存在。 三、蛋白质的变性 天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用(denaturation)。变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。 变性蛋白质和天然蛋白质最明显的区别是溶解度降低,同时蛋白质的粘度增加,结晶性破坏,生物学活性丧失,易被蛋白酶分解。 引起蛋白质变性的原因可分为物理和化学因素两类。物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。在临床医学上,变性因素常被应用于消毒及灭菌。反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。 变性并非是不可逆的变化,当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能,变性的可逆变化称为复性。例如,前述的核糖核酸酶中四对二硫键及其氢键。在巯基乙醇和8M尿素作用下,发生变性,失去生物学活性,变性后如

《蛋白质的结构和性质》教学反思

《蛋白质的结构和性质》教学反思 符华武东莞市第七高级中学 本节课的经过几次的打磨后,效果越来越好。下面是我的反思与小结。 一、教学策略运用确当,讲解蛋白质的结构时,我用电线做成的多肽链模型,通过展示和弯曲折叠变型来讲解四个层级的结构时,加上PPT上图片,让学生的学习化抽象为具体。符合认知过程知规律;提出问题引导思考,接着猜测结果,实验验证结果的实验探究策略。能激发学生的学习兴趣,并且经过这样的内化过程,学生对知识的掌握良好;视觉、嗅觉、感觉等多种感官来观察、分析、归纳知识的多种感官学习策略能让学生印象深刻。整节课老师积极引导,设疑,学生通过实验探究、交流小结不断地发现问题和解决问题来学习知识。体现教师为主导、学生为主体的教学观。 二、课堂教学流程科学流畅,这节课我是从学生熟知的氨基酸开始引入,学生先在这个基础上知道蛋白质的形成过程和官能团和化学键(肽键)特点。然后根据结构决定性质学习了两性和水解。紧接着以实验探究的方式对变性和盐析进行类比学习,学生印象深刻,配以生活相关现象的思考和讲解。然后以强酸可以使蛋白质变性,那么加入浓硝酸现象如何呢?过渡到蛋白质颜色反应的学习,再通过习题和问题方式引出另一种检验方法(灼烧)。最后小结和习题巩固。实施了学习有机物的学科流程,即“结构—性质---用途”的过程。 三、多媒体课件、蛋白质结构模型和探究实验辅助效果良好。采用多媒体课件展示,图片和结构简式直观,难点得到很好的突破。自制的结构模型能让学生很容易理解四个层级的结构。再由学生自己归纳知识总结规律,使学生学的主动轻松,记忆牢固,能全面提高教育教学质量。另外PPT的恰当使用节约了时间,加大了课堂的容量,知识点和习题的播放顺序体现了教学的条理性,帮助学生理解,逻辑思维的构建;实验让学生保持了高度的兴趣和热情,注意力集中,利用实验去发现问题和得出结论。因此整个课堂气氛非常活跃,各个小组讨论热烈,踊跃回答问题,学生的主体作用得到了充分的发挥,收到了良好的教学效果。由个别学生自己动手演示实验,去探究,去感知,使学生体验到了探究过程的乐趣,有助于使学生养成实事求是的科学态度和乐于探索自然奥秘的精神。 四、基本达到教学的三维目标要求。《化学课程标准》指出:义务教育阶段,化学课程应提供给学生最基本的化学知识、技能和方法,应结合学生实际经验和生活素材设计学习专题,形成持续的化学学习兴趣;注重培养学生积极的情感、科学态度和价值观,将科学探究作为改变学生学习方式的突破口,让学生体验探

相关主题
文本预览
相关文档 最新文档