当前位置:文档之家› 风电并网变换器直接功率控制策略

风电并网变换器直接功率控制策略

风电并网变换器直接功率控制策略
风电并网变换器直接功率控制策略

风电并网对电力系统的影响及改善措施标准版本

文件编号:RHD-QB-K4609 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 风电并网对电力系统的影响及改善措施标准版 本

风电并网对电力系统的影响及改善 措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 [摘要]:由于风电场是一种依赖于自然能源的分散电源,同时目前大多采用恒速恒频异步风力发电系统,其并网运行降低了电网的稳定性和电能质量。着眼于并网风电场与电网之间的相互影响,特别是对系统稳定性以及电能质量的影响,对大型风电场并网运行中的一些基础性的技术问题进行了研究。 [关键词]:风电场;并网;现状分析。 一、引言 风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注,并网型风力发电以其独特的

能源、环保优势和规模化效益,得到长足发展,随着风电设备制造技术的日益成熟和风电价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力发展风力发电。 风力发电之所以在全世界范围获得快速发展,除了能源和环保方面的优势外,还因为风电场本身所具有的独特优点:(1)风能资源丰富,属于清洁的可再生能源;(2)施工周期短,实际占地少,对土地要求低;(3)投资少,投资灵活,投资回收快;(4)风电场运行简单,风力发电具有经济性;(5)风力发电技术相对成熟。 自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,随着风电场规模的不断扩大,风电特性对电网的负面影响愈加显著,成为制约风电场建

三相电压型PWM整流器直接功率控制方法综述

三相电压型PWM整流器直接功率控制方法综述 https://www.doczj.com/doc/e911321418.html,/tech/intro.aspx?id=565 点击数:260 刘永奎,伍文俊 (西安理工大学自动化学院电气工程系,陕西西安710048)摘要首先介绍了三相电压型PWM整流器的拓扑结构,在此基础上,对当前应用于PWM 整流器的直接功率控制策略进行了对比分析,介绍了其实现机理和优缺点,最后,对直接功率控制在三相电压型PWM整流器中的控制技术进行了展望。 关键字 PWM整流器;直接功率控制;综述 Summary about Direct Power Control Scheme of Three-Phase Voltage Source PWM Rectifiers LIU Yongkui,WU Wenjun (Xi'an University of Technology,Xi'an Shannxi 710048 China)Abstract The topological structure of three-phase PWM rectifiers is introduced. On this basis, several DPC methods of three-phase voltage source PWM rectifiers were introduced and compared. At last, the pros原per of the control scheme development trends in three-phase PWM rectifiers is presented. Keywords three-phase PWM rectifiers;direct power control;summary 1 概述 三相电压型PWM整流器具有能量双向流动、网侧电流正弦化、低谐波输入电流、恒定直流电压控制、较小容量滤波器及高功率因数(近似为单位功率因数)等特征,有效地消除了传统整流器输入电流谐波含量大、功率因数低等问题,被广泛应用于四象限交流传动、有源电力滤波、超导储能、新能源发电等工业领域。 PWM 整流器控制策略有多种,现行控制策略中以直接电流、间接电流控制为主,这两种闭环控制策略

基于软开关技术的DCDC功率变换器的设计

基于软开关技术的DC/DC功率变换器的设计 O 引言 基于软开关技术的全桥DC/DC变换器在高频、大功率的直流变换领域,有着广泛的应用前景,它提高了系统的效率,增大了装置的功率密度。本文设计的变换器现正应用于电子模拟功率负载中,该负载系统要求能有效实现能量回馈电网,且直流高压>540V,低压直流为48~60V,因此,为升压变换。限于篇幅,本文仅对DC/DC变换器的设计进行讨论,该变换器利用高频变压器的原边漏感、功率MOSFET并联外接的电容实现零电压开关,该方案简单、高效、易实现。采用改进型移相控制器UC3879为控制核心,对变换器实现恒流输入控制,文中给出了实用的控制电路和主要参数的设计方法。试验结果证明系统性能优良、效率高、功率密度大。 1 基本原理 1.1 DC/DC变换器的电路原理 图1所示的是DC/DC功率变换器的电路原理图,功率开关管S1~S4及内部集成的二极管组成全桥开关变换器,S1及S3组成超前桥臂,S2及S4组成滞后桥臂,S1~S4在寄生电容、外接电容C1~C4和变压器漏感的作用F谐振,实现零电压开关。其中C7为隔直电容,可有效地防止高频变压器的直流偏磁。低压直流侧滤波电容为C5、C6、L1为共模电感。实时检测的输入侧电流值同指令电流值比较,得到的误差信号经过PI 环节输出,由改进型移相控制器UC3879组成的控制系统实时生成变换器的触发脉冲;系统实行恒流控制,便于在不同负载情况下考核被测试的直流电源组,同时,也利于根据试验考核系统的功率等级,实现多个相同电子模拟负载模块的并联。

经过实验测试,DC/DC功率变换器工作在软开关状态下,输出高压直流为560V时,高频变压器副边电压的峰值高达1000V。考虑在工程应用中,系统应该有足够的储备裕量,以利于长时间可靠、安全的运行,整流部分由两个完全相同的整流桥串联构成。 1.2 控制策略 对于全桥变换器的控制通常有双极性控制方式、有限双极性控制方式和移相控制方式。双极性控制方式下的功率开关管工作在硬开关状态,开关管的开关损耗很大,限制了开关频率的提高。有限双极性控制方式可使一对开关管是零电压开关,另一对开关管是零电流开关,适合选用IGBT作为开关管,能避免IGBT的电流拖尾。对于功率MOSFET,移相控制方式的拓扑结构简洁,控制方式简单,也有很多优点: 1)开关频率恒定,利于滤波器的优化设计; 2)实现了开关管的零电压开关,减小了开关损耗,可提高开关频率; 3)功率器件的电压和电流应力小。 因此,该DC/DC功率变换器的控制采用移相控制方式实现零电压开关。每个桥臂的两个开关管成180°互补导通(同一桥臂两开关管有一死区时间),两个桥臂的触发角相差一个相位,即移相角,通过调节移相角可以调节输出电压。开关管关断时变压器的原边电流给关断开关管的

风电并网稳定性开题报告

南京工程学院 毕业设计开题报告 课题名称:风力发电场并网运行稳定性研究 学生姓名:李金鹏 指导教师:陈刚 所在院部:电力工程学院 专业名称:电气工程及其自动化 南京工程学院 2012年3月5日

说明 1.根据南京工程学院《毕业设计(论文)工作管理规定》,学生必须撰写《毕业设计(论文)开题报告》,由指导教师签署意见、教研室审查,系教学主任批准后实施。 2.开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。 3.毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 4.本报告中,由学生本人撰写的对课题和研究工作的分析及描述,应不少于2000字,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。 5.开题报告检查原则上在第2~4周完成,各系完成毕业设计开题检查后,应写一份开题情况总结报告。

毕业设计(论文)开题报告 学生姓名李金鹏学号206080923 专业电气工程及其自动化指导教师姓名陈刚职称讲师所在院部电力工程学院课题来源自拟课题课题性质工程研究课题名称风力发电场并网运行稳定性研究 毕业设计的内容和意义 内容: 早期风电的单机容量较小,大多采用结构简单、并网方便的异步发电机,直接和配电网相连,对系统影响不大。但随着风电场的容量越来越大,对系统的影响也越来越明显,而风电场所在地区往往人口稀少,处于供电网络的末端,承受冲击的能力很弱,给配电网带来谐波污染、电压波动及闪变等问题。 因此以恒速恒频异步风力发电机组成的风电场为研究对象,建立风力发电系统的线性化状态方程。研究包含风电场的电力系统潮流算法,利用MATLAB及其仿真平台实现电力系统潮流计算以及机电暂态仿真。分析比较各种潮流算法的优缺点。建立简单系统的小干扰稳定分析线性化状态方程,得出了状态矩阵元素的参数表示形式。用特征值分析方法研究大型风电场接入电网后的系统小干扰稳定问题。分析风电场改变对系统小干扰稳定性的影响。采用时域仿真方法研究大型风电场接入电网后的系统暂态稳定问题。 意义: 据国际能源署统计,全球风力发电机总装机容量1999年的2000兆瓦增加到2005年的60000兆瓦,世界风能市场装机资金达450亿欧元,提供50万个就业岗位。风能这种清洁能源每年可以减少2.04亿吨的二氧化碳排放量。 随着风电装机容量的增加,在电网中所占比例的增大,风能的随机性、间隙性特点,和风电场采用异步发电机的一些特性,使稳态电压值上升、过电流、保护装置的动作误差,电压闪变、谐波、浪涌电流造成的电压降落,从而使得风电的并网运行对电网的安全,稳定运行带来重大的影响。其中最为突出的问题就是使风电系统的电能质量严重下降,甚至导致电压崩溃。风电场脱网事故频发,对电网安全运行构成威胁,所以进行风力发电并网运行稳定性研究是非常必要的。

功率控制

开环功控的目的是提供初始发射功率的粗略估计。它是根据测量结果对路径损耗和干扰水平进行估计,从而计算初始发射功率的过程。比如: 上行链路的开环功控的目的是调整物理随机接入信道的发射功率。UE在发射随机接入之前,总要长时间的测量CPICH的接收功率,以去掉多径衰落的影响。 根据系统消息中的导频功率、RTWP和下行导频实际接受功率来计算Preamble的功率 Preamble逐步抬升功率,直到被网络受到并回复 然后手机对最后一次Preamble功率进行一定修正以后在PRACH上发送RRC Connect Reque st网络收到RRC Conne ct Request消息后根据FA CH功率发送RRC Connect Setup 在该消息中SRNC为通知UE上行链路初始使用PCP(Power Control Preamble) 闭环功率控制的目标是使接收信号的SIR达到预先设定的门限值。在WCDMA中,上行链路和下行链路的闭环功率控制都是 由接收方NODEB 或UE 通过RAKE接收机产生的信号估计DPCH的功率,同时估计当前频段的干扰,产生 SIR估计值,与预先设置的门限相比较。如果估计值大于门限就发出TPC命令“1”(升高功率);如果小于门限就发出TPC命令“0”(降低功率)。接收到TPC命令的一方根据一定的算法决定发射功率的升高或降低。 外环功率控制目的是动态地调整内环功率控制的门限。因为WCDMA系统的内环功率控制是使发射信号的功率到达接收端时保持一定的信干比。然而,在不同的多径环境下,即使平均信干比保持在一定的门限之上,也不一定能满足通信质量的要求(BER或FER或BLER)。因此需要一个外环功率控制机制来动态地调整内环功率控制的门限,使通信质量始终满足要求。RNC或UE的高层通过对信号误码率(BER)或误块率(BLER)的估算,调整快速功率控制中的目标信噪比(SIR tar get),以达到功控的目的。由于这种功控是通过高层参与完成的,所以叫做外环功控。当收到的信号质量变差,即误码率或者误块率上升时,高层就会提高目标信噪比(SIR target)来提高接收信号的质量。常规外环功率控制算法采用与内环功率控制相近似的方式 上行内环功率控制频率为1500次/秒。物理专用控制信道DPCCH采用的无线帧长度为10ms,每帧有15个时隙,每个时隙都有功率控制比特,这样每10ms会对发射功率调整一次,每秒的调整次数为:15次/(10ms/1s)=1500次/秒 外环功控由RNC对基站发送Sir target作为内环功控的参照目标,SIR tar get的改变取决于CRC校验以及Bler tar get(外环功控的参照目标)所以外环工控的最高频率是1/TTI,TTI为10ms时是100。

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

三相功率变换器

逆变器并网电流环控制 1连接电抗器设计 图1并网逆变器主电路图 并网逆变器主电路图如图1所示。滤波电感参数的计算过程如下: 假设在t k 时刻起始的一个开关周期内数值近似保持不变为U k ,电感电流平均值为I Lk ,电流纹波增加量为+L I ?和减小量-L I ?相等,均为L I ?,桥式逆变电路输出电压波形为u i ,占空比为D ,直流电压为V DC ,开关周期为T s ,则t k 即刻起始的一个开关周期内逆变器电压和电感电流波形如图2所示。 图 2逆变器电压和电感电流波形 由图可知,当k k s t t t DT <<+时,+-= dc k L s M V U I DT L ???;当+k s k s t DT t t T <<+时,-=(1)k L s U I D T L ??-。 化简得: dc k s s M U U DT T L L ??=? 2(1)()dc dc L s s M V M V I D D T D D T L L ???=-=- 当占空比D=0.5时且V dc 最大时,L I ?达到最大 则 V

max max 4dc s L M V T I L ???= max max 4dc s L M V T L I ??≥ 在本设计中取直流侧输入电压最大值_max 900V dc V =;10KHz s f =;7.58A o I = ; max =15% 1.61L o I A ?=;=6.89mH L ;=7mH L 。 2电流环设计与仿真 同步旋转坐标系下,逆变器的交流侧电压表达式为 d d gd q q q gq d di v L u i dt di v L u i dt ωω? =-++??? ?=-+-?? 考虑到需要对逆变器的有功无功进行解耦控制,因此在本设计中采用基于d 轴电网电压定向的控制策略,则逆变器交流侧电压表达式可变为 d d gd q q q d di v L u i dt di v L i dt ωω? =-++??? ?=--?? 带解耦的电流闭环控制框图如图3所示。可通过电流状态反馈来实现两轴电 流间的解耦控制。 图3电流闭环控制框图 电流环的参数计算 考虑主电路部分d 轴电流解耦后的传递函数和q 轴电流的控制框图如图4所示。

风力发电并网方式的

科技信息 SCIENCE&TECHNOLOGYINFORMATION2013年第7期0引言 当今石化能源的日益匮乏,社会的发展对能源的需求不断增加。 风能作为一种清洁可再生能源越来越受到世界各国的重视。近年来风 力发电在国内外都得到了突飞猛进的发展。但由于风能的随机性和不 稳定性,在其发展的过程中也出现很多问题,其中风力发电并网难最 为突出。风电并网技术成为风力发电领域研究的重难点问题。如何将 并网瞬时冲击电流降低到最小规范值,进一步保证并网后系统电压稳 定是当今研究的重点方向。本文对并网技术问题进行相关研究,提出 并网运行方式并进行分析比较。1风力发电并网运行的分析随着风力发电的快速发展,风电场的并网已成为必然的途径。从风电问世以来,风力发电经历了独立运行方式、恒速恒频运行方式、变速恒频运行方式。当今变速恒频发电系统已成为主流,但风力发电并 网仍是热点的研究话题。 不管是哪一种发电类型,并网总是以保证电力系统稳定性为基本 原则。风力发电相比于火力发电和水力发电,由于其不稳定性需要更 精确的并网控制技术。并网运行时,需满足:(1)电压幅值与电网侧电 压幅值相等;(2)频率与电网侧频率相同;(3)电压相角差为零;(4)电压 波形及相位与电网侧的电压波形及相位保持一致。这样保证了并网时 冲击电流理想值为零。否则,若并网产生很大的瞬时冲击电流,不仅损 坏电力设备,更严重的是使电力系统发生震荡,威胁到电力系统稳定 性。 从大的方向看,风力发电系统并网分为恒速恒频风力发电机并网 和变速恒频风力发电机并网。恒速恒频并网运行方式为风力发电机的 转子转速不受风速的影响,始终保持与电网频率相同的转速运行。虽 然其结构简单、运行可靠,但是对风能的利用率不高,机械硬度高,而 且发电机输出的频率完全取决与转速,如控制不好,并网时会发生震 荡、失步,产生很大的冲击电流。所以恒速恒频系统已逐渐退出人们的 视线。随着电力电子技术的日益成熟,以变速恒频并网运行方式取而 代之。变速恒频风力发电并网系统是发电机转速随着风速的变化而变 化,系统通过电力电子变化装置,使机组输出的电能频率控制在与电 网频率一致。变速恒频并网方式减少了机组的机械应力,充分的利用 风能源,使发电效率大大提高;并网时通过精确合理地控制电力电子 变换器,使得并网更加稳定,降低系统因冲击电流过大使电网电压降 低从而破坏电力系统稳定性。2变速恒频双馈发电机并网 目前,并网型的变速恒频风力发电机组主要采用双馈发电机和永 磁同步发电机。 变速恒频双馈发电机的并网原理图如图1所示。 双馈发电机并网的工作原理为当风速变化时,发电机的转子励磁回路由双PWM 变频器控制转子励磁电流的频率,转子转速与励磁电流频率合成定子电流频率。调节励磁电流频率,使定子电流频率始终与电网频率保持一致。电机转动频率、定、转子绕组电流频率的关系式为:f 1=pn 60±f 2式中:f 1为定子电流频率,f 2为转子电流频率,n 为转子转速。双馈发电机既可以同步运行也可以异步运行,通过精确地控制双PWM 变频器,可以实行“柔性并网”,大大提高并网的成功率。一般双馈发电机 并网的结构相对复杂,大多采用多级齿轮箱双馈异步风力发电机组。 当自然风速使得风力发电机转子转速频率与电网频率相同时,风力发 电机同步运行;当风力发电机的转速小于或者大于电网频率时,风力 发电机异步运行,通过双向变频器实现发电机组转子与电网的功率交 换,保证输出频率与电网侧保持一致。在异步运行程中,不仅有励磁损 耗,而且还要从电网吸收无功功率,所以需在并网侧安装无功补偿器。图1变速恒频双馈发电机的并网原理图3直驱式永磁同步发电机并网变速恒频永磁同步发电机并网原理图如图2所示。图2变速恒频永磁同步发电机并网原理图 直驱式永磁同步发电机并网的原理为当风速改变时,发电机输出不同频率的交流电,经过不可控整流电路将交流电变成直流电,再经过DC/DC 直流斩波让直流电压幅值保持压稳定。以逆变器为核心,采用IGBT 作为开关器件构成全桥逆变电路,将整流器输出的直流电逆变成与电网侧电压相角、幅值、相位、频率相同的交流电。逆变有时会产生一定的电压谐波污染和冲击电流,这时必须有效(下转第92页)风力发电并网方式的研究 张伟亮潘敏君韦大耸陈富玲 (贺州学院机械与电子工程学院,广西贺州542800) 【摘要】通过分析风力发电系统并网方式的原理,针对风力发电并网难的问题,提出利用直驱式永磁同步发电机实现风力发电并网。直驱式永磁同步发电机并网比传统的恒速恒频并网方式更加稳定。 【关键词】风力发电;并网运行;恒速恒频;变速恒频 Study on wind Power Grid-connected Mode ZHANG Wei-liang PAN Min-jun WEI Da-song CHEN Fu-ling (School of Mechanical and Electronics Engineering,Hezhou Univ.Hezhou Guangxi,542800,China ) 【Abstract 】By analyzing the theory of grid-connected wind farms,the paper presents using direct-driven permannet magnet synchronous generator to achieve grid-connerted wind power according to the problem in wind power grid-connected difficult.Direct drive permanent magnet synchronous generator than traditional way of constant speed constant frequency grid interconnection is more stable. 【Key words 】Wind power generation ;Parallel operation ;Constant speed constant frequency ;Variable speed constant frequency ※项目基金:此文为贺州学院大学生创新项目研究成果,项目编号2013DXSCX08。 作者简介:张伟亮(1982—),男,硕士,讲师,从事电气工程及其自动化的教学及高压设备的生产研发。 潘敏君,男,贺州学院电气工程及其自动化专业在读学生 。 ○本刊重稿○4

PWM整流器预测无差拍直接功率控制_张永昌

第17卷第12期2013年12月电机与控制学报 Electri c Machines and Control Vol.17No.12 Dec.2013 PWM整流器预测无差拍直接功率控制 张永昌,谢伟,李正熙 (北方工业大学电力电子与电气传动北京市工程研究中心,北京100144) 摘要:针对PWM整流器采用直接功率控制时存在的稳态纹波大、采样率高和开关频率低等问 题,结合占空比调制和无差拍控制的概念提出一种改进的直接功率控制方法。通过分析不同电压 矢量对功率变化的影响,提出在每个控制周期内同时作用一个非零矢量和一个零矢量,其中非零矢 量从传统的矢量表直接功率控制获得。该非零矢量的优化作用时间通过对有功功率实行预测无差 拍控制而解析得到。搭建了两电平PWM整流器平台对传统直接功率控制和预测无差拍直接功率 控制进行对比研究。仿真和实验结果表明,相比传统基于矢量表的直接功率控制,预测无差拍直接 功率控制能够显著减小功率脉动和电流谐波,而且动态响应迅速,简单易实现,是一种性能优良的 功率控制方法。 关键词:PWM整流器;直接功率控制;无差拍控制;预测控制 中图分类号:TM46文献标志码:A文章编号:1007-449X(2013)12-0057-07 Predictive deadbeat direct power control of PWM rectifier ZHANG Yong-chang,XIE Wei,LI Zheng-xi (Power Electronics and Motor Drive EngineeringResearch Center of Beijing, North China University of Technology,Beijing100144,China) Abstract:To solve the problems of high steady ripple,high sampling frequency and low switching fre- quency for direct power controlled(DPC)pulse width modulation(PWM)rectifier,an improved DPC is proposed by combining the concept of duty cycle control and deadbeat control.After analyzing the influ- ences of various voltage vectors on power slopes,it is suggested to apply one non-zero voltage vector and one zero voltage vector simultaneously during one control period.The non-zero vector was obtained from conventional switching-table-based DPC and its duration was obtained based on the principle of deadbeat control of active power.A two-level PWM rectifier platform was established to comparatively study the performances of conventional DPC and the proposed predictive deadbeat DPC.Both simulation and exper- imental results prove that,compared to conventional DPC,the predictive deadbeat DPC is able to reduce both power ripples and current harmonics significantly and features quick dynamic response with simple implementation.Hence,the proposed predictive deadbeat DPC is an excellent power control method with good performances. Key words:PWM rectifier;direct power control;deadbeat control;predictive control 收稿日期:2013-01-12 基金项目:国家自然科学基金(51207003,51347004);北京市科技新星计划(xx2013001) 作者简介:张永昌(1982—),男,博士,副教授,研究方向为电力电子与电机控制; 谢伟(1988—),男,硕士研究生,研究方向为PWM整流器; 李正熙(1955—),男,博士,教授,研究方向为电气传动和智能交通。 通讯作者:张永昌 DOI:10.15938/j.emc.2013.12.009

多电平变换器的拓扑结构和控制策略

0 引言 多电平变换器的概念自从A.Nabael在1980年的IAS年会上提出以后,以其独特的优点受到广泛的关注和研究。首先,对于n电平的变换器,每个功率器件承受的电压仅为母线电压的1/(n-1),这就使得能够用低压器件来实现高压大功率输出,且无需动态均压电路;多电平变换器的输出电压波形由于电平数目多,使波形畸变(THD)大大缩小,改善了装置的EMI特性;还使功率管关断时的d v/d t应力减少,这在高压大电机驱动中,有效地防止了电机转子绕组绝缘击穿;最后,多电平变换器输出无需变压器,从而大大减小了系统的体积和损耗。因此,多电平变换器在高电压大功率的变频调速、有源电力滤波装置、高压直流(HVDC)输电系统和电力系统无功补偿等方面有着广泛的应用前景。 1 多电平变换器的拓扑结构 国内外学者对多电平变换器作了很多的研究,提出了不少拓扑结构。从目前的资料上看,多电平变换器的拓扑结构主要有4种: 1)二极管中点箝位型(见图1); 2)飞跨电容型(见图2); 3)具有独立直流电源级联型(见图3); 4)混合的级联型多电平变换器。 图1 二极管箝位型三电平变换器 图2 飞跨电容型三电平变换器

图3 级联型五电平变换器 其中混合级联型是3)的改进模型,它和3)的结构基本上相同,唯一不同的就是3)的直流电源电压均相等,而4)则不等。从图1至图3不难看出这几种拓扑的结构的优缺点。 二极管箝位型多电平变换器的优点是便于双向功率流控制,功率因数控制方便。缺点是电容均压较为复杂和困难。在国内外这种拓扑结构的产品已经进入了实用化。 飞跨电容型多电平变换器,由于采用了电容取代箝位二极管,因此,它可以省掉大量的箝位二极管,但是引入了不少电容,对高压系统而言,电容体积大、成本高、封装难。另外这种拓扑结构,输出相同质量波形的时候,开关频率增高,开关损耗增大,效率随之降低。目前,这种拓扑结构还没有达到实用化的地步。 级联型多电平变换器的优点主要是同数量电平的时候,使用二极管数目少于拓扑结构1);由于采用的是独立的直流电源,不会有电压不平衡的问题。其主要缺点是采用多路的独立直流电源。目前,这种拓扑结构也有实用化的产品。 2 多电平变换器的控制策略 从目前的资料来看,多电平变换器主要有5种控制策略,即阶梯波脉宽调制、特定消谐波PWM、载波PWM、空间矢量PWM、Sigma-delta调制法。 2.1 阶梯波脉宽调制[1][2][3] 阶梯波调制就是用阶梯波来逼近正弦波,是比较直观的方法。典型的阶梯波调制的参考电压和输出电压如图4所示。在阶梯波调制中,可以通过选择每一个电平持续时间的长短,来实现低次谐波的消除。2m+1次的多电平的阶梯波调制的输出电压波形的傅立叶分析见式(1)及式(2)。消除k次谐波的原理就是使电压系数b k为0。这种方法本质上是对做参考电压的模拟信号作量化的逼近。从图4中不难看出这种调制方法对功率器件的开关频率没有很高的要求,所以,可以采用低开关频率的大功率器件如GTO来实现;另外这种方法调制比变化范围宽而且算法简单,控制上硬件实现方便。不过这种方法的一个主要缺点就是输出波形的谐波含量高。 图4 九电平阶梯波输出电压波形 v t(t)=b n sin nωt(1) b n=[V cos nα1+2V cosnα1+……+jV cos nαj+……+mV cosnαm](2) 2.2 多电平特定消谐波法[4][5][6] 多电平的特定消谐波法也被称作开关点预制的PWM方法。这种方法是建立在多电平阶梯波调制方法的基础之上的。这种方法的原理就是在阶梯波上通过选择适当的“凹槽” 有选择性地消除特定次谐波,从而达到输出波形质量提高和输出THD减小的目的。这种方法的消谐波和阶梯波的消谐波一样,唯一不同的就是输出电压波形的傅立叶分析后的系数 b n有所不同。现以五电平的特定消谐波的一个输出电压波形(如图5所示)来分析傅立叶分解

风力发电的并网接入及传输方式

风力发电的并网接入及传输方式 摘要:在环境保护之中,风力发电是其中节约资源最为有效地方式,虽然现今一直处在低谷的时期,但是未来的发展前景十分广阔,风力发电技术也在逐渐的趋于成熟,世界装机容量以及发电量也在逐渐的加大,日后在发电市场也逐渐的会占有更大的比例。本文主要就是针对风力发电的并网接入及传输方式来进行分析。 关键词:风力发电;并网接入;传输方式 1、我国风力发电及并网发展情况 相关的数据充分的表明,2010年的中国风电累积装机容量达到了4182.7万KW,在超过了美国之后,已经跃居成为世界第一装机大国。但与此同时,风电的发电量只有500亿千瓦的时候,依据要比美国低,并网容量也只有吊装容量的三成左右,要比国际水平低出很多,这在很大程度之上严重的影响到了效益水平与风电效率的提高。中国的风电行业的风电行业的发展速度也是十分的迅猛,基本上是用到了5年的时间最终才实现了欧美发达国家将近30年的发展进程,在产业逐渐进步市场规模快速发展的同时,其面临的问题与挑战也逐渐的凸显出来。首先是中国风电装备的质量水平,其中包括了发电能力以及设备完好率等等均有待提高,其次就是吊装容量和并网容量之间的差别,和国际先进水平相比之下,还存在着较大差别。怎么从装机大国转变成为风电的利用大国,也就成为了我国目前面临的最大问题。 2、风电机组及其并网接入系统 2.1、同步发电机 在该结构之中,允许同步发电机以可变的速度运行,可以产生频率与可变电压的功率。以此来作为在并网发电的系统之中广泛应用的同步发电机,在运行的时候,不仅仅可以输出有功功率,而且还可以提供无功功率,且频率也是十分的稳定。对于由风力机驱动的同步发电机和电网并联运行的时候,就随机可以采用自动准同步并网以及自同步并网的方式。因为风电的电压、频率的不稳定性,一般就会使得应用前者并网相对比较困难;然而对于后者来说,因为并网的装置比较简单,最为常见的结构就是通过AC—DC—AC的整流逆变方式与系统进行并网,其原理结构如图1所示。 图1同步发电机并网结构 2.2、笼型异步发电机 我们由发电机的特点可以知道,为了电网并联,就务必要在异步发电机与风

风电并网技术标准

风电并网技术标准 (征求意见稿)编制说明 1 第一章“范围”的说明 第1.0.3 条对于目前尚不具备低电压穿越能力等技术要求且已投运的风电场及风电机组,在影响电网安全稳定运行情况时,须参照本标准实施改造。第三章“术语”的说明 1、第3.0.3 条本技术标准提出了风电有效容量的概念。根据统计结果,东北电网已投运风电场出力在40%装机容量以下的概率达到了95%;西北电网中甘肃酒泉地区风电场(总装机为 5160MW)出力在80%装机容量以下的概率达到了95%;内蒙电网的风电出力在60%装机容量以下的概率达到了95%;张家口地区风电场出力在地区风电装机容量75%以下的概率为95%;张家口某一风电场(装机容量为30MW)出力在风电装机容量90%以下的概率为98%。风电有效容量应根据风电的出力概率分布,综合考虑系统调峰和送出工程,使系统达到技术经济最优来确定。风电有效容量的确定考虑因素较多,计算复杂,根据对东北、西北、华北地区的研究,暂提出风电场有效容量和风电基地有效容量的选取建议值:对于单个风电场而言,根据风电场出力特性,在某一出力值以下的累积概率达到95%~100%时,建议选择这一出力值为风电场有效容量。 2 对于风电基地而言,根据风电基地出力特性,在某一出力值以下的累积概率达到90%~95%时,建议选择这一出力值为风电基地有效容量。 2、第3.0.4 条和第3.0.8 条关于“并网点”和“公共连接点”的定义。 图1 中以1 个接入220kV 电网的风电场为例进行“并网点”和“公共连接点”的说明。图1“并网点”和“公共连接点”图例 本定义仅用于本技术标准,与产权划分无关。第四章“风电场技术规定”的说明 1、第4.1 节风电场接入系统 66kV 220kV 并网点公共连接点 3 本技术标准提出用风电有效容量来选择风电场送出线路导线截面和升压变容量,使系统达到技术经济最优。 2、第4.2 节风电场有功功率风电场有功功率控制目的: 在电网特殊情况下限制风电场输出功率控制风电场最大功率变化率 3、第4.2.2 条本技术标准提出了在风电场并网以及风速增长过程中,每分钟有功功率变化率不超过2%~5%的要求。 本条的制定参考了德国、丹麦、英国等国家相关技术规定:德国要求每个风电场必须具备一定的有功调节能力,可运行在最小出力和最大出力之间的任何一点,可按每分钟1%额定功率的变化速率改变出力。 丹麦要求风电场可将出力约束在额定功率的 20%~100%范围内的任意点上,出力调节速度在1%~10%额定功率/分钟。英国要求风电场可将出力维持在任意设定的运行点上。根据对东北、西北、华北地区的研究,目前系统调频问题并不突出,不是制约风电发展的主要因素,但是考虑到风电装机规模的不断增长,借鉴国外风电发展的经验,应对风电场有功功率变化率提出要求。 根据甘肃目前运行情况,在甘肃现有风电装机648.1MW 情况下, 1 分钟最大爬坡速率值为22.5MW,每分钟有功功率变化率为3%,可

风电标准体系及并网标准

风力发电标准化组织机构 根据《中华人民共和国标准化法》,我国标准分为四级层次,即国家标准、行业标准、地方标准和企业标准,分别由相关的政府部门主管,企业标准由企业进行颁布。对于 电力行业,国家标准分为工程建设标准、产品类标准,分别由住房和城乡建设部、国家标准化管理委员会来颁布;行业标准由国家能源局进行颁布,电力标准包括DL 标准和NB 标准。 中国电力企业联合会(以下简称中电联)作为具体的标准化管理机构,负责相关的专业化标准委员会组织体系的建设,并对所有标准的计划、管理、执行进行统一管理,与国际惯例一致,设置了专业标准化技术委员会。同时,指导企业标准化工作的开展,指导企业建立标准体系,组织标准化联合行为的确定工作。到目前为止,电力行业的专业标准化委员会有37个,中电联代为管理的全国电力标准化委员会有13个,担任2个能源行业专业标准化工作组组长单位、智能电网工作组组长单位、全国光伏标准化工作组并网组长单位,同时指导特高压交流标准化工作委员会。其中,能源行业专业标准化技术委员会工作组组长单位主要涉及到风电标准化技术委员会下设的运行组和并网组。组织机构相对健全,覆盖了水电、火电、风电、 光伏、核电等发电领域,同时也涉及到输电、变电、配电、用电等电网领域。 根据国家能源局加强风电标准化工作的管理规定,成立了三级组织:能源行业风电标准建设领导小组、能源行业风电标准建设专家咨询组、能源行业风电标准化技术委员会(TC)。领导小组的职责主要是研究我国风电标准建设的政策,审查我国风电标准建设规划,协调督查技术问题。由国家能源局任组长单位,国家标准化管理委员会任副组长单位,有关政府部门、电力行业、机械行业的个别专家领导担任成员。专家咨询组主要由院士和专家构成,主要研究风电标准化技术问题和对重大问题提供咨询决策。TC 由政府部门、发电企业、电网企业、制造企业共69名人员构成,包括设计、施工、安装、运行、科研等方面的专家。 标准化技术委员会在标准化工作中起着非常关键的作用,所有标准的通过、技术水平的确定,都要通过标准化技术委员会最终作技术把关和技术归口。能源行业风力发电标准化技术委员会下设设计、施工、运行、并网管理、机械设备、电器设备以及气象观测7个组。 风电并网标准体系 目前,风电标准体系有255项标准构成。风电并网组下面分三大类:风电场接入电网、运行调度管理、入网检测,共18项标准。 风电场接入电网包括大型风电场并网设计技术规范,风电场接入电力系统设计内容深度规定,接入电力系统技术规定,电力系统接纳风电能力的评估、并网管理规定等,这些是风电场并网的基本技术要求。 运行调度管理包括功率预测、调度管理、无功配置及 ■ 中国电力企业联合会标准化管理中心副主任 刘永东 23 风电标准体系及并网标准 中国电力企业管理

风电并网技术标准(word版)

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

国外风电并网规则

国外风电并网规则 一、风电并网 目前,越来越多的风电正在接入电网,大量的风电接入电网多带来一系列的问题。很多风电场都处在偏远地区,那里电源少负荷低,风电并网处的电网较弱。当高比例的风电接入相对较弱的电网时,会影响系统和风场的安全稳定性。针对风电比例增加带来的一系列负面问题,不同国家采取了不同的错失,欧洲的风电发展比较早,在风电并网方面有了一套比较成熟的标准和规范。 二、欧美国家风电并网规则 (一)欧洲主要国家并网规则 欧洲风电发展的成就世人共睹。根据欧洲风能协会的数据,截至2009年年底,欧盟27国风电累计装机容量达到7476.7万千瓦,约占全球风电装机总量的一半,其中海上风电累计装机容量206.1万千瓦,陆上风电装机容量7270.6万千瓦。风电装机容量约占其全部发电装机容量的9.1%,发电量约占其全部发电量的3.5%。风电已连续两年成为欧盟新增发电装机中比重最大的电源。 尽管随着风电规模的扩大,一些欧洲国家纷纷修订了可再生能源法,许多国家已不再实行风电的全额收购制度,但欧洲风电快速发展的势头不减,欧盟提出了宏大的海上风电发展计划,部分国家也提出了更高的风电发展目标。经过多年发展,欧洲风电已从分散开发走向集中开发,风电并网已从配电网向输电网发展。欧洲成功实现大规模风电并网和有效利用,其跨国互联电网、风电并网管理规范、风电并网运行管理及相关政策法规、统一的电力市场及灵活电价机制都发挥了重要的作用[1]。 严格的并网技术标准是实现风电大规模入网的基础。德国、西班牙、丹麦等国执行的是具有法律约束力的强制性的并网导则。由于欧洲各国风电发展的情况不同,不同国家制定了不同的风电并网标准。但随着风电的发展,不一致的风电并网标准已给风机制造商和风电开发商带来了很大麻烦。为此,欧洲风机制造商、风电开发商、监管机构等共同组成了欧洲并网导则工作组,正在研究制定统一的欧洲并网标准。 (1)西班牙并网规则 西班牙风电还有一个与欧洲不同的特点即风能资源与用电负荷地域不匹配,其风能资源主要分布在北部和南部的沿海区域,但电力负荷最大的地区是中部首都附近,其次是东部的巴塞罗那附近,电网需要跨地区输送风电。 为解决风电入网对电网的影响以及跨地区输送电网问题,西班牙主要采取了以下几项技术措施: 1、通过硬件建设,改进电网负荷平衡能力,如吸纳更多的气电和水电;通过软件建设,提高电网的调度能力和水平。 2、制订风电入网标准,促进风机制造技术的进步。西班牙一方面对风电采取相对于煤、油、气、核电宽松的入网条件,但另一方面又不是无限制地宽松,而是制订风电并网技术标准,迫使风机制造企业提高技术水平,尤其是大大提高了风机控制系统水平。严格的并网技术标准不仅使新安装风机采用新技术和新控制系统,也迫使风电场为老旧风机更换新控制系统,以满足并网技术要求从而保证

相关主题
文本预览
相关文档 最新文档