当前位置:文档之家› 水热法制备纳米氧化铈粉体

水热法制备纳米氧化铈粉体

水热法制备纳米氧化铈粉体
水热法制备纳米氧化铈粉体

水热法制备纳米氧化铈粉体

摘要:CeO2是一种价廉且用途极广的工业材料,具有广阔的市场应用前景。近年来,氧化铈纳米材料的形貌、尺寸控制以及性能应用方面已成为研究的热点之一。本论文对氧化铈进行结构、形貌以及光学性能的表征,分析了固相法,液相法,气象法制备纳米材料的优缺点并采用水热法制备出氧化铈纳米材料。

关键词:纳米CeO2;水热法;制备方法

Hydrothermal synthesis ,Preparation of nano-sized CeO2

particles

Abstract:Ceria is a cheap and widely used industry material, which has a broad market applied prospect. In this paper, the preparation, characterization and optical properties of as ceria nanomaterials have been studied,the advantage and disadvantage of solid method ,liquid method and gas method have been contrasted and ceria nanomaterials were prepared by hydrothermal method.

Keyword:nanometer CeO2;Hydrothermal synthesis;preparation method

随着纳米技术的不断进步,纳米CeO2由于粒径比较小,具有高的表面效应、量子尺寸效应、小尺寸效应以及宏观量子隧道效应等特性,因此产生了与传统材料不同的许多特殊性质,成为近年来材料科学中研究的热点。CeO2作为稀土家族中一种重要的化合物,可用于汽车尾气净化催化材料[1]、高温氧敏材料[2]、固体氧化物燃料电池(SOFC)电极材料[3][4]、化学机械抛光(CMP)研磨材料[5]等行业,对人类改善工作条件、提高生活质量、保障身体健康,节约能源、加强环境保护具有重要的现实意义,并具有显著的经济效益和社会效益。

1 氧化铈纳米材料概述

1.1 氧化铈的结构和性质

由于Ce具有独特的4f 层电子结构,氧化铈属于立方晶系,是面心立方结构,具有萤石结构。所属点群为Fm3m点群。从热动力学方面讲,其(111)面是最稳定的。CeO2晶胞中的Ce4+ 按面心立方阵排列,O2-占据所有的四面体位置,每个Ce4+被8个O2-包围,而每个O2-则与4个Ce4+配位,如下图所示。氧化铈经高温(T>950°C)还原后,CeO2转化为具有氧空位、非化学计量比的CeO2-x 氧化物(0

CeO2[7],因而CeO2具有优越的储存和释放氧功能及氧化还原反应能力。

图1 CeO2的晶体结构

氧化铈为淡黄色粉末,熔点为2600°C,在常温下比较稳定,溶于硫酸;在硝酸中加过氧化氢也能溶解;溶于盐酸时逸出氯;不溶于稀酸(稀硫酸除外)和水。CeO2的热稳定性较高,800°C 时可保持晶型不变,在980°C 时失去一部分氧原子。

1.2 氧化铈纳米材料的应用前景

(1)氧化铈在汽车尾气催化中的应用

近年来,随着汽车数量的增多,环境污染逐渐加重,所以许多国家对汽车尾气的排放进行了严格的控制,在此背景下产生了三效催化剂。通常三效催化剂是由起催化作用的贵金属活性组分、包括CeO2在内的催化转化助剂和用于支撑活性组分的载体组成。在这催化方面的应用中,CeO2主要起到两方面的作用:①良好的储氧与放氧功能;②促进贵金属的反应活性与分散。氧化铈属于立方晶系,具有萤石结构,使得晶格结构排列不紧密容易形成氧空位,当周围环境氧压力发生变化时,促使阳离子化合价在Ce3+与Ce4+之间的相互转化,从而导致晶格结构中氧原子数目发生变化,进而具备了储氧与放氧功能。

(2)氧化铈微纳米材料在化学机械抛光中的应用

稀土氧化物CeO2是一种性能优异的抛光粉,其特点是抛光速率高,对材料的去除率高,被抛光表面粗糙度和表面微观波纹度较小,颗粒硬度低,对被抛光表面损伤较弱。CeO2抛光浆料广泛应用于玻璃精密抛光、超大规模集成电路SiO2介质层抛光和单晶硅片抛光等。CeO2抛光浆料区别于传统抛光活性强的抛光浆料都是强酸,它在碱性抛光环境下是两性的,能同时吸附阳离子和阴离子[8],故有更好的抛光性能。

(3)氧化铈纳米材料在固体燃料电池中的应用

固体氧化物燃料电池(SOFC)是一种直接将化学能高效地转化为电能的能源

转化装置,它具有高效、环境友好、适用燃料范围广、寿命长等一系列独特的优点。纳米CeO2应用于SOFC 电极中具有以下优点:①CeO2是一种混合型导体,具有较高的电子一离子混合导电能力;②CeO2易于储氧、传输氧,可以协助O2-从电解质向阳极传递;③CeO2的离子电导大于YSZ,可以将阳极氧化反应扩展到TPB 面(气相一电极催化剂一电解质三者的界面)以外,减少界面阻力,加速氧化反应速度。这些特点决定了纳米CeO2可望成为一种新型的燃料电池阳极材料应用于SOFC 电极,加快甲烷氧化速率,并解决CH4在阳极上的积炭问题,可以作为一种替代YSZ 的电解质新材料。

(4)氧化铈纳米材料在发光材料方面的应用

CeO2具宽带强吸收能力,对紫外线的吸收极强,而对可见光却几乎不吸收,透过性好,可用于涂料、化妆品、胶片和塑料等产品上。研究表明,纳米CeO2对紫外光吸收性能优于常用的TiO2,是更好的紫外吸收剂。近年来,随着纳米技术的不断发展,CeO2在发光材料上的应用也越来越受到研究者的重视。

2 纳米CeO2的制备方法及其特性

目前国内外对纳米CeO2的制备尚处于实验室的研究阶段,制备纳米CeO2方法归纳起来主要有:固相法、液相法和气相法[9]。

固相法一般是把金属氧化物或其盐按照配方充分混合,研磨后进行煅烧,最终得到金属及金属氧化物的超细粒子。一般认为固相反应过程经历四个阶段:反应物扩散-化学反应-产物成核-晶体生长。当成核速度大于生长速度时,有利于生成纳米微粒;如果生长速度大于成核速度,则形成块状晶体。固相法所用设备简单、操作方便,但所得粉体往往纯度不够,粒度分布也较大,适用于要求比较低的场合。

气相法分为物理气相法与化学气相法。气相法是指两种或两种以上的单质或化合物在气相中发生化学反应生成纳米级新化合物的方法。一般而言,气相法所得粉体的纯度较高、团聚较少、烧结性能也较好,其缺点是设备昂贵、产量较低、不易普及。

液相法主要是在液相体系中通过控制液相化学反应的条件,如反应物浓度、反应温度与时间、搅拌速度、水解速度、共沉淀等形成前驱体的方法。主要有沉淀法、溶胶- 凝胶法、水热法、微乳液法、电化学法等。液相法介于气相法和固相法之间,与气相法相比,液相法具有设备简单、无需高真空等苛刻物理条件、易放大等优点,同时又比固相法制备的粉体纯净、团聚少,很容易实现工业化生产,是目前制备纳米粒子最常用的方法。液相法主要有沉淀法、溶胶- 凝胶法、水热法、微乳液法、电化学法等。

3 水热法制备氧化铈

3.1水热法简介

水热法是在密封的压力容器中,以水或其他液体作为介质,在高温高压等条件下制备优质氧化物或化合物粉体的一种湿化学合成方法。水热法主要有温差法、降温法(或升温法)及等温法这几种形式。在水热条件下,水既是溶剂又是矿化剂,可以作为一种化学组分起作用并参加反应,同时还可作为压力传递介质,通过参加渗析反应和控制物理化学因素等,实现无机化合物的形成和改性。由于水热反应是在密闭的高温高压溶液中进行的,因此,可得到其它方法难以获取的低温同质异构体,实现其它方法难以获得的物质的某些物相。和其他的合成方法相比,水热法合成的晶体具有纯度高、缺陷少、热应力小、质量好等特点。水热法制备的粉体具有晶体发育完整、粒径小且分布均匀的特性,而且原料也比较便宜[10]。

3.2纳米CeO2的实验制备

水热法可直接制备纳米CeO2粉体,因此,近年来随着科学技术发展对材料品质和性能的要求越来越高,水热合成技术得到了广泛采用。本文即通过水热法制备纳米氧化铈,以期获得大小粒度可控的纳米材料(实验部分数据引用崔美云,氧化铈纳米材料的水热法合成及表征[11])。以Ce(NO3)3.6H2O 作为铈源,CTAB 作为表面活性剂,在150°C 下反应14h 合成出纳米Ce(OH)CO3。焙烧后制得纳米氧化铈粉体。该纳米球是有5-6nm 的纳米颗粒组成的。

实验步骤如下:2.3mmol Ce(NO3)3·6H2O,0.27mmol CTAB,9.2mol 尿素溶于10ml 的去离子水中,然后放于磁力搅拌器上搅拌15 分钟,使溶质全部溶解,得到无色透明的溶液。再将其转移到20ml 的内衬聚四氟乙烯的不锈钢高压反应釜内中。密封后,放入烘箱中,将其分别加热至120-180°C,反应3h、5h、7h、9h、12h、24h、48h 后,自然冷却至室温。将其中得到的白色沉淀离心,并分别用去离子水、无水乙醇洗涤3 次后,放于80°C 烘箱中干燥12h得到氧化铈前驱体即六方晶系的CeOHCO3。再在180°C 下反应24h 后的样品以及此样品在500°C 下煅烧10h 后的样品。从图2.1中的XRD分析可以看出,前驱体(图2.2)经过煅烧后,已经完全转变为立方晶形的CeO2。如图2.3所示最终得到5-6nm的纳米CeO2粉体。

反应过程如下:首先,在反应混合溶液中,尿素分解产生铵根离子与氰酸根离子:H2N–CO–NH2→NH4++ OCN- ;当反应溶液为酸性时,产生的氰酸根离子将迅速反应:OCN-+OH-+H2O →CO2+NH4+;当反应溶液为中性或碱性时,将会发生反应:OCN-+OH-+H2O →NH3+CO32-;由于Ce3+的弱碱性与高电荷,使其具有强烈的水合作用。首先,Ce3+水解并与水分子或OH-络合:Ce3++ yH2O→[Ce(OH) (H2O)n-1]2++ H3O+随着反应温度的升高与反应时间的加长,尿素的水解速度加快。随着反应的进行,CO32-与OH+开始大量生成:[Ce(OH) (H2O)n-1]2++ CO32-→

CeOHCO3(CeCO3OH)+(n-1)H2O;CeOHCO3在500°C 下热分解产生CeO2:4CeCO3OH + O2→4CeO2+2H2O + 4CO2

图2.1 样品在180°C 下反应24h 后(a)与其煅烧样品(b)的XRD 图谱在不同的反应时间下所制备纳米粒子的形貌跟尺寸也不相同。图 2.2 为碱式碳酸铈纳米粒子在120°C 下不同的反应时间内的SEM 形貌图。

图 2.2 为碱式碳酸铈纳米粒子在120°C 下不同的反应时间内的SEM 形

貌图。

图2.3 水热法制得CeO2纳米粒子的TEM、HRTEM图

4 问题与展望

近年来虽然纳米CeO2的制备得到了很大的发展,但在纳米CeO2制备的多种方法中,所存在着一些普遍的问题,如:颗粒团聚严重,粒径分布不均匀,单分散性差,性能不稳定等,这些问题的存在影响了纳米CeO2功能材料使用性能。因此如何做到颗粒尺寸和形状可控,得到粒度分布均匀,单分散性好的纳米CeO2,成为当前纳米CeO2制备研究中需重点探讨的难点。此外综合目前国内外的报道来看,大多数基础研究仍只停留在改进合成工艺的层面上,且表征往往局限于最终的粉体,对纳米CeO2的成核与生长这一中间过程还缺少动态、系统的观测与分析。

目前虽已有多种纳米CeO2制备方法,但都处在实验室的研究阶段,真正能进行工业化生产的却很少,因此必须从工业化角度研究纳米CeO2的制备技术,加速研究成果的推广与应用。相信在不远的将来,我国能够在纳米CeO2的制备、应用、改性方面取得令人注目的成就。

参考文献:

[1]KUO L Y, SHEN P Y. Shape dependent coalescence and preferred ori-entation of CeO2nanocrustallites [J].Materials Science and Engineer-ing,2000,A277:258.

[2]洪维民,田蓉屏.稀土超细粉末的制备方法及应用[J].稀有金属,1995,19(5):348.

[3]Kiork R E, Othmer D F, Encocyclopedia of Chemistry and Technology[M]. Wiley, New Y ork,1979.315.

[4]Nitsche R, Winterer M, Croft M, et al.Nucl.Instr.Methodel.1995,B97,127.

[5]Dong X Y, Qu X G, Hong G Y, et al. Preparation and application inelectrochemistry of namocrystalline CeO2[J].Chin.Sci.Bull.1996,41(16):1936.

[6]韩业斌,梅燕,聂祚仁等.影响纳米CeO2晶粒形貌的因素及机理[J].精细化工,2006,23(7):632-635.

[7]王艳荣,邱克辉,邓昭平.纳米CeO2制备方法的研究进展[J].中国稀土学报,2003,12(21):62-66.

[8]陈杨,陈志刚,陈爱莲.纳米CeO2磨料在硅晶片化学机械抛光中的化学作用机制[J].润滑与密封,2006,3(2):67-72.

[9]陈爱莲,李霞章,陈杨.纳米CeO2粉体的制备及应用[J].江苏工业学院学报,2006,18(2):10-14.

[10]王立明,韦志仁,吴峰.水热条件下影响晶体生长的因素[J].河北大学学报(自然科学版),2002,22(4):345-350.

[11]崔美云.氧化铈微纳米材料的水热法合成及表征.浙江理工大学应用化学系硕士论文.2010.

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

二氧化铈纳米材料的合成及性能研究

二氧化铈纳米材料的合成及性能研究 内容摘要 国内外早已开始了对纳米氧化铈颗粒制备技术与性能的研究。氧化铈具有立方萤石结构。它有热稳定性高,氧气储存能力强和可以在Ce3+和Ce4+氧化状态之间简单的转换的特性,因此它吸引了研究者广泛的兴趣。它已广泛应用于催化剂、紫外吸收材料,氧敏感材料、固体氧化物电池材料和抛光材料等领域。氧化铈在合成氧化CO的催化剂上展现的性能尤为突出。液相制备方法是纳米氧化铈众多制备方法的一种,它因为制作工艺相对简单的优点在所有制备方法中脱颖而出。液相制备法很适合大规模生产,它在研究方向上的前途也可预测。本文将对上文做详细描述。 Abstract Preparation technology and research progress of CeO? nanoparticles researched both at home and abroad.Cerium oxide has cubic fluorite structure. It has attracted extensive interest due to its high thermal stability,oxygen storage capacities, and easy conversion between Ce3+ and Ce4+ oxidation states。It has been widely used in catalyst,ultraviolet absorption material,the oxygen sensitive material,solid oxide cell material and polishing material and so on.Especially, CeO? have been successfully synthesized and used for CO catalytic oxidation.Kinds of preparation methods of liquid phase and their differences are especially emphasized according to the advantages of liquid phase method, which can be easily enlarged in industry, and futrue directions of research are also predicted. CeO2 have been successfully synthesized and used for CO catalytic oxidation.We will give more details about what describes below. Key: CeO?liquid phase method CO catalytic oxidation

纳米氧化铁

第一章综述 1.1 概述 1.1.1 氧化铁的性质 纳米科学技术是20世纪80年代末诞生并崛起的新科技,它的基本内涵是指在-9-7)范围内认识和改造自然,通过直接和安排原子,分子创造1010~纳米尺寸(新物质,以及改造原有物质使其具有新的性质[1]。纳米材料具有量子尺寸效应,小尺寸效应,表面效应及宏观量子隧道效应等基本特性[1]。这些基本特性使纳米材料具有不同与常规材料的潜在的物理,化学性质,因此引起人们的广泛兴趣。纳米氧化铁( nano- sized iron oxide) 具有良好的耐候性、耐光性、磁性 和对紫外线具有良好的吸收和屏蔽效应, 可广泛应用于闪光涂料、油墨、塑料、皮革、汽车面漆、电子、高磁记录材料、催化剂以及生物医学工程等方面, 且可望开发新的用途[2,3]。 通常,铁的氧化物及其羟基氧化物均归属于氧化铁系列化合物,按价态,晶型结构的不同可以分为(α-﹑β-﹑γ-)FeO ﹑FeO ﹑FeO 和(α-﹑β-﹑γ-) 4323FeOOH.按色泽又可以分为,红﹑黄﹑橙﹑棕﹑黑。较具实用价值的有,α- FeO32﹑β- FeO ﹑α- FeOOH﹑FeO等。43321.1.2 氧化铁的应用 1 纳米氧化铁在装饰材料中的应用 在颜料中, 纳米氧化铁又被称为透明氧化铁( 透铁) 。所谓透明, 并非特指粒子本身的宏观透明, 而是指将颜料粒子分散在有机相中制成一层漆膜( 或称油膜) , 当光线照射到该漆膜上时, 如果基本不改变原来的方向而透过漆膜, 就称该颜料粒子是透明的。透明氧化铁主要有5 个品种, 即透铁红、黄、黑、绿、棕。透明氧化铁颜料因其有0.01μm 的粒径, 因而具有高彩度、高着色力和高透明度, 经特殊的表面处理后具有良好的研磨分散性。透明氧化铁颜料可用于油化与醇酸、氨基醇酸、丙烯酸等漆料制成透明色漆, 有良好的装饰性。此种透明漆既可单独, 也可和其他有机彩色颜料的色浆相混, 如加入少量非浮性的铝粉浆则可制成有闪烁感的金属效应漆; 与不同颜色的底漆配套, 可用于汽车、自行车、仪器、仪表、木器等要求高的装饰性场合。透铁颜料强烈吸收紫外线的特性使其可作为塑料中紫外线屏蔽剂,而用于饮料、医药等包装塑料中。纳米FeO 在32 1 静电屏蔽涂料中也有广阔的应用前景, 日本松下公司已研制成功具有良好静电屏蔽的FeO 纳米涂料。这种具有半导体特性的纳米粒子在室温下具有比常规的23氧化物高的导电性, 因而能起到静电屏蔽作用。 2 纳米氧化铁在油墨材料中的应用 透铁黄可用于罐头外壁的涂装, 透铁红油墨为红金色, 特别适合罐头内壁用, 加之透铁红耐300 ℃的高温, 是油墨中难得的颜料珍品。为提高钞票的印制质量, 往往在印钞油墨中加入纳米氧化铁颜料来保证钞票的色度和彩度等指标。 3 纳米氧化铁在着色剂中的应用 随着人们生活水平的提高, 人们越来越重视医药、化妆品、食品中使用的着色剂, 无毒着色剂成了人们关注的焦点。纳米氧化铁在严格控制砷和重金属含量的情况

纳米氧化锆汇总

二氧化锆纳米材料 一.用途:纳米氧化锆本身是一种耐高温、耐腐蚀、耐磨损和低热膨胀系数的无机非金属材料,由于其卓越的耐热绝热性能,20世纪20年代初即被应用于耐火材料领域。 自1975年澳大利亚学者K.C.Ganvil首次提出利用ZrO2相变产生的体积效应来达到增韧陶瓷的新概念以来,对氧化锆的研究开始异常活跃。——利用其高硬度、抗磨损、耐刮擦、不燃的特性,极大的提高涂料的耐磨性和耐火效果。由于其导热系数低、并具备特殊光学性能,可用于军事、航天领域的热障涂料及隔热涂料。纳米复合氧化锆具备特殊光学性能,对紫外长波、中波及红外线反射率达85%以上;且其自身导热系数低,可提高其隔热性能。——由于不同晶型纳米氧化锆体积不同,可制备具备自修复功能的功能性涂料。 纳米复合氧化锆行业主要企业产能分布

二.目前的制备方法:化学气相沉积(CVD)法,液相法(包括醉盐水解法,沉淀法,水热法,徽乳液法,溶液姗烧法等),徽波诱导法及超声波法等几大类。 三.具体介绍方法:利用溶胶-凝胶法制备出高度有序的二氧化锆纳米管 简介:溶胶一凝胶法是指金属醉盐或无机盐经水解形成溶胶,然后使溶胶一凝胶化再将凝胶固化脱水,最后得到无机材料.在无机材料的制备中通常应用溶胶—凝胶方法,与传统的合成方法相比,具有高纯度、多重组分均匀以及易对制备材料化学掺杂等优点.该方法要使前驱体化合物水解形成胶体粒子的悬浮液(溶胶)后,成为聚集溶胶粒子组成凝胶,凝胶经过热处理得到所需的物质.溶胶—凝胶沉积法广泛用于在模板的纳米通道中制备纳米管或线.本文主要结合溶胶—凝胶法和模板合成法制备二氧化锆纳米管.由于锆的无机盐价格便宜且对大气环境不敏感[,我们利用锆的无机盐(氯化氧锆)作为前驱体溶液制备稳定的溶胶. 具体过程:

水热法制备纳米材料3

水热法制备ZnO纳米棒 10092629 朱晓清 10092632 蒋桢 一、实验目的: 1、掌握水热合成方法。 2、掌握晶体分析方法。 二、实验原理: 压强是高压釜内填充度、温度的函数,提高压强会提高成核速率,有利于粉体的产生,粉体粒径较小。根据公式(1) P 1 V=nRT (1) P 2=P (2) P=P 1+P 2 =nRT/V+P (3) 式中:P 1 ——T温度时高压釜内空气的压强; P 2 ——T温度时高压釜内水的压强; P——T温度时高压釜内的总压强; P ——T温度时水的饱和蒸汽压; V——高压釜内气体体积。 可以看出在一定的水热温度下,压强的大小依赖于反应器中的原始溶剂的填充度。反应釜内的压强随填充度增大而升高。 ZnO纳米棒的形成过程可以分为两个阶段:第一阶段是成核阶段,第二阶段是生长阶段。具体的形成过程可以用下列反应式表示: Zn2++2OH-→Zn(OH) 2 (4) (CH 2) 6 N 4 +10H 2 O → 6HCHO + 4NH 3 ·H 2 O (5) NH 3·H 2 O ?NH4++OH- (6) Zn2++4NH 3→Zn(NH 3 ) 4 2+ (7) Zn(OH) 2→ZnO+H 2 O (8) Zn(OH) 42-→ZnO+ H 2 O+2OH- (9) 当将氢氧化钠滴入含有Zn2+的水溶液中,边滴入边搅拌,溶液变浑浊,这是由于有Zn(OH) 2 白色胶体生成(见反应式4),同时六次甲基四胺水解产生的氨水

(见反应式5),作为螯合剂通过和Zn2+结合而形成胺化合物Zn(NH 3) 4 2+(见反应式 7),而溶液中生成的Zn(OH) 4 2-为这个过程提供了条件,在这种溶液环境下,一 部分的Zn(OH) 2 胶体分解成Zn2+和OH-,当Zn2+和OH-的浓度大到超过某个临界值时,就会有大量的ZnO 晶核形成,那么最终的晶体生长过程就开始了(见反应式8和9)。 方法一(首选) 三、实验仪器和试剂: 1、仪器:超声清洗机,烧杯,水热合成反应釜,鼓风干燥箱,XRD衍射仪,扫描电子显微镜,紫外可见分光光度计。 2、试剂:铜衬底,丙酮,无水乙醇(C 2H 5 OH,分析纯),去离子水,硫酸锌(ZnSO 4 ·7H 2 O, 分析纯),氢氧化钠(NaOH,分析纯),六次甲基四胺(又名HMTA,C 6H 12 N 4 ,分 析纯)。 四、实验步骤: 1、铜衬底的清洗 清洗的目的是为了去掉衬底表面的油渍、脏物和表面杂质等,使其表面光亮平滑,避免杂质及缺陷在纳米棒生长过程中对纳米棒的形貌产生影响。具体的清洗过程如下: (1)将大小约为1cm×1cm 的铜衬底放入盛有乙醇的烧杯中,在超声仪中超声 10 分钟。 (2)取出衬底片,放入丙酮中超声10 分钟。 (3)取出衬底片,放入乙醇中超声10 分钟。 (4)最后再用去离子水超声一次,并经流动的去离子水反复冲洗后,用洗耳球 小气流吹干。 2、在铜衬底上制备ZnO纳米棒步骤: 将0.0056 mol硫酸锌溶于35 mL 去离子水中配制成溶液,同时按Zn2 +与OH-摩尔比值1:8将0.056 mol氢氧化钠溶于35 mL去离子水中;在磁力搅拌条件下,将氢氧化钠溶液逐滴滴加到硫酸锌的溶液中; 持续搅拌10 min 后,将0.50 g六次甲基四胺加入到上述溶液中并持续磁力搅拌10 min; 然后将混合溶液转移到内衬为聚四氟乙烯的反应釜中,将第一步中清洗的铜衬底垂直放置(如图1所示)。

氧化铁制备的方法

氧化铁制备的方法 制备氧化铁的方法有很多,根据反应物料的状态分别有干法和湿法两种。干法又包括气相法和固相法两种,其中气相法包括热分解法、鲁式法、焙烧法等。其中湿法包括空气氧化法、水解法、沉淀法、溶胶?凝胶法等;此外,还有催化法、包核法、水热法等工艺改进方法。 2.1 干法 气相法通常以羰基铁(Fe(CO)5)或者二茂铁(FeCP2)等为原材料,采用气相沉积、低温等离子化学沉积法(PCVD)、火焰热分解或激光热分解等方法来制备。固相法是把金属盐或金属氧化物按照配方充分混合、研磨以后进行煅烧,固相反应结束后,直接产生纳米粒子或研磨方法得到纳米粒子。 2.1.1 热分解法 热分解法通常以羰基铁(Fe(CO)5)或二茂铁(FeCP2)等为原材料,利用火焰热分解、激光分解或气相分解等技术制备而成。蔺恩惠等采用激光气相反应法,光源采用红外激光脉冲CO2激光器、以(Fe(CO)2)/O2作为反应物质,利用爆炸式反应,同时能够得到晶形和无定形态的三氧化二铁超细粉;该方法具有反应时间较短,工艺简单,产率高,能耗低等优点。余高奇等利用Fe(NO3)3·9H2O在高温加热到一定的温度会分解的特性,利用配制成的Fe(NO3)3·9H2O 的盐液体,经过超临界干燥,直接可得到纳米级氧化铁粉。热分解法具有操作环境好,影响因素少,产品质量高,工艺流程简单,分散性好,粒子超细等特点。但是其技术难度较大,对设备的结构和材质要求较高,一次性投资耗费大。 2.1.2 焙烧法 传统的焙烧法通常指的是绿矾焙烧法,该方法是指硫酸亚铁经过高温煅烧得到氧化铁红。该方法因为产生的SO2和SO3等气体严重污染环境,只应用于小规模生产。此外,还有煅烧铁黄、煅烧铁黑法。孙本良等提出一种利用化工等行业产生废铁泥为原料得到氧化铁红的工艺,该工艺包括筛分、磁选、煅烧等几个过程,其炉尾废气中粉尘通过除尘器收集后一方面可以作为后续产品的原料,另一

纳米氧化锆粉体的合成与表征

纳米氧化锆粉体的合成与表征 李杰119024189 无111 1 引言 二氧化锆是制备特种陶瓷最重要的原料之一,由于其具有优良的机械、热学、电学、光学性质而在高温结构材料、高温光学元件、氧敏元件、燃料电池等方面有着广泛的应用,它是2l世纪最有发展前景的功能材料之一。而控制氧化锆前驱粒子的颗粒尺寸对制备高性能氧化锆陶瓷具有重要意义。 本研究采用水/环己烷/辛基苯基聚氧乙烯醚(Triton X-100)/正己醇四元油包水体系,通过反相微乳液法制备了纳米ZrO2粉体,用TEM,XRD等对所制备的纳米粉体进行了表征,研究了煅烧温度、pH值、陈化时间对ZrO2纳米粒子结构与性能的影响。结果表明,以单斜相为主的ZrO2纳米粉体,其晶粒尺寸可控制在20 nm左右;随着煅烧温度的提高,ZrO2的结晶程度逐渐提高;随着pH值的提高,少量四方相ZrO2全部转化为单斜相;随着陈化时间的增加,ZrO2颗粒尺寸变大。 2 结构性质 自然界的氧化锆矿物原料,主要有斜锆石和锆英石。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。 3 用途 3.1 ZrO2在特种陶瓷中的应用 由于高纯ZrO2具有优良的物理化学性质,当其与某些物质复合时,在不同条件下又具有对电、光、声、气和温度等的敏感特性,使其广泛用于电子陶瓷、功能陶瓷和结构陶瓷等高新技术领域。 3.1.1 电子陶瓷 ZrO2在电子陶瓷中的应用主要有压电元件(如发火元件、助听器、拾音器等),滤波器(用于电视机、收录机、共电式无线电收发机等),超声波振荡器(用于潜艇音纳、鱼群探测器和测深仪等),蜂鸣器(用于电子计算机输入功率鉴定信号机、曲调桌式电子计算机、数字显示手表及闹钟等)及高温导体等。

水热法制备TiO2纳米材料

水热法制备TiO2纳米材料 实验目的:采用水热法,制备了不同晶相的二氧化钛( 即锐钛矿相和金红石相) 。 实验原理:以无水TiCl4为原料制备出的纳米晶是锐钛矿相的, 而用钛酸四正丁酯制备的纳米晶是金红石相的。两者的晶相有所不同, 这是因为无水TiCl4 中加入水后水解剧烈, 已经直接生成了大量的锐钛矿相TiO2。而钛酸四正丁酯中加入水后, 水解速度较慢, 首先生成锐钛相TiO2, 而生成的锐钛矿相TiO2 颗粒较小, 故其反应的活性较大。在水热反应过程中, 如果保温时间足够长, 就有可能由锐钛矿相完全转变为金红石相。采用本方法制备出的金红石相的TiO2 纳米晶相的过程更简单、反应温度更低。 实验药品,器材 无水TiCl4、钛酸四正丁酯、HCl 溶液(12 mol/L) X 射线衍射(XRD)、透射电子显微镜( TEM) 高压反应釜、高速离心机、恒温干燥箱 实验过程:T iO 2 纳米颗粒的制备 (1)以无水TiCl4 为原料取容量为10 mL 的小量筒1 只, 将其放进干燥箱彻底干燥后(因为TiCl4 极易水解)取出, 量取2 mL 的无水TiCl4。把量筒内的无水TiCl4 倒入已经清洗干净、并且已经干燥过的高压反应釜的内衬中。用容量为20 mL的量筒量取20 mL 蒸馏水并快速倒入反应釜的内衬中。反应温度为120 ℃, 时间为5 h 。样品自然冷却后, 用蒸馏水和无水乙醇冷却, 直接用于XRD 和TEM 的观测。 ( 2) 以钛酸四正丁酯为原料 用量筒量取2 mL 的钛酸四正丁酯倒入反应釜的内衬后, 以体积比为1 ∶10 量取20 mL 蒸馏水, 将蒸馏水倒入内衬和钛酸四正丁酯混合后放入烘箱中。反应温度为120 ℃, 时间为5 h 。样品自然冷却后, 用蒸馏水和无水乙醇冷却, 直接用于XRD 和TEM 的观测。 数据记录 参考文献: 夏金德. 水热法制备二氧化钛纳米材料[J].安徽工业大学学报,2007 ,24(2)140- 141. 肖逸帆,柳松. 纳米二氧化钛的水热法制备及光催化研究进展[J].硅酸盐通报,2007, 26(3)523-527

纳米氧化铁材料的制备与现代发展.

课题名称MITobj004 姓名 院系 专业班级 指导教师 2009 年10 月01 日

摘要纳米氧化铁的制备方法有沉淀法、固液气相法、水热法、凝胶—溶胶法、共混包埋法、单体聚合法等.。本文通过分析比较各种纳米氧化铁的制备方法, 水热法由于操作简单、粒子可控等优点广泛应用于自分散氧化物的制备研究中。 关键词水热法,沉淀法,固液气相法,比较 前言 定,催化活性高,具有良好的耐光性、耐候性和对紫外线的屏蔽性,在精细陶瓷、塑料制品、涂料、催化剂、磁性材料以及医学和生物工程等方面有着广泛的应用价值和前景,因此研究纳米氧化铁有着很重要的意义。由于纳米氧化铁具有如此多的优点及其广泛的应用前景,近年来国内外研究者对其制备和应用投入了大量的研究工作。本文综述了纳米氧化铁制备方法的一些研究进展,分析了当前急需解决的问题,并对今后发展做了展望。重点介绍了水热法制备纳米氧化铁材料,以及在铁离子浓度、PH值、水解时间分别不同的情况下的水解程度。【1】 文献综述 国内外研究现状: 我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,科院上海硅酸盐研究所、南京大学、科院固体物理所、科院金属所、物理所、国科技大学、清华大学和科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才做出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的坚力量。【2】 近年来美国纳米技术研究与产品开发发展迅速。如医学领域的纳米医药机器人、纳米定向药物载体、纳米在基因工程蛋白质合成中的应用,微电子及信息技术领域的导电聚合物在信息技术的应用、纳米电子元器件FET二极管、用于感应器的电子序列、纳米传感器,化工领域的利用纳米材料提高催化剂的效能等,都取得了很大进展。 日本科学家在2003年12月发现,当温度降到极端低时,非常接近于一维金属的碳纳米管的电阻急剧增大,变成绝缘体,与普通金属的导电性截然相反。从

葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球 广州华南农业大学理学院09材化(2)班林勋,200930750211 引言 炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。碳微球的形状和大小显著影响着其电学性能。 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer 模型(见图1),当0.5 mol·L-1 的葡萄糖溶液在低于140 C 或反应时间小于1h 时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5 mol·L-1、160℃、3h 时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500 nm。 由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。 图1 水热法形成炭球的结构变化示意图 1 实验部分 1.1 实验仪器与试剂

葡萄糖,去离子水,95%乙醇,50mL 高压反应釜,鼓风干燥箱,电子天平,抽滤装置(有机滤膜),滤纸,玻璃棒 1.2 纳米碳球的制备 纳米碳球的制备参见文献[1]。用电子天平称取 6g 葡萄糖放入50mL 反应釜内衬(图2)中,用移液管准确移取35mL 去离子水(葡萄糖溶液的浓度为0.952 mol·L -1 )加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。设定反应条件为:温度 180?C ,反应时间 4~12 h 。待反应结束后,降至室温,取出反应釜,将釜内黑褐色溶液抽滤(用40 um 有机滤膜),并及时清洗反应釜内衬,抽滤时用去离子水和 95% 乙醇清洗至滤液为无色。将样品用滤纸包好放入干燥箱中70℃干燥 4h 。收集样品,称重并计算产率。 图2 反应釜实物与结构示意图 1.3 纳米碳球的表征 1.3.1 X-射线衍射分析 测定所制备碳球的晶型以判断该碳球所属的类型(如普通碳还是石墨型碳) 1.3.2 红外光谱分析 测定碳球的活性官能团,表征不同制备条件下得到的碳球活性官能团变化 2 结果与讨论 2.1 实验数据 实验最终制备得到的纳米碳球的质量为 0.1255 g ,根据下列化学方程式 C 6H 12O 6 6C+6H 2O 可得产率23%.5100%4 .21255.0100%理论产率实际产率ω=?=?=

纳米二氧化铈的制备

1.溶胶-凝胶法制备纳米二氧化铈的工艺研究 采用以柠檬酸为配体的溶胶-凝胶法制备了二氧化铈超细粉末,考察了制备条件:金属离子与配体的物质的量比、反应温度、凝胶烘干温度、焙烧温度及时间对成品粒子的影响。获得了最佳的制备条件: Ce3 +与柠檬酸的物质的量比为1∶3、反应温度为65 ℃、凝胶烘干温度为120 ℃, 500 ℃焙烧2 h。这样的条件可以得到均匀、分散的二氧化铈,平均粒径为7 nm,比表面积为115 m2/g。 按照一定的物质的量比称取一定量的硝酸铈和柠檬酸。用蒸馏水溶解柠檬酸,把称好的硝酸铈逐渐加入柠檬酸溶液中。溶解完全后,置于恒温水浴槽中,形成溶胶,最终成为半干凝胶。将凝胶置于鼓风干燥箱干燥,得到体积极度膨胀的干凝胶,研磨,放入马弗炉中高温焙烧,得二氧化铈的纳米粉末。 2.溶胶-凝胶法制备纳米CeO2晶体 称取一定量的聚乙二醇2400 ,使聚乙二醇与Ce的摩尔比为5:1 , 将Ce(NO3)3·6H2O 晶体在聚乙二醇中加热溶解,不断搅拌,得到浅黄色透明溶胶。将所得溶胶冷却、陈化,72h后仍澄清透明,把所得的溶胶在不同温度下热处理,可得到不同粒径的CeO2纳米粉体。 CeO2的溶胶化需要适当的温度,反应温度为65 ℃时得到的粉体较均匀,分散性也较好。随着焙烧温度升高,晶型不变,CeO2 粒径增大,形貌趋于球形。经800 ℃焙烧,粉体粒径在20~50nm。 3.溶胶-凝胶法合成二氧化铈纳米晶 称取一定量的草酸铈(G.R), 用蒸馏水调成浆状, 滴加浓HNO3(G.R) 和H2O2(A.R)溶液至完全溶解, 加入一定量的柠檬酸(G.R)溶解, 于70 ℃时缓慢蒸发, 形成溶胶, 进一步蒸发 形成凝胶, 将凝胶于120 ℃干燥12 小时,得到淡黄色的干凝胶, 将干凝胶在不同温度下焙 烧即得到CeO2纳米晶。 4.溶胶-凝胶法制备纳米Ce02 按照1:3的化学计量比称取一定量的硝酸铈和柠檬酸。用30-50mL的蒸馏水溶解柠檬酸得淡黄色溶液,所得溶液pH值约为2-3,有一定的酸度。然后把称好的硝酸铈逐渐加入此溶液中,这样可以抑制Ce3+的水解。待溶解完全后,将其置于65℃的恒温水浴槽中,让其缓慢蒸发。随着水分的减少,溶液的颜色逐渐加深,形成黄色溶胶,然后逐渐产生大量气泡,使粘稠体系膨胀。继续恒温脱水干燥,成为疏松多孔蜂巢状,外壳呈黄色,里面呈白色的半干凝胶。待其成半干凝胶后,将此凝胶置于鼓风干燥箱以100℃干燥1-2小时,得到体积极度膨胀的土黄色干凝胶。取出干燥后的干凝胶,将此干凝胶用研钵研磨。研磨后放人马沸炉中用800℃的高温焙烧即可得Ce02的超细粉末。 5.沉淀法制备纳米CeO2 将分析纯的Ce(NO3)3·6H2O(AR)配成0. lmol/L的Ce(NO3)3溶液,搅拌与一定量的H2O2(AR)溶液混合,数分钟后将一定浓度的NH3·H2O溶液以3mL/min速度滴入上述混合溶液中,滴至pH 值=10为止,得到桔色沉淀。将沉淀分离、洗涤。然后将沉淀分散到一定浓度的PVA(聚乙烯醇)溶液中,蒸发干燥得到CeO2·nH2O(前驱体),将其在不同的温度下焙烧,即得到不同粒径的Ce02纳米晶。 6. 化学共沉淀法制备纳米二氧化铈的研究

氧化锆纳米粉体的制备及其烧结性能研究

氧化锆纳米粉体的制备及其烧结性能研究

目录 第1章前言 (1) 1.1纳米材料概述 (1) 1.2纳米氧化锆及其陶瓷材料概述 (2) 1.2.1二氧化锆的结构与性质 (2) 1.2.2氧化锆纳米材料的研究进展 (5) 1.2.3纳米氧化锆粉体的制备 (6) 1.2.4氧化锆陶瓷材料的成型 (9) 1.2.5氧化锆陶瓷的烧结 (10) 1.2.6纳米氧化锆及其陶瓷的应用 (12) 1.3本课题研究目的及主要研究内容 (14) 1.3.1课题研究目的 (14) 1.3.2课题研究内容 (14) 第2章实验材料及方法 (16) 2.1实验试剂与仪器 (16) 2.2粉体制备实验步骤与流程 (17) 2.2.1实验步骤 (17) 2.2.2实验流程 (18) 2.3氧化锆陶瓷试样的制备 (20) 2.4纳米氧化锆粉体的测试与表征手段 (20) 2.4.1物相组成(X射线衍射)分析 (21) 2.4.2热重-差热(TG-DTA)分析 (21) 2.4.3红外光谱(FT-IR)分析 (21) 2.4.4形貌(TEM)分析 (22) 2.5烧结试样的性能测试 (22) 2.5.1密度的测定 (22) 2.5.2收缩率的测定 (22) 2.5.3抗弯强度的测定 (23) 2.5.4显微结构分析 (23) 第3章氧化锆纳米粉体合成工艺条件的研究与机理分析 (24) 3.1常压水热法制备氧化锆纳米粉体 (24) 3.1.1实验内容 (24)

3.1.2实验结果与讨论 (25) 3.2有机网络凝胶法制备ZrO2纳米粉体 (34) 3.2.1实验内容 (34) 3.2.2实验原理 (34) 3.2.3实验结果与讨论 (35) 3.3本章小结 (46) 第4章氧化锆纳米粉体的烧结性能研究 (47) 4.1烧结试样的密度测试与分析 (48) 4.2烧结试样收缩率的测试与分析 (50) 4.3烧结试样的抗弯强度测试与分析 (51) 4.4烧结试样的显微结构测试与分析 (52) 4.5本章小结 (57) 第5章结论 (58) 参考文献 (59) 致谢 (63) 攻读硕士期间发表论文及专利情况 (65)

氧化锆粉体制备及其应用

氧化锆粉体制备及其应用摘要: 本文重点介绍了氧化锆陶瓷原料制备工艺和性能覆其在蛄构瓷、功 能瓷、颜料与宝石、涂层、纤堆和耐火材料等方面的应用。对如何使氧化铬畸瓷产 业化远一问题,提出了自己的见解。 关键词:氧化锆;高性能陶瓷;制备;应用 Abstract:This paper focuses on the zirconia ceramic material preparation process and performance review of its structure in the mantis porcelain, functional ceramics, pigments and precious stones, coating, fiber and other aspects of heap and refractory applications. Chromium oxide on how to make porcelain produced abnormal Much a problem of industry, put forward their own views. Keywords: zirconia; high-performance ceramics; preparation; application 一、引言 随着科学技术的发展,人们对材料的需求也在不断地提高。当今世界新型陶瓷的发展趋向是:原料超细化(含纳米级细度),发展了材料复台、成型与烧结工艺、制品的后处理(包括制品后加工及其与其他材料联接等)和相应的测试方法。氧化锆陶瓷也与其他新型陶瓷一样,随着新工艺、新技术的运用,进一步充分发挥了它高熔点、比重大、耐腐蚀、耐磨损、低导热、半导体及相变等特点,世界各国都给予高度重视,在功能和结构等各个领域中,都起着重大作用。下面就ZrO2陶瓷材料及倒品的有关情材料多功能化、轻质高强化和材料结构梯度化。为此也相应地况作简单概述,供有关人士参阅。 ZrO2具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。上个世纪二十年代开始就被用来作为熔化玻璃、冶炼钢铁等的耐火材料,从上个世纪七十年代以来,随着对ZrO2有了更深刻的了解,人们进一步研究开发ZrO2作为结构材料和功能材料。1975年澳大利亚R.G.Garvie以CaO为稳定剂制得部分稳定氧化锆陶瓷(Ca-PSZ),并首次利用ZrO2马氏体相变的增韧效应提高了韧性和强度,极大的扩展了ZrO2在结构陶瓷领域的应用。1973年美国R.Zechnall, G.Baumarm,H.Fisele制得ZrO2电解质氧传感器,此传感器能正确显示汽车发动机的空气、燃料比,1980年把它应用于钢铁工业。1982年日本绝缘子公司和美国Cummins发动机公司共同开发出ZrO2节能柴油机缸套。自此,ZrO2高性能陶瓷的研究和开发获得了许多进展。 二、ZrO2粉体的制备方法 2.1 微粉制备

学术周报告--水热法制备纳米氧化铁材料

水热法制备纳米氧化铁材料 摘要:水热水解法制备纳米氧化铁材料,是通过控制一定的温度和酸碱度,使一定浓度的金属铁的水解,生成氧化铁。条件适当可以得到颗粒均匀的多晶态溶胶,其颗粒尺寸在纳米级,对提高气敏材料的灵敏度和稳定性有利。 关键字:水热水解法纳米材料氧化铁制备影响因素 水解反应是中和反应的逆反应,是一个吸热反应。水热法【1】又称为热液法, 是指在特制的密闭反应器(高压釜)中, 采用水溶液作为反应体系, 通过对反应体系加热, 产生一个高温高压的环境, 加速离子反应和促进水解反应, 在水溶液或蒸气流体中制备氧化物, 再经过分离和热处理得到氧化物纳米粒子, 可使一些在常温常压下反应速率很慢的热力学反应在水热条件下实现反应快速化。 纳米材料【2】是指晶粒和晶界等显微结构能够达到纳米级尺度水平的材料,是材料科学的一个重要发展方向。纳米材料由于粒径较小,比表面很大,表面原子数会超过体原子数。因此纳米材料常表现出与本体材料不同的性质,在保持原有物质化学性质的基础上,呈现出热力学上的不稳定性。纳米材料在发光材料、生物材料方面也有重要的应用。 纳米氧化铁是一种多功能材料,在催化、磁介质、医药等方面具有广泛的应用。纳米氧化铁还被广泛应用到生产生活中,被用作颜料和涂料、装饰材料、油墨材料、磁性材料和磁记录材料、

敏感材料等。 实验仪器和试剂 仪器:台式烘箱,721或722型分光光度计,医用高速离心机或800型离心沉淀器,酸度计,多用滴管,20mL具塞锥形瓶,50mL容量瓶,离心试管,5mL吸量器。 试剂:1.0mol/LFeCl3溶液,1.0mol/L盐酸,1.0mol/LEDTA 溶液,1.0mol/L(NH4)2SO4溶液。 实验步骤 1.实验中的玻璃仪器均需严格清洗,先用铬酸洗液洗,再用离子水冲洗干净,然后烘干备用。 2.根据文献及实验时间,本实验选定水解温度为105摄氏度,有兴趣的同学可用95摄氏度,80摄氏度对照。 3.水解时间的影响,需读取6次,绘制A-t图。 4.水解液pH的影响,改变水解液的浓度,分别为1.0,1.5,2.0,2.5,3.0;用分光光度计观察水解pH的影响,绘制pH-t 图。 5.水解液中的三家铁离子浓度的影响,绘制A-t图。 6.沉淀的分解,取上述水解液一份,迅速用冷水冷却,分为二分,一份用高速离心机离心分离,一份加入硫酸铵使溶胶沉淀后用普通离心机离心分离。沉淀用去离子水洗至··无氯离子为止。 7.产品鉴定。

水热法制备纳米材料3

水热法制备ZnO纳米棒 xxxx 一、实验目的: 1、掌握水热合成方法。 2、掌握晶体分析方法。 二、实验原理: 压强是高压釜内填充度、温度的函数,提高压强会提高成核速率,有利于粉体的产生,粉体粒径较小。根据公式 (1)P1V=nRT (1)P2=P0(2) P=P 1+P 2=nRT/V+P0(3) 式中:P1——T温度时高压釜内空气的压强; P 2——T温度时高压xx的压强; P——T温度时高压釜内的总压强; P 0——T温度时水的饱和蒸汽压; V——高压xx气体体积。 可以看出在一定的水热温度下,压强的大小依赖于反应器中的原始溶剂的填充度。反应釜内的压强随填充度增大而升高。

ZnO纳米棒的形成过程可以分为两个阶段: 第一阶段是成核阶段,第二阶段是生长阶段。具体的形成过程可以用下列反应式表示: Zn2++2OH-→Zn(OH)2(4)(CH 2) 6N 4+10H 2O →6HCHO + 4NH 3·H 2O (5) NH 3·H 2O ?NH4++OH- (6) Zn2++4NH 3→Zn(NH 3) 42+ (7)Zn(OH) 2→ZnO+H 2O (8)Zn(OH) 42-→ZnO+ H

2O+2OH- (9)当将氢氧化钠滴入含有Zn2+的水溶液中,边滴入边搅拌,溶液变浑浊,这是由于有Zn(OH) 2白色胶体生成(见反应式4),同时六次甲基四胺水解产生的氨水(见反应式5),作为螯合剂通过和Zn2+结合而形成胺化合物Zn(NH 3) 42+(见反应式7),而溶液中生成的Zn(OH) 42-为这个过程提供了条件,在这种溶液环境下,一部分的Zn(OH) 2胶体分解成Zn2+和OH-,当Zn2+和OH-的浓度大到超过某个临界值时,就会有大量的ZnO 晶核形成,那么最终的晶体生长过程就开始了(见反应式8和9)。 方法一(首选) 三、实验仪器和试剂: 1、仪器: 超声清洗机,烧杯,水热合成反应釜,鼓风干燥箱,XRD衍射仪,扫描电子显微镜,紫外可见分光光度计。 2、试剂: 铜衬底,丙酮,无水乙醇(C 2H 5OH,分析纯),去离子水,硫酸锌(ZnSO 4·7H 2O,分析纯),氢氧化钠(NaOH,分析纯),六次甲基四胺(又名HMTA,C

纳米氧化铁的制备及应用

纳米氧化铁的制备及其应用 高令博化工与环境生命学部制药工程大连理工大学大连116023 摘要:纳米氧化铁是一种多功能材料。本文综述了纳米氧化铁的各种制备方法,对各种制备方法优缺点进行了分析和比较,详述了纳米氧化铁在磁性材料、透明颜料、生物医学、催化剂等方面的应用,并对其发展前景进行了展望。 关键词:氧化铁;纳米;制备;应用 引言 纳米材料和纳米结构是当今新材料领域中最富活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的组成部分。近几年来,世界各国对金属氧化物纳米粒子进行了广泛研究,并取得了显著成效,其中纳米氧化铁由于具有广阔的应用前景而备受关注。 1 纳米氧化铁的制备 纳米氧化铁的制备方法可分为湿法和干法。湿法主要包括水热法、强迫水解法、凝胶—溶胶法、胶体化学法、微乳液法和化学沉淀法等。干法主要包括:火焰热分解、气相沉积、低温等离子化学气相沉积法(PCVD)、固相法和激光热分解法等。 1.1 湿法 1.1.1 水热法 水热合成法是指在密闭体系中, 以水为溶剂,在一定温度和水的自生压强下, 使原始混合物进行反应的一种合成方法。1982年,用水热反应制备超微粉引起了国内外的重视。由于反应在高温高压的水溶液中进行,故为一定形式的前驱物溶解—再结晶形成的良好微晶材料提供了适宜的物理化学条件[1-2]。康晓红等[3]采用载铁有机相与水相为反应物,于高压釜内进行水热反萃反应,经后处理后获得的氧化铁粉组成均一、粒度小、结晶完好。景志红等[4]也制备出了菱形、纺锤形和球形等不同形貌的氧化铁纳米颗粒。 水热法制备的粒子纯度高、分散性好、晶型好且大小可控[5].反应在压热釜中进行,设备投资较大,操作费用较高[6]。

水热法制备纳米材料研究进展

水热法制备纳米材料研究 张自强 (华中农业大学理学院武汉430070) 摘要:水热法由于设备简单、操作简便、产物产率高、结晶良好,在合成纳米材料方面表现出了良好的多样性,从而得到越来越多的应用。水热法合成过程中依然存在着很多需要解决的问题。本文对近年来利用水热法合成纳米材料的实验进行了整理,并探讨了其研究进展。 关键字:水热法纳米材料合成产物控制研究进展 正文: 水热法生长晶体是19世纪中叶地质学家模拟自然界成矿作用而开始研究的,水热法属于液相反应的范畴,是指在特定的密闭反应器中,采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法,在水热条件下可以使反应得以实现,在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进,水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 1.水热法合成SnO2 2005年,韦志仁等采用水热法,以SnCl4·5H2O为前驱物,NaOH为矿化剂,在180℃,填充度为68% ,通过加入不同量的NaOH,调节溶液pH值分别为2、4、11,合成了三种具有不同形态的金红相SnO2纳米晶体。在研究过程中合成了一维定向生长SnO2纳米柱晶体,通过调节反应溶液的酸碱度,可以控制晶体的形貌,在较强的酸性或碱性条件下(pH为2或11时)获得了100~200nm长,直径约为10~20nm的棒状晶体。而当pH为4时,所获得SnO2金红相晶体没有较清晰的形貌特征。 2.水热法制备氧化锌 2006年,付三玲等人水热法制备纳米ZnO材料研究现状,研究了其制备特点及制备机理,从纳米ZnO晶体、阵列或薄膜、粉体三个方面制备实例研究了水热制备方法,最后探讨了纳米ZnO 材料发展前景。2010年,郑兴芳在研究纳米氧化锌的过程中发现,对于水热法制备纳米氧化锌,原料的选择、反应物的浓度、反应温度、反应时间和添加剂等都影响着产物的尺寸、形貌和性能。未来的工作应该对反应过程中的影响因素进行系统的研究,各种影响因素相互制约,要综合考虑所有可能影响晶体生长的因素,通过调整反应条件或参数,可以实现ZnO 纳米材料的可控合成。 3.水热法制备二氧化钛 2006年,夏金德采用水热法, 使用无水TiCl4 及钛酸四正丁酯为原料在反应温度120 ℃、反应时间5 h 的条件下,分别制备了不同晶相的二氧化钛( 即锐钛矿相和金红石相) 。采用X 射线衍射( XRD) 、透射电子显微镜( TEM) 分析手段对样品的物相、结构、形貌进行了表征和分析。XRD 结果表明,使用TiCl4作为原料,可以得到低温稳定的锐钛矿二氧化钛相;使用钛酸四正丁酯为原料,可以制备高温金红石相二氧化钛。TEM照片清晰地显示了锐钛

水热法制备纳米氧化铈粉体

水热法制备纳米氧化铈粉体 摘要:CeO2是一种价廉且用途极广的工业材料,具有广阔的市场应用前景。近年来,氧化铈纳米材料的形貌、尺寸控制以及性能应用方面已成为研究的热点之一。本论文对氧化铈进行结构、形貌以及光学性能的表征,分析了固相法,液相法,气象法制备纳米材料的优缺点并采用水热法制备出氧化铈纳米材料。 关键词:纳米CeO2;水热法;制备方法 Hydrothermal synthesis ,Preparation of nano-sized CeO2 particles Abstract:Ceria is a cheap and widely used industry material, which has a broad market applied prospect. In this paper, the preparation, characterization and optical properties of as ceria nanomaterials have been studied,the advantage and disadvantage of solid method ,liquid method and gas method have been contrasted and ceria nanomaterials were prepared by hydrothermal method. Keyword:nanometer CeO2;Hydrothermal synthesis;preparation method 随着纳米技术的不断进步,纳米CeO2由于粒径比较小,具有高的表面效应、量子尺寸效应、小尺寸效应以及宏观量子隧道效应等特性,因此产生了与传统材料不同的许多特殊性质,成为近年来材料科学中研究的热点。CeO2作为稀土家族中一种重要的化合物,可用于汽车尾气净化催化材料[1]、高温氧敏材料[2]、固体氧化物燃料电池(SOFC)电极材料[3][4]、化学机械抛光(CMP)研磨材料[5]等行业,对人类改善工作条件、提高生活质量、保障身体健康,节约能源、加强环境保护具有重要的现实意义,并具有显著的经济效益和社会效益。 1 氧化铈纳米材料概述 1.1 氧化铈的结构和性质 由于Ce具有独特的4f 层电子结构,氧化铈属于立方晶系,是面心立方结构,具有萤石结构。所属点群为Fm3m点群。从热动力学方面讲,其(111)面是最稳定的。CeO2晶胞中的Ce4+ 按面心立方阵排列,O2-占据所有的四面体位置,每个Ce4+被8个O2-包围,而每个O2-则与4个Ce4+配位,如下图所示。氧化铈经高温(T>950°C)还原后,CeO2转化为具有氧空位、非化学计量比的CeO2-x 氧化物(0

相关主题
文本预览
相关文档 最新文档