当前位置:文档之家› 盾构法隧道施工同步注浆技术

盾构法隧道施工同步注浆技术

盾构法隧道施工同步注浆技术
盾构法隧道施工同步注浆技术

盾构法隧道施工同步注浆技术

1 盾构法隧道施工

1.1盾构法隧道施工历史回顾

盾构法是在软土地基中修建隧道的一种先进的施工方法,用此法修建隧道在欧洲、美国己有160年的历史。盾构机最早是由法国工程师M.I.Brunel 于1825年从观察蛀虫在木头中钻洞,并从体内排出粘液加固洞穴的现象,从仿生学角度研制发明的。并于1843年由改进的盾构在英国伦敦泰晤士河下修建了世界上第一条矩形盾构(宽11.4m,高6.8m )隧道,全长458m。其后,P. W.Bahow于1865年用直径2.2m圆形盾构又在泰晤士河下修建一条圆形截面隧道。1874年,J.H.Greathead第一次采用气压盾构,并第一次开始在衬砌背后进行压浆,修建了伦敦城南线地铁。1880~1890年间,用盾构法在美国和加拿大的圣克莱( St.Clair)河下建成一条直径6.4m,长1870m的Sarnia水底隧道。仅在纽约,从1900年后,使用气压盾构法先后成功地修建了25条重要的水底隧道。

盾构隧道在用于修建地下铁道,污水管道时,得到了广泛的应用。前苏联自1932年开始用直径6.0m及直径9.5m的盾构前后在莫斯科、列宁格勒等地修建地下铁道的区间隧道及车站。在德国慕尼黑和法国的巴黎的地下铁道修建中,均使用了盾构掘进法。日本于1922年开始用盾构法修建国铁羽线折渡隧道。从六十年代起,盾构法在日本得到了飞速发展,土压平衡盾构就是七十年代发明的。

我国第一个五年计划期间,在东北阜新煤矿,用直径2.6m的盾构进行了疏水巷道的施工。1957年起在北京市区的下水道工程中采用过直径2.0m 及直径2.6m的盾构。上海从1960年起开始了用盾构法修建黄浦江水底隧道及地下铁道的实验研究,从1963年开始在第四纪软弱饱和地层中先后用直径4.2m、5.6m、10.0m、3.6m、3.0m、4.0m、6.2m等十一台盾构机进行了实验隧道,地铁区间隧道扩大实验工程、地下人防通道、引水及排水隧道工程等的施工。近年来又用国际上先进的土压平衡盾构(EPB)修建了地铁一、二号线,标志着中国的盾构隧道施工水平跨入了世界先进水平。

盾构法施工经过一百余年的发展日趋成熟,能适用于各种水文地质条件

下的施工(松软的、坚硬的、含水与不含地下水层),目前对盾构施工的研究研究分成两类,第一类是着眼于盾构机的改性研究,如:采用同步注浆法代替管片压浆法,采用土压或泥水压力来平衡开挖面的稳定性、盾构切割面形状的研究等等。第二类是研究盾构隧道推进过程中对周围地层的扰动,包括:盾构对前方土体挤压效应,地应力及地层孔隙水压力变化、地表变形及对周围建筑物、管线群的影响,盾构周围土体破坏方式,盾尾特性及压浆、超挖、推进速度、土仓压力等施工参数与地表变化的关系等等。

1.2盾构法隧道的国内外研究成果

著名教授R.B.Peck在1969年墨西哥召开的国际土力学和基础工程会议上,提出了隧道设计三大准则:

隧道设计应保证安全,保证开挖面的稳定;不应对周围设施(地上及地下)产生太大的破坏和扰动;在寿命范围内能抵抗它所受到的各种影响。

这三条准则至今仍为世界各国视为准绳,具体说来就是:

在隧道掘进中,开挖面超载系数O.F.S <6,如遇到特别低的Cu值,要辅助以相应的平衡压力〔如气压、土压或泥水压力),使O.F.S小于6,所以根据特定地层的O.F.S值,可以作为选择掘进方式和盾构机类型的依据之一,也是决定辅助施工方法的关键因素。

隧道施工中产生的短期及长期沉降(反映土层的扰动程度)要小;管片或内衬设计要合理,防止地下水的渗漏,并满足强度、刚度等要求。目前的生产及科研均围绕此轴心进行。

盾构隧道中,控制盾构机切割舱压力(水、土)是掘进中最重要的一环,开挖面的稳定性跟土体特性、隧道几何尺寸,舱压均有关系。英国学者R.J.Mair在80年代通过Cambridge大学的离心模型机试验,揭示了稳定性与地表沉降的数据关系:当地表沉降大于直径的0.025倍时,临界压力为下临界压力(软土盾构隧道)。

盾构机通过后,会对附近的土体产生扰动,表现为瞬时变形,塑性区的形成和扩展区。关于隧道施工引起的地表沉降的计算理论,大约是从几十年前在煤矿坑道的上方发生结构物的沉降和破损问题的研究开始的,而在软土地层中盾构隧道引起的地层移动和地表变形则只有30多年历史。

关于盾构隧道地表变形的预估方法的探讨是较为活跃的,有许多成果、公式。日本学者小岛田长板于1978年提出了隧道周围土层“松动区域”和“压缩区域”的概念计算地表沉降,并提出最大沉降量预报方法;墨西哥学者D.Resendiz和M.Romo根据开挖面应力释放和土体径向位移值,建立了包

括应力~应变关系、图性参数、几何参数的地表沉降预估公式。

国内,侯学渊结合上海地区饱和软粘土盾构法的特点,提出了考虑时效的最大沉降量的预估法。

2 注浆法的发展历史

注浆技术是一项实用性强、应用范围广的工程技术,它已被广泛地应用于矿山、地下建筑、大坝、隧道、地铁、桥梁和土木工程等各个领域。主要用于减小岩土的渗透性、增加其强度或降低地基土的压缩性。为了达到预期目的,用钻机将注浆孔钻到预定土层后,将浆液以压力注入,直至注浆点周围孔隙或裂隙被浆液充填到满足设计要求为止。另外,注浆技术也被用来修复各种构筑物混凝上的裂缝。

注浆技术己有200年的发展历史,其发明者是法国土木工程师查理斯·贝里格尼(Charles Bering)。十九世纪初,他采用注浆技术修复被水流侵蚀了的挡潮闸的砾砂土地基。这是在基础工程历史上第一次应用注浆技术。

人工“压浆泵”的首次使用是在1845年,由美国的W· F·沃森(W ·E ·Worthen)在一个溢洪道陡槽基础下注入水泥砂浆。1854年又进行了闸墩砌体的加固。那时,注浆仅用作处理地基,而不被认为是一种施工方法。

化学浆液用于固砂是在1884年,由英国的豪斯古德(H osagood)在印度建桥时首次采用。自此,化学注浆法在印度问世。1886年,W·R·奎尼普尔(W ·R · Kinniple)采用粘土水泥砂浆阻止尼罗河的达梅塔(Dmietta)和罗萨塔(Rosetta)坝基下的地下渗流。同时,英国研制了“压缩空气注浆泵”,促进了水泥注浆法的发展。

注浆技术的进一步发展和广泛应用是在矿井建设工程中,主要用于防止竖井开挖时地下水渗入。所采用的浆液是水泥浆液。1910年采用了自动记录压力表,对记录的注浆性状作了系统的研究,建立了注浆压力和渗透性之间的关系。1920年荷兰采矿工程师E·J·尤斯登(Joosten)首次论证了化学注浆的可靠性,采用了水玻璃、氯化钙双液双系统的两次压注法,并于1926年取得了专利。

注浆技术有系统的改进始于美国科罗拉多河上的胡佛(Hoover)坝基的帷幕注浆,为了补救因开挖基坑引起的裂缝,进行了加固注浆。根据胡佛坝基的注浆工程实践,首次制定了注浆工程设计和施工规范。

上世纪40年代,注浆技术的研究和应用得到了迅速的发展,各种水泥浆材和化学浆材相继问世。特别是60年代以来,各国大力发展新型注浆材料,注浆工艺和设备得到了空前的进步,其应用范围越来越广。我国对注浆技术的研究和应用起步较晚,但发展较快。某些方面己达到世界先进水平。50年代初期我国开始了矽化法的研究,在固砂、防止湿陷性黄土的湿陷和加固构筑物方面作了大量的工作。同时,矿山行业逐渐采用了井巷注浆技术。50年代后期,在水坝的防渗和加固工程中逐渐应用。60年代以后,我国己开始注意化学注浆的毒害及环境污染问题,并提出一系列的改进方法,其应用范围日益广泛。

3 盾构法隧道施工中同步注浆技术的运用

3.1同步注浆浆液的填充机理

同步注浆是盾构一边向前推进,一边不停地向管片背部建筑空隙加压注浆材料的一种注浆方法,用不间断的加压,使注浆材料在充入建筑空隙后,没有达到土体相同强度前,能保持一定的压力和土体相当,从而使地面沉降控制在最小的范围。使用同步注浆,注浆材料会向盾构开挖面渗透,影响盾构开挖面。上海地铁盾构采用的使由法国FCB公司引进的 6300mm土压平衡盾构(EPB),土压平衡盾构由于在切削刀盘内滞留切削土,盾尾带有密封装置,不会因注浆材料向盾构开挖面渗漏而影响盾构施工,是适合采用同步注浆施工的。

目前双液型的注浆材料己经成为盾构工法中盾尾同步注浆材料的主流,同时在硬土地层中采用盾构工法,其盾尾的注浆材料应采用瞬间固结型材料,而在软土地层中则使用可塑状固结型注浆材料。

注浆材料如果单纯从成分上可以分为单液型和双液型两种。单液型浆液是在搅拌机等搅拌器中一次拌和成为流动的液体,再经过液体~固体的中间状态(流动态凝结及可塑状凝结)后,固结(硬化)。譬如常用的水泥砂浆类浆液。双液浆液通常是指化学注浆,即把A液〔水泥类)和B液(通常是水玻璃类作硬化剂)两种浆液混合,变成胶态溶液,混合液的粘性随时间的增长而增长,随之进入流动态固结和可塑态固结区。

单液浆液由于水泥的水化反应非常缓慢,所以达到固结需要几小时至几十小时不等。特别是惰性浆液,不发生化学凝固,所以固结时间更长。而双

液型浆液的凝胶时间通常很短(0秒~60秒),按凝结时间来分,双液型浆液又可以被分为缓凝型、可塑型、瞬凝型三种类型。由于不同浆液凝结时间不一样,所以各自填充空隙的机理大相径庭:

(1)单液型浆液。如图3-1所示:

①第一批进入的浆液

②第二批注入的浆液

③第三批注入的浆液

④没有充填到的部位

图3-1单液型浆液填充机理

由于在单液型浆液在注浆时是没有完全自立性的流体,所以具有非常平缓的倾斜(由流动性的好坏决定)充填,形成后注浆液顺次推压先注的浆液,使浆液逐渐充填到前方的形态。由于是流体状压入,浆液易流失到管片背部建筑空隙之外其他部位(比如开挖面、周围土体等)并且易受地下水影响。而最应该注入的区域,特别是管片的顶端部位却很难充填到。

(2)缓凝型浆液(30s~60s),充填形态如图3-2所示。

浆液的流路

①第一批进入的浆液

②第二批注入的浆液

③第三批注入的浆液

④没有充填到的部位

图3-2缓凝型浆液填充机理

在凝胶前,由于流动性非常好,所以和单液型浆液一样,可以实现平缓的小坡度的大范围的充填。凝胶后的浆液,在经过较短的可塑态区后,若再过渡到固结区(固体),则浆液自身就不再流动。所以后来的浆液,在未凝胶

前顶破固结体,渗到未充填部位后固结。此后反复充填~固结~渗入,边依次充填。由注入缓凝固结型浆液的模型注浆试验知道,实际的上部没有被浆液全部填充。这种缓凝型浆液,由于到凝胶止的时间较长,并且粘性小,容易流失到远处,所以对限定范围特别是隧道顶部的填充以及防止向开挖的泄漏较为困难。此外,在凝胶前的一段时间里易受地下水稀释,或出现材料分离,存在固结强度不均匀等缺点;但对涌水等止水的性能良好。

(3)可塑性浆液(5s~20s)。

可塑态浆液从双液混合到固结的过程中,存在一个可塑态固结的,实用有效的时间范围。充填形态如图3-3所示。在可塑态固结区的保持时间内,首批注入的充填浆液①、二批注入的充填浆液②、三批注入的充填浆液③均可以被依次压送到前方。因此在可塑态固结区保持时间内,即使连续注浆暂停几分钟〔小于保持时间),首批注入的浆液仍能较容易地被压送到前方。由此可以推断出注入可塑性浆液时,随着注入(填充)范围地扩大,浆液的依次压入,能作大范围的充填。此外,由于是可塑态固结,从后面压入,逐渐向前移动直到完全填充空隙,另一方面因为可塑态粘性非常高,所以很难向周围土体中扩散。模型试验的结果表明,浆液可以充填到上部的限定范围。有人从某泥水盾构背后注浆(浆液为可塑性浆液)的现场,拆卸管片时观察到的浆液填充的状态知道,尽管盾构的外径较大(6730mm ),并且仅为一点注浆,但仍能完全填充整个区域,且填充效果较好。

①第一批进入的浆液

②第二批注入的浆液

③第三批注入的浆液

④没有充填到的部位

图3-3可塑性浆液填充机理

(4)瞬凝型浆液。

与可塑性浆液相比,可塑态固结区的保持时间短。设想对某一限定的空洞进行充填得到的充填形态如图3-4所示。

浆液的流路

①第一批进入的浆液

②第二批注入的浆液

③第三批注入的浆液

④没有充填到的部位

图3-4瞬凝型浆液填充机理

首批注入浆液在凝胶时间和可塑态固结区的保持时间重合的一段时间内容易充填,但进入固结区后,固结体就不移动了,故不能同可塑态浆液被依次压送到前方。但是连续地从后面压入浆液,对首批固结体产生劈裂现象,在首批固结体的中心部位形成浆液的一个流通通路。通过该通路注入的浆液即可填充到前方。

后继注入的浆液重复与①过程完全相同的②③两过程的同时,依次把浆液送到前方去。若观察这种类型的连续注浆,就可以看到固结的浆液被连续不断的压到前方。但实际上如图3-4所示,后继浆液是通过位于固结浆液中心部位的通路被依次压送到前方而固结的,此时若使注浆连续停止数分钟,由于通路内浆液凝固,再开机注入时,可发现注入压力猛增,致使注入成为不可能,这是上述浆液通路被闭塞的原因所致。所以用这种瞬凝型浆液作注浆材料,其注入(充填)范围越大,注入阻力(压力)也越大,其结果很可能导致浆液被压入阻力小的周围土体中去。由于不能取得很大的注入范围(距离),所以施工使用受到限制(大断面盾构一点注入的情况等),在进行同步注浆施工时容易造成事故。

3.2盾构同步注浆的目的

盾构同步注浆就是在隧道内将具有适当的早期及最终强度的材料,按规定的注浆压力和注浆量在盾构推进的同时填入管片背部建筑空隙内。其目的是:

①尽早填充地层,减少地表沉陷量,保证周围环境的安全。

②确保管片衬砌的早期稳定性和间隙的密实性。

③作为衬砌防水的第一道防线,提供长期、均质、稳定的防水功能。 ④作为隧道衬砌结构的加强层,使其具有耐久性和一定的强度。

同步注浆是通过同步注浆系统及盾尾的注浆管,在盾构向前推进、管片背部建筑空隙形成的同时进行,浆液在空隙形成的瞬间及时填充,从而使周围土体及时获得支撑。可有效地防止岩土的坍塌,控制地表的沉降。在地层稳定性差,采用EPB 模式掘进时,同步注浆的重要性更加突出和明显。

3.3盾构同步注浆系统

同步注浆系统为自动注浆系统,使用的注浆泵为全液压双缸双出口活塞注浆泵,该泵由电动液压泵站提供动力。浆液在搅拌站配置好以后,由砂浆运输车(带搅拌叶片)运至注浆站,通过软管抽送至砂浆存储罐内(即搅拌罐),连接好注浆管路,并在设定压力,流量后进行注浆。

3.4同步注浆主要技术参数

3.4.1注浆压力

盾构工法中的同步注浆即向管片背部建筑空隙中充填足够的浆液,注浆压力必须克服地下水压力、土压力及管阻摩擦力等才能将浆液送到空隙中,达到填充作用,但是注浆压力又不能太大,否则会对周围土层产生劈裂作用。因此必须以一定的压力压送浆液,才能使浆液很好的遍及管片的外侧。

下面我们通过理论分析来计算理想注浆压力。下临界注浆压力J P x 下必须维持土块BCEF 的稳定,使之不下塌;上临界J P s 必须维持土块ABCDEF 的

稳定,使之不隆起。理想的J P n 就落在这个范围内。因为实际土体塌落范围

为A BCD EF ,,,若将上下临界J P 值分别乘以及除以一个安全系数。(n=1.5~

2.5),就可以逐步逼近最优J P n 值。 根据静力学分析:2u J C P h D

γ=-s () 2[45]2u J C H P H l tg D D

?γ=+--x 。() 221[(45)]2n u u J C C H n h P H l tg D D D n

?γγ-<<+--。() 加上沿程管路阻力损失值:2

2

l v P d λρλ?=其中:λ为沿程阻力系数,当

浆液层流时,为64/Re ; Re 为雷诺数;v 为流动速率;l 为浆液压入口到压出口的长度(没有包括由于管子弯曲、变截面引起的阻力损失);d 为管子内径。

所以理想的注浆压力为:n j J P P P =+?。当n 的选取满足:

n =根据以上公式分析得,对上海地铁盾构,在取u C =16Kpa , H=11. 0m ,

?=0时,得到:n=2.18,n J P =220Kpa ,而P λ?=100~200Kpa ,故最佳的注浆压力为n J P =320~420Kpa 。

从上述结论可知,以上的注浆压力和国外研究的是吻合的。实际上,在上海地铁盾构施工中,注浆压力正是大约在0. 3Mpa ~0. 4Mpa ,为拱顶土压的2倍以上,并略大于隧道拱底的土压力,在管片背面测得的浆液压力大概为0.2Mpa ,原因正是注浆时沿管道产生压力损耗,并且管口有扩散效应。从以上可以看出,上海地铁的同步注浆的注浆压力是合适的。

初期阶段,为了保证管片背部建筑空隙得到充分填充,曾特意尽可能用较高压力进行注浆,但是出现过螺栓断裂甚至管片从顶部坠落的事件。

目前,一般采取的是设定一个稍微偏高的注浆压力并同时进行注入量的管理。

3.4.2注浆量

注浆量的确定是以管片背部建筑空隙量为基础并结合地层、线路线性及掘进方式等考虑适当的饱满系数,以保证达到充填密实的目的。根据施工实际,这里的饱满系数包括由注浆压力产生的压密系数、取决于地质情况的土质系数、施工消耗系数、由掘进方式产生的超挖系数等。一般主要考虑土质系数和超挖系数。

土质系数取决于地层特征,一般取值为1. 1~1.5。在完整性好、自稳能力强的硬质地层中,浆液不易渗透到衬砌周围的土体中去,可取较小土质系数甚至不用考虑。但在裂隙发育的岩质地层或以砂、砾石为主的大渗透系

数地层浆液极易渗透到周围的土体中,因此对这样的地层应考虑较大的土质系数,可取1.3~1.5。在以粘土、粉砂为主的小渗透系数地层中,浆液在注入压力的作用下也会对土体产生劈裂渗透,故也应考虑1. 1~1. 3的土质系数。超挖系数是正常情况下管片背部建筑空隙的修正系数,一般只在曲线段施工中产生(直线段盾构机机体与隧道设计轴线有较大夹角时也会产生,其值一般较小可不予考虑),其具体数值可通过计算得出。

以上饱满系数在考虑时需累计。

同步注浆量经验计算公式:

Q V λ=?

V ~充填体积(盾构施工引起的空隙,3m );

λ~注浆率(一般取130%~180% );

22()/4V D d L π=-

D ~盾构切削外径;

D ~预制管片外径;

L ~回填注浆段长度,即预制管片衬砌每环长度。

3.4.3注浆速度

注浆速度由注浆泵的性能,单环注浆量确定,应与掘进速度相适应。

3.5注浆材料及配比

同步注浆材料为水泥砂浆,由水泥、砂、粉煤灰和水组成,外加剂为膨润土等。

从施工中的浆液配比使用情况分析,初步得出如下几点结论:

(1)对于较坚硬,有其一定的自稳能力的岩层,要均匀地充填地层,就必须增加浆液的流动性,因此浆液配比要在保证砂浆稠度、倾析率、固结率、强度等指标的基础上延长其凝胶时间,控制在12~30 h ,以获得更为均匀的填充效果。

(2)对于较软弱、其自稳能力较差的岩层,注浆后希望能尽快获得浆液固结体强度,因此浆液配比要保证砂浆的固结率和强度,并将凝胶时间适当缩短为5~7 h ,以便在较短的时间内加固地层,增强地层的稳定性。

(3)在富含水地层中,要求浆液的保水性要好,不离析,凝胶时间为5~

6 h。另外,若在同步注浆后还漏水,则应进行补注水泥~水玻璃双液浆,以达到固结堵水的目的。

(4)在盾构始发和到达段,总体上要求缩短浆液凝胶时间,以便在填充地层的同时能尽早获得浆液固结体强度,保证开挖面安全并防止从洞口处漏浆。由于各始发和到达段的地质条件不同,在此只能定性地下此结论。由此可见,同步注浆材料受地质条件、地下水状况、施工技术等多方而因素的影响,所以,要充分考虑这些因素,在满足设计要求的前提下,有针对性地进行配比设计,并根据现场实际情况进行调整,这样所配制的浆液,不但各项指标能满足施工要求,而且有良好的经济性,有利于降低施工成本。

3.6同步注浆施工工艺

注浆工艺是实现注浆目的、保证地面建筑物、地下管线、盾尾密封及衬砌管片安全的重要一环,因此必须严格控制,并依据地层特点及监控测量结果及时调整各种参数,确保注浆质量和安全。

为了使环形空隙能较均匀地充填,并防止衬砌承受不均匀偏压,同时对盾尾预置的4个注浆孔进行压注,在每个注浆孔出口设置分压器,以便对各注浆孔的注浆压力和注浆量进行检测与控制,从而获得对管片背后的对称均匀压注。同步注浆施工工艺流程见图3-6。

图3-6同步注浆施工工艺流程

3.6.1质量保证措施

(1)注浆前进行详细的浆液配比试验,选定合适的注浆材料及浆液配比,保证所选浆液配比、强度、耐久性等物理力学指标符合设计施工要求。

(2)制订详细的注浆施工设计和工艺流程及注浆质量控制程序,严格按要求实施注浆并进行检查、记录和分析,及时做出P(注浆压力) ~Q(注浆量)~t (时间)曲线,分析注浆效果,反馈指导下次注浆。

(3)根据洞内管片衬砌变形和地面及周围建筑物变形监测结果,及时进行信息反馈,修正注浆参数及设计和施工方法,发现情况及时解决。

(4)做好注浆孔的的密封,保证其不渗漏水。

(5)做好注浆设备的维修保养及注浆材料供应,保证注浆作业顺利连续不间断地进行。

3.6.2注浆结束标准

同步注浆结束标准为注浆压力达到设计压力,注浆量达到设计注浆量的

80%以上。对注浆不足或注浆效果不好的地方进行补强注浆,以增加注浆层的密实性,提高防水效果。

3.6.3结论

(1)在自稳能力较强的中风化、微风化岩地层中,选用敞开模式或半敞开模式开挖,同步注浆压力约为0.1MPa。

(2)在自稳能力较差的强风化、全风化岩地层和粘土层中,选用土压平衡模式开挖,同步注浆压力为0.15~0.2 MPa,必要时进行二次补强注浆以及采取地层加固辅助施工措施。

(3)在有较大涌水的地层中选用土压平衡模式开挖,同步注浆压力可适当增大,至少大于地下水压力。另外,对同步注浆效果不好的地段进行二次补强注浆,以获得有效的充填效果。

(4)针对不同的地层选择合适的浆液配比,进行同步注浆。在自稳能力较强的地层、且在基本无涌水的情况下,选用凝胶时间较长(12 h)的浆液配比,可增加浆液的流动性,以利于获得均匀的充填效果;在自稳能力较差的地层中,应选用凝胶时间较短(一般为5~7 h)的浆液配比,以利尽快获得注浆体的固结强度,防止盾尾空隙内的岩壁塌陷造成地层损失,确保管片的早期稳定性;在地层有较大涌水的情况下,应选用保水性强、凝胶时间较短的浆液配比,如采用水泥~水玻璃双液浆进行补强注浆,以达到固结堵水的目的。

( 5)在自稳性差的软弱粘土地层中,盾构向前推进,土体露出后很快就可能坍塌,待进行注浆时管片背部建筑空隙可能己经很小。因此,同步注浆时,可适当增大注浆压力,以获得更好的充填效果。

(6)在富含水地层中注浆,要求能迅速阻水,快速充填,即要求浆液凝固时间短、粘性大、保水性强、不离析。若掘进时确定土压或气压,则应尽量确保盾尾密封完好,以防土舱中的水由盾尾被压入管片背后。当管片背后己被水充填时,则需提高注浆压力以便地下水随着浆液的推进被挤入土体中。

3.7同步注浆效果评价

3.7.1同步注浆充填率对地表沉降的影响

对于中风化岩地层,采用敞开模式开挖。然而由于注浆量不足,注浆填

充率小于1,累计沉降达9.4 mm。注浆填充率为1.2左右的地段,地表沉降相对较小,一般沉降量小于5mm。在全风化岩或强风化岩地层中,开挖模式由敞开模式改变为土压平衡模式。但由于在开挖模式转变过程中,没有建立合理的土压力,注浆填充率仍采用1.2左右,相对于该地层填充率偏小,所以出现较大地表沉降,最大沉降值达到39.2 mm 。在中风化岩和微风化岩地层中,局部为硬塑残积地层,因该段穿过火车站,为确保铁路安全,仍采用土压平衡模式开挖,注浆填充率大于1.3,这些措施有效地控制了地表沉降,其地表沉降小于5mm。

3.7.2采用超声波检测同步注浆效果

超声波检测是通过注浆前后超声波波速提高幅度的方法来分析注浆质量和效果的,测试仪器采用SYC- 2型声波岩石参数测定仪和FSS型换能器。在检测注浆效果时,通过岩体声速变化规律和测孔注浆压力、注入量等情况进行分析,得出以下结论:

(1)若注浆后信号较弱,声速较低,说明岩层裂隙较多,注浆不足,岩层裂隙没有得到很好地充填;若注浆后波形信号明显,声速值较高,则说明随着注入浆液的充填、固结,形成了比较致密完整的岩体。

(2)在围岩松动圈范围内声速变化较大.而在松动圈范围外声速值、波幅值变化不大。这是因为:松动区域围岩较破碎,注浆时进浆量较多,注浆压力由小到大变化,故此区域声速提高幅度也大,这样可测出浆液的有效扩散距离。

超声波速度是岩体超声波测定的主要参数之一也是衡量岩体结构的主要指标。用超声波检测注浆质量及效果.主要是将其声速测定的结果进行分析和研究。注浆后声速幅度值越大.说明裂隙被充填越密实.注浆质量和效果越好。从而达到了充填间隙和固结堵水的目的。

4 注浆施工中存在的问题及其对策

4.1注浆造成的地表沉降超限

4.1.1造成地表沉降过大的原因

(1)软土地层中没有进行同步注浆。采用管片注浆孔同步注浆的施工过程,如果没有严格的过程控制,或者注浆液初凝时间设定不合理,往往做不

到真正意义的同步注浆。

(2)掘进过程仅以注浆量为控制指标,限定每环的注浆量范围,导致注浆量偏少,不能有效地对盾尾间隙进行填充。这大多发生在以下情况:①某些特殊地段或较小的转弯半径上,土层损失加大;②由于地质条件或其他特殊原因,掘进过程某环出土量剧增,而没有相应增大注浆量;③地层特性变化,却没有相应调整注浆量,如从粘土变为砂土、从粘土变为裂隙水丰富的风化岩层等情况;④盾构机在粘性较高的粘土层掘进时,后壳外壁会附着一层较厚的固结土体,与盾构机同步前进,无形中增大了盾尾间隙。从已有盾构隧道的施工情况石,硬壳层厚度可达10cm。

(3)浆液强度过低,或浆液和易性差,易离析而渗透到地层中,发生浆液损失。浆液拌和时的投料顺序也可能对浆液强度造成较大影响。

(4)某些浆液凝结后,自身收缩量较大;或者双液浆过早初凝,未能有效填充盾尾间隙。

(5)浆液流动性太好,隧道管片最重要的顶部出现无浆液填充;或者双液浆混合不充分,在土中逐渐流失。

(6)没有与监测紧密结合,并以监测成果指导施工。从盾构机掘进过程的地表沉降规律来看,一般盾构机前方地表沉降量在5 mm内时,盾尾穿越这个位置时沉降不会超出规范允许的30 mm。因此,当监测结果显示前方沉降量超过5 mm,又没有及时采取有效注浆措施,沉降超出规范允许范围的可能性相当大。

4.1.2造成地表隆起的原因

(1)注浆压力过大,注浆量偏高。主要在土质软弱的地层出现。如南京某盾构掘进过程,当盾构机经过建筑物时,增大了盾尾注浆压力,盾尾己脱出建筑物下方后,没有及时调整压力,地表出现隆起,甚至有少量浆液沿地层裂隙冒出,污染地表。又如某盾构机在流砂地层始发时,因端头加固质量和洞门密封效果均较差,掘进过程前方有大量流砂涌入,由于其位于一重要道路门下方,为防止地表下沉,采用了二次注浆进行补充注浆,但因为没有控制好注浆压力和注浆量,注浆结束后发现道路中间鼓起近1 m高的小山包,造成交通堵塞,花费了大量财力和时间进行处理。

(2)隧道顶部有连通至地表的渗水通道。如原地质勘探孔,如果没有封堵或封堵效果不佳,浆液会沿该孔喷出或渗出地表,这不仅严重污染地面环境,还可能造成地表隆起。

4.2注浆液从盾尾流入

(1)注浆压力大时,浆液会沿着盾壳流入土仓中,进而从螺旋输送机输出;而注浆压力一旦大于盾尾密封的承压能力,将击穿后尾密封。如果没有及时对后尾密封注入油脂,浆液在盾尾刷中凝固后,会使盾尾密封失效,严重影响施工安全。

(2)管片构造不合理,也会造成注浆液的渗漏。如某盾构管片设计时,过多地考虑了管片拼装过程可能发生混凝土面碰撞而破损的问题,将外弧面接缝处设计成斜角。由于这个接缝的存在,注浆压力稍高,浆液即会沿着盾壳与管片之间的间隙流入。在富水砂层掘进时,外部水土也会沿接缝流入。为解决这个问题,施工过程中必须加大盾尾油脂的自动注入压力,同时密切注意掘进过程发生渗漏的部位,及时用手动注入方式在相应位置补充油脂。这种管片构造形式导致盾构掘进过程的盾尾油脂消耗量增加1/2以上。

4.3管片上浮

管片脱出盾尾后上浮的原因主要有:(1)地质情况。从南京地铁盾构施工情况看,淤泥质粉质粘土层的上浮量大于砂层,而从广州地铁盾构施工情况看,中、微风化岩层管片上浮量较大;(2)浆液选型不当,导致浆液早期强度偏低,不能及时与围岩土体形成共同作用;(3)浆液初凝时间控制不当,没有及时填充盾尾间隙或填充效果不佳;(4)注浆位置选择不当,采用管片注浆孔注浆时,以中下部注浆孔为注浆孔位。

广州、上海、南京等地铁盾构施工中,都不同程度地出现过管片脱出盾尾后上浮的现象。近期在某城市盾构施工中,管片脱出盾尾后最大上浮量达170 mm。分析管片上浮原因,不仅仅与地层情况有关,浆液的种类、配比、注浆压力、注浆位置等都会对管片上浮产生一定影响。以上工程实例,所用盾构机是土压平衡盾构,盾尾间隙15cm,在微风化砂岩中掘进,由于采用了惰性浆液作为注浆材料,浆液初凝时间长,强度与围岩强度相差太大,隧道成形后,在裂隙水作用下上浮,而浆液无法快速凝结以抵抗浮力的作用,造成管片上浮。然而,浆液强度也不能过高,否则,会造成浆液过早凝固而堵塞注浆管路。

4.4注浆系统管路堵塞

管路堵塞是注浆过程最常见、最易发生的问题。注浆系统管路包括注浆

管路堵塞、输浆管路堵塞等,主要是由于浆液初凝时间偏短、强度高、工序衔接不合理等原因造成。采用长距离管路输送的,尤其容易发生管路堵塞现象,浆液在管路中的损失量较大。如某城市一盾构隧道掘进初期,拟采用通过盾尾注浆管进行注浆的同步注浆系统,计划下一环浆液的拌制在上一环管片拼装时即开始,但由于管片拼装花费时间过长,期间没有对浆液采取任何处理措施,架上掘进速度很慢,导致浆液堵塞了同步注浆管,因没有配备专用疏通工具,导致浆液在注浆管中凝固,最后只能变换注浆工艺,采用管片注浆孔进行注浆。

4.5管片注浆孔渗漏

从管片注浆孔进行注浆时,如果处于砂层、流塑状淤泥质地层或地下承压水较高的地层中,开孔时,外部的水土很可能涌入而造成隧道偏移,地表沉降。

4.6盾构注浆主要控制措施

(1)盾构机设计制造时,应根据地层情况,选择不同的盾尾注浆方式。在条件允许的情况下,尽可能采用通过安装在盾尾的注浆管进行同步注浆的方式,注浆过程应设计为自动控制。并将通过管片注浆孔注浆作为备选注浆方案或补充应急方案。

(2)合理选择注浆液类型。①惰性浆液初凝时间长,制备成本低,在上海等软弱地层为主的地区应用较为广泛,但由于其强度较低,抗渗性能差,不利于隧道衬砌的早期稳定和隧道防渗效果。硬性浆液制备成本相对较高,初凝时间较长,早期具有一定强度,对于隧道衬砌的稳定较为有利。双液浆初凝时间很短,强度高,相对另外两种浆液而言,注入量最少,沉降量最少,注浆效果最佳,广泛适用于各种地层,但施工工艺较为复杂,施工过程控制要求较高。②根据隧道区段变化而调整。在靠近洞门和联络通道前后的注浆,应提高浆液强度和抗渗性能;洞门结构和联络通道施工前,还需用双液浆等进行一次注浆补强。③根据地质情况变化而调整。正式掘进前,应根据地质勘探和补充地质勘探成果,进行浆液配合比试验,最好是单液浆和双液浆配比均准备2组以上;浆液初凝时间、早期强度和28d强度均满足与围岩共同作用的要求;液化地层,还应进行浆液抗液化试验。④根据浆液运输方式选择。

(3)合理选择注浆压力、注浆量、注浆位置。正常施工阶段,以注浆压力

控制注浆量,沉降控制要求相当高的地段,采用注浆压力和注浆量双重控制标准。为防止盾尾被击穿,注浆压力不能大于盾尾密封所能承受的设计压力,一般不宜大于0.4 MPa。

(4)加强管片沉浮的监测,摸清盾构机通过不同地质断面的沉浮规律,以相应调节盾构机姿态和注浆参数。为控制管片上浮,并防止因浆液流动性好而造成隧道顶部出现无浆液填充现象,在通过盾尾注浆管的同步注浆过程中,宜将位于上部的两根注浆管注浆压力和注浆量提高;在通过管片注浆孔注浆的操作中,一般应选择在顶部的2片管片注浆。

(5)合理选择管片外弧面接缝构造形式。

(6)通过地面沉降监测成果指导盾尾注浆施工,当盾构机某环掘进过程发现出土量远超出理论方量时,则有可能前方地层发生坍塌,应增加盾尾注浆量。

(7)制订详细的注浆施工设计和工艺流程及注浆质量控制程序,严格按要求实施注浆、检查、记录、分析,及时做出P(注浆压力)-Q(注浆量)-t(时间)曲线,分析注浆效果,反馈指导下次注浆。

(8)盾构掘进指令要和浆液拌制指令相配合,避免过早拌制浆液后发生堵管。盾构机停机前应用膨润土等将注浆管充满,以防浆液回流而堵塞注浆管。同时,配备专用疏通器具,制定有效的疏通措施,使注浆管堵塞时能得以及时疏通。

(9)在砂层或透水性高的地层掘进时,若通过管片注浆孔进行注浆,应在管片制造过程即考虑在注浆孔位置理设逆止阀。

盾构同步注浆

盾构同步注浆 当盾片脱离盾尾后,在土体与管片之间会形成一道宽度为3.5mm左右的环行空隙。同步注浆的目的是为了尽快填充环形间隙使管片尽早支撑地层,防止地面变形过大而危及周围环境安全,同时作为管片外防水和结构加强层。 1.1.1.1注浆材料 采用水泥砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。水泥采用42.5R普通硅酸盐水泥,以提高注浆结石体的耐腐蚀性,使管片处在耐腐蚀注浆结石体的包裹内,减弱地下水对管片混凝土的腐蚀。 (1)浆液配比及主要物理力学指标 根据盾构施工经验,同步注浆拟采用表8-5所示的配比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定。同步注浆浆液的主要物理力学性能应满足下列指标: ①胶凝时间:一般为3~10h,根据地层条件和掘进速度,通过现场试验加入促凝剂及变更配比来调整胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比和加入早强剂,进一步缩短胶凝时间。 ②固结体强度:一天不小于0.2MPa,28天不小于2.5MPa。 ③浆液结石率:>95%,即固结收缩率<5%。 ④浆液稠度:8~12cm。 ⑤浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5%。 同步注浆主要技术参数 1.1.1.2注浆压力 注浆压力略大于该地层位置的静止水土压力,同时避免浆液进入盾构机的土仓中。 最初的注浆压力是根据理论的静止水土压力确定的,在实际掘进中将不断优

化。如果注浆压力过大,会导致地面隆起和管片变形,还易漏浆。如果注浆压力过小,则浆液填充速度赶不上空隙形成速度,又会引起地面沉陷。一般而言,注浆压力取1.1~1.2倍的静止水土压力,最大不超过3.0bar。 由于从盾尾圆周上的四个点同时注浆,考虑到水土压力的差别和防止管片大幅度下沉和浮起的需要,各点的注浆压力将不同,并保持合适的压差,以达到最佳效果。在最初的压力设定时,下部每孔的压力比上部每孔的压力略大0.5~1.0bar。 1.1.1.3注浆量 根据刀盘开挖直径和管片外径,可以按下式计算出一环管片的注浆量。 V=π/4×K×L×(D12-D22)式中: V ——一环注浆量(m3) L ——环宽(m) D1——开挖直径(m) D2——管片外径(m) K——扩大系数取1.5~2 代入相关数据,可得: V=π/4×(1.5)×1.2×(40.2-38.4)=2.5~3.4 m3/环 上面经验公式计算中,注浆量取环形间隙理论体积的1.5~2倍,每环(1.2m)注浆量Q=2.5~3.4m3。 1.1.1.4注浆时间和速度 在不同的地层中根据需不同凝结时间的浆液及掘进速度来具体控制注浆时间的长短。做到“掘进、注浆同步,不注浆、不掘进”,通过控制同步注浆压力和注浆量双重标准来确定注浆时间。 注浆量和注浆压力均达到设定值后才停止注浆,否则仍需补浆。 同步注浆速度与掘进速度匹配,按盾构完成一环掘进的时间内完成当环注浆量来确定其平均注浆速度。 1.1.1.5注浆结束标准及效果检查 采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的85%以上时,即可认为达到了质量要求。 注浆效果检查主要采用分析法,即根据压力-注浆量-时间曲线,结合管片、地表及周围建筑物量测结果进行综合评价。对拱顶部分采用超声波探测法通过频谱分

盾构同步注浆

1.1. 盾构同步注浆 当盾片脱离盾尾后,在土体与管片之间会形成一道宽度为140mm 左右的环行空隙。同步注浆的目的是为了尽快填充环形间隙使管片尽早支撑地层,防止地面变形过大而危及周围环境安全,同时作为管片外防水和结构加强层。 1.1.1. 注浆材料 采用水泥砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。水泥采用普通硅酸盐水泥,以提高注浆结石体的耐腐蚀性,使管片处在耐腐蚀注浆结石体的包裹内,减弱地下水对管片混凝土的腐蚀。 根据盾构施工经验,同步注浆拟采用下表所示的配比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定。 同步注浆浆液的主要物理力学性能应满足下列指标,见表7-6 : 表7-6同步注浆材料配比和性能指标表 ⑴胶凝时间:一般为3?10h,根据地层条件和掘进速度,通过现场试验加入促凝剂及变更配比来调整胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比和加入早强剂,进一步缩短胶凝时间; ⑵固结体强度:一天不小于0.2MPa, 28天不小于2.5MPa ⑶浆液结石率:>95%,即固结收缩率<5% ⑷浆液稠度:8?12cm ⑸浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5% 1.1. 2. 同步注浆主要技术参数 1.1. 2.1.注浆压力 注浆压力略大于该地层位置的静止水土压力,同时避免浆液进入盾构机的土仓中。 最初的注浆压力是根据理论的静止水土压力确定的,在实际掘进

中将不断优化。如果注浆压力过大,会导致地面隆起和管片变形,还易漏浆。如果注浆压力过小,则浆液填充速度赶不上空隙形成速度,又会引起地面沉陷。一般而言,注浆压力取 1.1?1.2倍的静止水土 压力,最大不超过3.0?4.0bar。 由于从盾尾圆周上的四个点同时注浆,考虑到水土压力的差别和防止管片大幅度下沉和浮起的需要,各点的注浆压力将不同,并保持合适的压差,以达到最佳效果。在最初的压力设定时,下部每孔的压力比上部每孔的压力略大0.5?I.Obar。 1.12 2.注浆量 盾构掘进注浆采用盾尾同步注浆,随着盾构推进,脱出盾尾的管片与土体间出现“建筑空隙”,该空隙用浆液通过设在盾尾的压浆管予以充填。由于压入衬砌背面的浆液会发生失水收缩固结、部分浆液会劈裂到周围地层中,还有曲线推进、纠偏或盾构机抬头等原因,使得实际注浆量要超过理论建筑空隙体积。 每推进一环的建筑空隙为:n (6.482 — 6.22 ) X 1/4 X 1.2=3.35m3 开挖直径:①6.48m;管片外径:①6.2m 考虑到地层扩散系数,每环的压浆量一般为建筑空隙的150%-200%即每推进一环同步注浆量为 5.019 m3?6.692 m3,按地层的 不同注浆量也要因地制宜,应以注浆压力与数量进行双控来评价注浆最终量。 1.1. 2. 3. 注浆时间和速度 在不同的地层中根据需不同凝结时间的浆液及掘进速度来具体控制注浆时间的长短。做到“掘进、注浆同步,不注浆、不掘进”,通过控制同步注浆压力和注浆量双重标准来确定注浆时间。 注浆量和注浆压力均达到设定值后才停止注浆,否则仍需补浆。 同步注浆速度与掘进速度匹配,按盾构完成一环掘进的时间内即完成当环注浆量来确定其平均注浆速度。 1.1. 2.4. 注浆结束标准及浆效果检查 采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的85%以上时,即可认为达到了质量要求。 注浆效果检查主要采用分析法,即根据压力-注浆量-时间曲线,结合

0309-盾构法隧道工程施工技术及应用考试试卷A答案

《盾构法隧道施工技术及应用》考试试卷答案(A) (隧道及地下结构工程管理人员2007年第一期培训班)单位:姓名:学号:成绩: —、是非题(正确的打“√”,错误的打“×”,每题1分,共15分) 1、所有盾构的形式,其本体从工作面开始均可分为切口环、支撑环和盾尾三部分。(√) 2、密封式盾构掘进机适合于渗水沙土和沙砾(少量沙砾)土质。(×) 3、SMW工法优点之一是对周围地基影响小,对临近土体扰动小,不致产生临近地面下沉, 房屋倾斜,道路裂损或地下设施破坏等。(√) 4、盾构隧道施工中为避免因材料问题而出现返工现象,应对管片,连接件,放水材料,注 浆材料等进行质量检查。(√) 5、盾构进洞的封门一般是采用外封门形式。(×) 6、管片的张角是指两块端面接头缝在径向向外张开称内张角,反之称外张角。(×) 7、网格挤压式盾构基本构造可分为:盾构壳体、拼装系统、推进系统三大部分。(×) 8、在泥水平衡式盾构掘进时采用同步注浆,也是为了防止泥水后窜。(√) 9、垂直顶升施工处于已建隧道内施工,施工时受潮汐、汛浪、气候变化等自然条件的影响, 使垂直顶升不能够“全天候”施工。(×) 10、选择几何定向测量成本低,收敛快,可靠性强,不受施工条件影响,任何施工企业在经 济上都能承受。(√) 11、盾构法隧道施工中的一道关键工序是管片拼装(×) 12、盾构推进过程中,由于正面阻力过大造成盾构推进困难和地层隆起变形(√) 13、盾构发生后退,应及时采取预防措施防止后退的情况进一步加剧,如因盾构后退而无法 拼装,可进行二次推进( √) 14、推进主溢流阀损坏或推进油泵损坏将直接导致盾构推进压力降低( √)

地铁隧道盾构法施工中的地面沉降问题探析

地铁隧道盾构法施工中的地面沉降问题探析 摘要:随着我国经济的高速发展,我国地铁高速发展,盾构法具有不影响地面 交通、对周围建(构)筑物影响小、适应复杂地质条件、施工速度快等众多优点而 在地铁工程建设中广泛应用。但盾构法隧道工程是在岩土体内部进行的,无论其埋深大小,开挖施工都不可避免地会对周围土层产生扰动,从而引起地面沉降(或隆起),危机邻近建筑物或地下管道等设施的安全。因此,施工能产生多大的沉降或隆起, 会不会影响相邻建筑物的安全,是地铁隧道盾构施工中最关键的问题。要在地铁工程施工前对工程可能引起的地面沉降问题有所估计,就首先需要了解盾构法施工引起的地面沉降的一般规律和机理,进而提出相应的安全判别标准和控制原则,达到 事先防控的目的。 关键词:地铁隧道;盾构法;地面沉降 引言 随着城市交通事业的高速发展,在地铁施工中盾构施工最为普遍,地铁施工引发的地面 沉降问题逐渐受到了人们的重视,怎样对盾构施工中的地面沉降问题进行合理的预测和防范,成为了地铁盾构施工亟需解决的重要问题。本文主要阐述了有关地铁隧道盾构法施工中的地 面沉降问题研究。 1地铁隧道盾构施工引起地面沉降主要影响因素分析 1.1覆土厚度H和盾构外径D的影响 在地铁施工过程中隧道盾构技术非常重要,盾构外径越大,由盾构施工引起的单位长度的 地层损失就越大,在相同地面沉降槽宽度下,最大地面沉降也随着增大;而隧道覆土厚度越大,则 最大地面沉降值就会越小,但地面沉降槽宽度会越大。最大地面沉降随覆土厚度H与盾构外径 D的比值即H/D的增大而减小。 1.2盾构到达时的地层沉降,开挖面前的沉降或隆起 在地铁隧道施工过程中,沉降是非常重要的,自开挖面距观测点约3m-10m时起,直至开 挖面位于观测点正下方之间所产生的隆起或沉降现象。实际施工过程中设定的盾构土压舱压 力很难与开挖面土体原有土压力达到完全的平衡,多因土体应力释放或盾构反向土仓压力引起 的土层塑性变形所引起。 1.3盾构穿越土层性质 隧道开挖在软土层中,主要的土层性质有砂质粉土、淤泥质粘性土、砂土层以在不同的 土层穿越中对地面沉降也有不同的影响。在保持其他工艺条件都不变的情况下,穿越砂土层 相对于黏土层来说,其沉降槽宽度的系数也更小,因此沉降量也是最大的。设地层损失率为2%,盾构埋深为 10m,盾构半径为 3.2m,计算分析穿越不同土层的宽度系数与沉降量的关系。通过计算分析后可知,在穿越不同土质时地面沉降效应也不同,穿越黏土时的沉降槽宽 系数最大,对地面沉降影响的范围也最大,穿越砂质粉土层,宽度系数比黏土层小,沉降量 显著,在穿越砂土地面时沉降量最大。 1.4盾尾间隙沉降 隧道施工过程中,地表沉降是由于地铁盾尾通过测点后产生的,一般的范围约在后尾通过 测点后0-20m范围。由于盾构外径大于管片外径,管片外壁与周围土体间存在空隙,往往因注 浆不及时和注浆量不足,管片周围土体向空隙涌入,造成土层应力释放而引起地表变形,这一期 间的地表沉降约占总沉降的40%-45%。 2盾构隧道的地面沉降机理 在盾构隧道施工开挖的过程中,地面沉降是由于面的附加应力、应力释放等引起地层产 生的弹塑性变形。隧道施工所引起的地面沉降,主要包括开挖卸载时开挖面周围土体向隧道内 涌入所引起的地面沉降,支护结构背后的空隙闭合所引起的地面沉降,管片衬砌结构本身变形 所引起的地面沉降以及隧道结构因整体下沉所引起的地面沉降,可称为开挖地面沉降。盾构法 隧道在施工期的地面沉降可认为主要由开挖沉降、固结沉降和次固结沉降组成,而次固结沉降

浅论上海地铁盾构法施工的隧道后期变形

浅论上海地铁盾构法施工的隧道后期变形 摘要文章以上海市轨道交通M8线淮海路站~复兴路站区间隧道的施工为例,对引起隧道施工后期变形的多种因素进行分析,并阐述了防治措施。 关键词盾构法隧道后期变形影响因素防治措施 1 概述 在上海地铁隧道施工过程中,经常发现已拼装成环的隧道在刚离开盾尾或脱离盾尾3~4环后,就发生环面不平整现象,即D块管片滞后于B1、B2块管片,B1、B2块管片滞后于L1、L2块管片,从而产生管片角部碎裂,影响隧道的施工质量。 通过对环缝错位现象的分析,认为这种现象是由于成环管片在出盾尾后发生了隧道的后期变形(上浮或沉降)而导致的。以上海轨道交通M8线复兴路站~淮海路站区间隧道施工的有关数据为依据,阐述影响隧道后期变形的各种因素,并介绍相应的防治措施。 2 工程概况 上海轨道交通M8线复兴路站~淮海路站区间隧道起始于复兴路站北端头井,止于淮海路站南端头井,推进里程为SK20+236.595~SK19+409.846,全长826.749 m,在SK19+785.640处设有1条联络通道。土压平衡盾构机由复兴路站北端头井下井,出洞后上行线沿西藏南路往北推进,途径自忠路、方浜路、浏河路、会稽路、寿宁路、桃源路、淮海路,穿越众多管线后到淮海路站南端头井。盾构机在淮海路站端头井内调头后,下行线沿西藏南路往南推进到复兴路站北端头井(见图1)。 图1 区间隧道示意图 3 工程地质 工程地质是影响隧道后期变形的主要因素之一。 本工程隧道穿越的土层为④淤泥质粘土层、⑤1粉质粘土层,各土层性能指标及特征见表1。

4 影响隧道后期变形的主要原因及分析 4.1 设计轴线 复兴路站~淮海路站区间隧道最大坡度为-11.675‰,隧道顶覆土厚9.0~16.3 m。上、下行线隧道推 进竖向轴线坡度见表2。

土压平衡盾构施工工艺

16土压平衡盾构施工工艺 16.1总则 16.1.1适用范围 本标准适用于采用土压平衡式盾构机修建隧道结构的施工。 16.1.2编制参考标准及规范 16.1.2.1地下铁道工程施工及验收规范(GB 50299-1999)。 16.1.2.2地下铁道设计规范(GB 50157-2013)。 16.1.2.3铁路隧道设计规范(TB10003-2016)。 16.1.2.4盾构掘进隧道工程施工验收规范。 16.1.2.5公路隧道施工技术规范(JTJ042-94)。 16.1.2.6公路工程质量检验评定标准(JTGF80/1-2004)。 16.2术语 16.2.1土压平衡式盾构 土压平衡盾构也称泥土加压式盾构,它的基本构成见图16.2.1。在盾构切削刀盘和支承环之间有一密封舱,称为“土压平衡舱”,在平衡舱后隔板的中间装有一台长筒形螺旋输送器,进土口设在密封舱内的中心或下部。用刀盘切削下来的土充填整个

16.2.2 端头加固 为确保盾构始发和到达时施工安全,确保地层稳定,防止端头地层发生坍塌或涌漏水等意外情况,根据各始发和到达端头工程地质、水文地质、地面建筑物及管线状况和端头结构等综合分析,确定对洞门端头地层加固形式。 16.2.3 盾构后座 盾构刚开始掘进时,其推力要靠工作井井壁来承担。因此,在盾构与井壁之间需要设传力设施,此设施称为后座。 16.2.4 添加材 采用土压平衡盾构掘进时,为改善土体的流动性防止其粘附在盾构机上而注入的一些外加剂。添加材的功能是:辅助掘削面的稳定(提高泥土的塑流性和止水性);减少掘削刀具的磨耗;防止土仓内的泥土压密粘附;减少输送机的扭矩和泵的负荷。 16.3 施工准备 16.3.1 技术准备 16.3.1.1 根据隧道外径、埋深、地质、地下管线、构筑物、地面环境、开挖面稳定及地表隆陷值等的控制要求,经过经济、技术比较后选用盾构设备。盾构选型流程如图16.3.1.1所示。 16.3.1.2 认真熟悉工程设计文件、图纸,对工程地质、水文地质、地下管线、暗

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技 术方案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 图1盾构隧道施工流程图 1.2盾构始发流程图 图2 始发流程 图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约200t ,分解为 5 块,最大块重约60t 。综合考虑吊机的起吊 能力和工作半径,安排1 台200t 和一台40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图3。 图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。 图4盾构管片反力架示意图 掘进

图5 盾构始发托架示意图 3.盾构机安装调试 3.1盾构机的安装主要工作 1.盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接。 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4.台车顶部皮带机及风道管的连接; 5.刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1.刀盘转动情况:转速、正反转; 2.刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩; 4.推进千斤顶的工作情况:伸长和收缩; 5.管片安装器:转动、平移、伸缩; 6.保园器:平移、伸缩; 7.油泵及油压管路; 8.润滑系统; 9.冷却系统; 10.过滤装置; 11.配电系统; 12.操作控制盘上各项开关装置、各种显示仪表及各种故障显示灯的工作情况。 盾构机在完成了上述各项目的检测和调试后(具体应遵照盾构机制造厂家提供的操作手册进行),即可判定该盾构机已具备工作能力。 4.盾构进洞 1.盾构进洞前50 环进行贯通测量,以确定盾构机的实际位置和姿态。此后的掘进不允许有大的偏差发生,逐渐按偏差方位调整盾构机姿态和位置,满足盾构进洞尺寸要求。这一调整应在盾构刀盘进入洞前加固土前完成,以避免盾构进洞发生意外。

公路隧道施工盾构法、沉管法介绍(全国公路水运工程质量检测专业技术人员继续教育)

公路隧道施工盾构法、沉管法介绍 第1题 沉管隧道施工工序中,沉管与连接之后的工序是()。 A.预制管段 B.修建临时干坞 C.基础处理 D.回填覆盖 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第2题 ?关于盾构法,下列()的说法是错误的。 A.盾构法是暗挖隧道的一种施工方法 B.盾构法穿越地面建筑群的区域时,周围可不受施工影响 C.盾构机推进系统包括推进千斤顶和液压系统 D.盾构壳体由切口环和支承环两部分组成 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第3题 盾构机的外壳沿纵向从前到后可分为前盾、中盾、后盾三段。通常所指的支承环是() A.前盾 B.中盾 C.后盾 D.盾尾 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第4题 泥水平衡盾构开挖的渣土以()形式输送到地面。 A.岩石

B.泥浆 C.土体 D.砂浆 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第5题 以下不属于盾构始发端头加固方法的是()。 A.旋喷桩法 B.注浆法 C.内嵌钢环 D.冻结法 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第6题 ()盾构机配备有泥水分离处理系统。 A.土压平衡 B.硬岩TBM C.双护盾TBM D.泥水平衡 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第7题 以下()设备不属于盾构机后配套设备。 A.注浆系统 B.管片运输设备 C.出土设备 D.刀盘 答案:D 您的答案:D

题目分数:4 此题得分:4.0 批注: 第8题 以下()工序不属于盾构始发阶段。 A.安装反力架 B.凿除洞门 C.拼装负环管片 D.到达端口加固 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第9题 沉管隧道按照管段的制作方式分为()和干坞型。 A.圆形 B.矩形 C.钢筋混凝土 D.船台型 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第10题 以下()不属于沉管隧道优势。 A.可浅埋,与两岸道路衔接容易 B.结构为现浇混凝土,造价低 C.防水性能好 D.对地质水文条件适应能力强 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第11题

盾构法隧道施工同步注浆技术

盾构法隧道施工同步注浆技术 1 盾构法隧道施工 1.1盾构法隧道施工历史回顾 盾构法是在软土地基中修建隧道的一种先进的施工方法,用此法修建隧道在欧洲、美国己有160年的历史。盾构机最早是由法国工程师M.I.Brunel 于1825年从观察蛀虫在木头中钻洞,并从体内排出粘液加固洞穴的现象,从仿生学角度研制发明的。并于1843年由改进的盾构在英国伦敦泰晤士河下修建了世界上第一条矩形盾构(宽11.4m,高6.8m )隧道,全长458m。其后,P. W.Bahow于1865年用直径2.2m圆形盾构又在泰晤士河下修建一条圆形截面隧道。1874年,J.H.Greathead第一次采用气压盾构,并第一次开始在衬砌背后进行压浆,修建了伦敦城南线地铁。1880~1890年间,用盾构法在美国和加拿大的圣克莱( St.Clair)河下建成一条直径6.4m,长1870m的Sarnia 水底隧道。仅在纽约,从1900年后,使用气压盾构法先后成功地修建了25条重要的水底隧道。 盾构隧道在用于修建地下铁道,污水管道时,得到了广泛的应用。前苏联自1932年开始用直径6.0m及直径9.5m的盾构前后在莫斯科、列宁格勒等地修建地下铁道的区间隧道及车站。在德国慕尼黑和法国的巴黎的地下铁道修建中,均使用了盾构掘进法。日本于1922年开始用盾构法修建国铁羽线折渡隧道。从六十年代起,盾构法在日本得到了飞速发展,土压平衡盾构就是七十年代发明的。 我国第一个五年计划期间,在东北阜新煤矿,用直径2.6m的盾构进行了疏水巷道的施工。1957年起在北京市区的下水道工程中采用过直径2.0m 及直径2.6m的盾构。上海从1960年起开始了用盾构法修建黄浦江水底隧道及地下铁道的实验研究,从1963年开始在第四纪软弱饱和地层中先后用直径4.2m、5.6m、10.0m、3.6m、3.0m、4.0m、6.2m等十一台盾构机进行了实验隧道,地铁区间隧道扩大实验工程、地下人防通道、引水及排水隧道工程等的施工。近年来又用国际上先进的土压平衡盾构(EPB)修建了地铁一、二

31盾构注浆施工技术

3-2-31盾构注浆施工技术 1.前言 1.1 盾构注浆施工原理 盾构注浆分同步注浆和二次注浆两种。盾构推进中的同步注浆和衬砌壁后二次注浆是充填土体与管片圆环间的建筑间隙和减少后期沉降的主要手段,也是盾构推进施工中的一道重要工序。 盾构推进过程中,盾尾脱离管片后管片外出现超挖空隙,若不即时回填,扰动地层产生变形、沉降。进而影响其稳定性和地面建筑物,甚至灾难性的破坏。所以盾尾同步注浆显得格外重要。 盾尾注浆(同步注浆)就是在盾构机掘土推进的同时,向盾尾超挖间隙以一定压力注入适量的浆液以填充空隙,最大限度的避免对围岩土的扰动,控制沉降和变形。同步注浆使管片和周围土体形成一个整体,有效的控制了隧道在地层中的稳定性,特别是在小半径曲线时还可以防止隧道外移和变形。二次注浆主要是对同步注浆进行辅助和补充。 1.2盾构注浆施工特点 盾构注浆施工因土质条件、推进速度等确定其浆液材料、注入时期和注入量、注入压力等,需要严格控制各参数以达到预期效果。同步注浆强调的是同步和足量性,二次注浆则根据需要进行施工,是对同步注浆效果不好或者没有填充到位的部分进行注浆,主要使用水泥灰浆进行注入。 由于采用泵压注浆,对浆液的流动性要求较高,所以在浆液的配合比选择上须在考虑土质条件、浆液填充效果的同时考虑浆液粘稠度,以达到浆液能迅速、完好的充填盾尾空隙中去的目的。 1.3适用范围 适用于盾构同步注浆、二次注浆施工。 2.同步注浆施工工艺 2.1工艺流程图 同步注浆施工工艺流程见图2-1 图2-1 同步注浆工艺流程图

2.2浆液选择 2.2.1浆液分类及主要特点 盾构推进施工中的注浆应选择具有和易性好、泌水性小,且具有一定强度的浆液进行及时、均匀、足量压注,确保其建筑空隙得以及时和足量的充填。 浆液根据实际情况的需要有惰性浆液、可硬性浆液及其他形式的浆液。惰性浆液多为非活性材料配合而成,注入后一定时间内不会凝结产生较大强度,其性质一般与隧道周围土体相似为好;可硬性浆液区别与惰性浆液在与添加了一些活性材料,在注入后产生物理、化学反应凝结后有一定强度。另外,根据特殊用途有瞬凝砂浆、加气砂浆等。 1、惰性浆液 主要由粉煤灰、膨润土、砂、水组成,主要用于粉质黏土、细粉质砂土等含水量较高的软土层注浆。由于惰性浆对沉降控制等效果不佳,故现采用较少。 2、可硬性浆液 主要由粉煤灰、少量水泥、砂、水(根据实际情况加入减水剂、缓凝剂等添加剂)组成,主要用于粉质黏土、细粉质砂土等含水量较高的软土层注浆。可硬性浆液对沉降控制良好,在软土地层中得到大量应用。 3、其他浆液 根据特殊用途有瞬凝砂浆、加气砂浆等。 2.2.2浆液类型选择 浆液的选择受土质条件、盾构工法、施工条件、造价等因素等影响,选择浆液的原则是在掌握浆液特性的基础上按实际情况选择最适合条件的浆液。 2.2.3常见的浆液配合比 常见的浆液配合比见表2-1 2.2.4浆液配合比优选试验 浆液实验主要有重度、标准块(70 mm×70mm)强度实验、稠度实验等。通过实验调整浆液配合比。

盾构机同步注浆及二次注浆施工技术总结

盾构机同步注浆及二次注浆施工技术总结 一、同步注浆的作用 二、二次注浆的作用 三、同步注浆操作工艺 四、二次注浆操作工艺 五、注浆效果总体评价

一、同步注浆的作用 由于盾构机刀盘直径为6420㎜,而管片外径6200㎜,所以当管片拼装完成并脱出盾尾后,管片与土体之间形成一个环形间隙,此间隙若不及时填充,可能造成地层变形,致使地表下沉或建筑物下沉。因此,同步注浆填补了这一空白,及时有效的浆液注入施工间隙,抑制了地层变形;也使管片得到部分稳定,防止管片偏移;浆液凝结后具备一定的强度,提高了隧道的抗渗能力;当地下水丰富时,还能预防盾尾水源流入掌子面而造成的喷涌。可以说同步注浆起到了多方面的作用。 二、二次注浆的作用 二次注浆作为盾构施工的一种辅助工法,主要是起到补充的作用。由于同步注浆液凝固后有所收缩,或者是同步注浆没有填充密实,需要二次注浆时补足浆液,同时二次注浆采用双液浆,将衬背的流水通道阻住,防止地下水系统涌入掌子面。但是注浆压力一定不能超过 0.4Mpa,防止击伤管片。 三、同步注浆操作工艺 盾尾同步注浆是利用盾构设备中的同步注浆系统,对随着盾构向前推进、管片衬砌逐渐脱出盾尾所产生的建筑间隙进行及时充填的过程。 1、注浆材料的要求: 同步注浆是保证管片拼装质量的关键所在,其目的在于控制隧道变形,防止管片上浮,提高结构的抗渗能力。良好的浆液性能体现在

一下几个方面:①浆液充填性好;②浆液和易性好;③浆液初凝时间适当,早期强度高,浆液硬化后体积收缩率小;④浆液稠度合适,以不被地下水过度稀释为宜。根据以上几点结合我合同段的地层土质状况,同步注浆采用水泥砂浆。 用于8小时凝固的砂浆配合比如下: 2、注浆压力: 为了使浆液很好的充填于管片的外侧间隙,必须以一定的压力压送浆液。注入压力大小通常选择为地层阻力强度(压力)加上0.1~0.2MPa的和。地层阻力强度是由土层条件及掘削条件决定的,通常在0.1~0.2MPa以下。根据本合同段的地层土质条件,注浆压力初步设定为0.19MPa,现场使用2.5Ba r~3Bar的压力注浆比较合适。 3、注浆量: 同步注浆量的计算:从理论上计算,同步注浆即填充施工间隙。 Q=V a Q-----注浆量 V-----理论填充空隙 a------注入率 地铁规范规定,同步注浆的注入率宜为130%~180%,从施工经验来看,软土地层控制在135%~154%即3.5m3~4m3为宜;硬岩地层

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

盾构法施工同步注浆技术探讨

盾构法施工同步注浆技术探讨 摘要:随着城市地下管廊、地下隧道的兴建,盾构施工技术日趋成熟和完善, 本文结合工程实际,对盾构施工中的同步注浆技术进行分析和探讨,期望对今后 的盾构施工有所帮助和技术发展有所推进。 关键词:盾构;同步注浆;土压平衡;注浆压力 1引言 盾构法隧道具有施工进度快,安全性高,地质适应性强等特点。在适应地质 的各种环境下,盾构机的种类也非常繁多,敞开式,半敞开式,土压平衡式,泥 水平衡式等各种盾构机类型,又有各种刀盘选型。但不管盾构机的种类多少,地 质种类有哪些,所有的盾构施工都是在盾构机在掘进时通过把提前预制好的钢筋 砼管片拼装起来形成隧道。盾构机掘进时刀盘对土体的切削形成一个孔洞,而管 片在尾盾里拼装起来后,管片的外径比刀盘的外径要小,而这个衬砌的建筑空隙,为防止土层的坍塌势必要填充起来,这就是同步注浆。 图1 同步注浆结构示意图 2同步注浆步骤分析 同步注浆,顾名思义就是掘进的同时进行管片壁后注浆,即时的填充管片环 周空隙保证成型隧道特别是覆土地面的安全稳定性。以海瑞克土压平衡式盾构机 为例说明同步注浆方法,此盾构机同步注浆系统由四个液压柱塞泵把台车同步注 浆浆液罐里的砂浆通过尾盾平均分布的四个管路注入到因推进而形成的盾构环型 间隙里。每一个注浆管路各一个压力传感器来监测本管路的注浆压力。 3同步注浆技术参数分析 3.1注浆方量的确定 注浆方量必须根据计算的建筑空隙和地质土层的扩散系数而定了,即: Q=Vλ λ-注浆率/地层注浆扩散系数(根据地质不同一般范围为1.3-2) 理论的环型间隙所占方量根据刀盘外径和管片外径、长度即可算出,公式:V=π(D2-d2)L/4 V-盾构理论空隙(m3) D-刀盘切削外径m d-管片外径m L-管片长度m 在完整性好、自稳定强的硬质地层中,浆液不易渗透到周围的土层里去,可 以取较小的扩散系数甚至不用考虑,但在裂隙发育的岩层或者是以砂、砾为主的 大渗透地层浆液极易渗透到周围的土层中,这样的地层应考虑较大的渗透系数, 可取1.4-1.8。如果这样的地层地下水丰富的话土层的扩散系数还要加大。在以黏土、粉质黏土为主的小渗透系数地层,浆液在有压力的情况下也会对土体产生劈 裂渗透,故应考虑扩散系数为1.2-1.5。超挖系数是正常情况下盾尾建筑空隙的修正,一般只在曲线掘进施工中产生(直线段盾构机盾头与隧道轴线有较大夹角时 也会产生,一般较小不予考虑),其数值可以通过计算得出。 上述的同步注浆量的确定计算公式虽然结合了地质的扩散系数,但还是不能 完全反映实际施工过程中的确定方法。盾构掘进是一个复杂的过程,趋向于设计 轴线前进的同时拼装管片完成隧道衬砌,这个过程中同步注浆液会不会不冲击到

盾构法隧道施工及验收规范GB50446-2017第二部分

1.0.1编制本规范的目的时为了加强盾构隧道工程的施工管理,确保施工过程的工程安全、 环境安全和工程质量,统一盾构法隧道工程的施工技术与质量验收标准。本规范不包括盾构隧道的设计、使用和维护方面的内容 1.0.2本规范为规定的内容应按照国家现行相关标准执行。 2术语 本章给出了本规范有关章节引用的19条术语。目前盾构及其施工技术在术语尚存在地区和 习惯差异,通过本规范统一盾构法施工及验收的相关术语。 本规范的术语主要参考现行国家标准《地铁设计规范》GB50157、《城市轨道交通岩土工程勘 察规范》GB50307、《城市轨道交通工程测量规范》GB50308、《城市轨道交通工程监测技术规范》GB50911、《地下轨道工程施工及验收规范》GB50299及《地下铁道设计与施工》等资料,经编制组集中归纳和整理编入本规范。 本规范的术语时从盾构法隧道施工及验收角度赋予其含义,同时还给出相应的推荐性英文翻译,仅供参考。 3基本规定 3.0.1施工管理体系包括质量管理体系、环境管理体系、职业健康安全管理体系。对于施工 现场管理,除应具有健全的施工管理体系外,还要求有相应的施工技术标准、施工质量控制和检验制度,以及施工人员和设备安全保障和环境保护措施。 对具体的施工项目,要求有经审查批准的施工组织设计和施工技术方案,并能在施工过程中有效运行。对于涉及隧道结构安全、人身安全和环境保护的内容,应有明确的规定和相应的措施。 3.0.3本条为强制性条文。规范操作盾构,并制定应急预案,使其在预定条件和正确操作下 正常使用时确保盾构法隧道施工的重中之重。因此,在施工前应根据盾构类型、地址条件和工程实践,首先由针对性地进行危险源和环境因素的辨识和评估,根据分解结论制定包括盾 构安全操作技术规程、对周边环境的影响及应对措施等在内的专项施工方案和应急预案,确保施工作业在安全和卫生环境下进行。 3.0.7盾构法隧道施工应建立信息管理体系,制定信息管理制度。为便于几时了解施工现场 情况,鼓励有条件的施工现场配置地面远程监控系统,将盾构掘进参数实时传递到地面监控 中心。 3.0.8盾构法隧道工程施工期间,对重要或有特殊要求的建(构)筑物,应及时采取注浆、 加固、支护等技术措施,保证邻近建(构)筑物、地下管线、道路及轨道交通线路等安全。 3.0.9质量验收包括实物检验和资料检查。资料检查包括施工质量验收依据和质量验收记录 等。施工质量验收层次为:生产班组的自检、交接检;施工单位质量检验部门的专业检查和 评定,监理单位(建设单位)组织的验收。 根据有关规定和工程合同的规定,对工程质量起重要作用或有争议的检验项目,有各方参与见证检验,已确保施工过程中关键部位的质量得到控制。 4施工准备 4.1前期调查 4.1.2~4.1.4位防止资料与实际工况条件不符,施工前应进行工程环境的调查和实地踏勘, 位制定施工组织设计提供足够的依据,调查的主要内容有: 1实地踏勘调查各种建(构)筑物的使用功能、结构形式、基础类型及其与隧道的相对 位置等; 2道路种类和路面交通情况; 3工程用地情况,主要对施工场地及材料堆放场地、弃土场地、运输路线等做必要的调

盾构法施工技术

盾构法施工技术 1盾构法 1.1 盾构法简介 盾构法施工是以盾构这种施工机械在地面以下暗挖隧道的一种施工方法。盾构(Shield)是一个既可以支承地层中推进的活动钢筒结构。钢筒的前端设置有支撑和开挖土体的装置,钢筒的中段安装有顶进所需千斤顶;钢筒尾部可以拼装预制工或现浇隧道衬砌环。盾构每推进一环距离,应在盾尾支护下拼装(或现浇)一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆,以防止隧道及地面下沉。盾构推进的反力由衬砌环承担。盾构施工前应先修建一竖井,在竖井处安装盾构,盾构开挖出的土体由竖井通道送出地面。盾构法施工工艺见图1所示。 图1 盾构法施工示意 1.2盾构法施工的优点及适用范围 盾构施工法所具有的优点: 一、可地盾构支护下安全地开挖、衬砌。 二、掘进速度快。盾构的推进、出土、拼装衬砌等全过程可实现机械化、自动化作业,施工 劳动强度低。 三、施工时不影响地面交通与设施,穿越河道时不影响航运。 四、施工中不受季节,风雨等气候条件影响。 五、施工中没有噪声和振动,对周围环境没有干扰。 六、在松软含水在层中修建埋深较大的长隧道往往具有技术和经济方面的优越性。 盾构施工法最适于在松软含水地层中修建隧道,在江河中修建水底隧道,在城市中修建在下铁道及各种市政设施。盾构施工法一般适宜于长隧道施工,有些资料显示,对于短于750m的隧道被认为是不经济的。因为盾构是一种昂贵,针对性很强的专用施工机械,对每一条用盾构法施工的隧道,都需根据地质水文条件、结构断面尺寸专门设计制造,一般不能得意简单的倒用到其它隧道工程中重复使用。此外,对隧道曲线半径过小或隧道顶覆土太浅时,施工困难较大。对水底隧道,覆土太浅时施工不够安全。当盾构施工法有采用全气压方

盾构同步注浆及二次注浆方案[优秀工程方案]

广州轨道交通二、八号线延伸线工程 盾构区间5标盾构工程 盾构同步注浆机及二次 注浆方案 编制单位: 上海吉原公司 编制日期: 二○○七年一月

一.工程概况 【会石区间轨排井~广州新客站】和【江泰路站~跃进村站】两个盾构区间,分别位于番禺区和海珠区.【会石区间轨排井~广州新客站盾构区间】线路从会石区间轨排井开始后向西南延伸,下穿密集鱼塘群、过石壁站,继续向西南穿越浅埋密集鱼塘群,后到达广州新客站,盾构机解体、吊出、转场至江泰路站;【江泰路站~跃进村站盾构区间】线路从江泰路站出发沿江南大道向北至跃进村站. 【会石区间轨排井~广州新客站盾构区间】里程范围为:左线长730.262米+290.093米(含长链0.126米);右线长729.81米+294.42米.【江泰路站~跃进村站盾构区间】里程范围为:右线长721.71米,左线ZCK长722.287米(含长链0.577米).整个标段线路平面最小曲线半径为600米,最大纵坡为25‰. 【会石区间轨排井~广州新客站盾构区间】地处珠江三角洲后缘地带,为珠江水网交错的平原区,根据场地地貌成因及形态特征,区间地貌单元主要表现为珠江三角洲海陆冲积平原地貌;区间沿线为农田、苗圃、鱼塘,塘深2~3米,沿线建筑物少,场地开阔,地下没有管线的铺设,周边正处于规划开发阶段. 【江泰路站~跃进村站盾构区间】沿线地形较平坦,地面高程为13.4米~17.8米,地貌单元属珠江三角洲冲积平原,微地貌单元有河流冲淤积阶地、河床(槽)、微丘台地. 二.衬砌背后注浆的目的 盾构施工中,随着盾构的向前推进,当管片脱离盾尾后,在土体与管片之间会形成一道宽度为115~140米米左右的环行空隙.若不将这一空隙及时充填则管片周围的土体将会松动甚至发生坍塌,从而导致地表沉降等不良后果.为此必须采用注浆手段及时将盾尾建筑空隙加以充填.同时,背衬注浆还可提高隧道的止水性能,使管片所受外力能均匀分布,确保管片衬砌的早期稳定性.

公路隧道施工盾构法、沉管法介绍

第1题 沉管隧道施工工序中,沉管与连接之后的工序是()。 A.预制管段 B.修建临时干坞 C.基础处理 D.回填覆盖 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第2题 ?关于盾构法,下列()的说法是错误的。 A.盾构法是暗挖隧道的一种施工方法 B.盾构法穿越地面建筑群的区域时,周围可不受施工影响 C.盾构机推进系统包括推进千斤顶和液压系统 D.盾构壳体由切口环和支承环两部分组成 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第3题 盾构机的外壳沿纵向从前到后可分为前盾、中盾、后盾三段。通常所指的支承环是() A.前盾 B.中盾 C.后盾 D.盾尾 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第4题 泥水平衡盾构开挖的渣土以()形式输送到地面。 A.岩石 B.泥浆

C.土体 D.砂浆 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第5题 以下不属于盾构始发端头加固方法的是()。 A.旋喷桩法 B.注浆法 C.内嵌钢环 D.冻结法 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第6题 ()盾构机配备有泥水分离处理系统。 A.土压平衡 B.硬岩TBM C.双护盾TBM D.泥水平衡 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第7题 以下()设备不属于盾构机后配套设备。 A.注浆系统 B.管片运输设备 C.出土设备 D.刀盘 答案:D 您的答案:D 题目分数:4

此题得分:4.0 批注: 第8题 以下()工序不属于盾构始发阶段。 A.安装反力架 B.凿除洞门 C.拼装负环管片 D.到达端口加固 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第9题 沉管隧道按照管段的制作方式分为()和干坞型。 A.圆形 B.矩形 C.钢筋混凝土 D.船台型 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第10题 以下()不属于沉管隧道优势。 A.可浅埋,与两岸道路衔接容易 B.结构为现浇混凝土,造价低 C.防水性能好 D.对地质水文条件适应能力强 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第11题 盾构壳体一般分为()部分。

地铁区间隧道盾构法施工技术

地铁区间隧道盾构法施工技术 (中国矿业大学力学与建筑学院地下11-08班刘甲翔) 摘要:随着人类向地下空间的开发,为了能够高效,安全,经济的开发地下空间。根据工程所处的位置以及其安全等级和对周围环境影响的大小因素,相继出现诸多地下空间开挖的施工方法,比如明挖法,暗挖法,盖挖法以及盾构法。而因为地铁的区间隧道大多数位于城市下面,为了减少对地面建筑及交通的影响,对于地表的沉降有严格的要求。而盾构法因其安全,高效以及对地面沉降影响较小,逐渐成为城市地铁主要的施工方法。 关键字:盾构法,施工工艺 一.定义 采用盾构为施工机具,在地层中修建隧道和大型管道的一种暗挖式施工方法。施工时在盾构前端切口环的掩护下开挖土体,在盾尾的掩护下拼装衬砌(管片或砌块)。在挖去盾构前面土体后,用盾构千斤顶顶住拼装好衬砌,将盾构推进到挖去土体空间内,在盾构推进距离达到一环衬砌宽度后,缩回盾构千斤顶活塞杆,然后进行衬砌拼装,再将开挖面挖至新的进程。如此循环交替,逐步延伸而建成隧道。 二.历史及发展 用盾构法修建隧道已有150余年的历史。最早进行研究的是法国工程师M.I.布律内尔,他由观察船蛆在船的木头中钻洞,并从体内排出一种粘液加固洞穴的现象得到启发,在1818年开始研究盾构法施工,并于1825年在英国伦敦泰晤士河下,用一个矩形盾构建造世界上第一条水底隧道(宽11.4米、高6.8米)。在修建过程中遇到很大的困难,两次被河水淹没,直至1835年,使用了改良后的盾构,才于1843年完工。其后P.W.巴洛于1865年在泰晤士河底,用一个直径2.2米的圆形盾构建造隧道。1847年在英国伦敦地下铁道城南线施工中,英国人J.H.格雷特黑德第一次在粘土层和含水砂层中采用气压盾构法施工,并第一次在衬砌背后压浆来填补盾尾和衬砌之间的空隙,创造了比较完整的气压盾构法施工工艺,为现代化盾构法施工奠定了基础,促进了盾构法施工的发展。20世纪30~40年代,仅美国纽约就采用气压盾构法成功地建造了19条水底的道路隧道、地下铁道隧道、煤气管道和给水排水管道等。从1897~1980年,在世界范围内用盾构法修建的水底道路隧道已有21条。德、日、法、苏等国把盾构法广泛使用于地下铁道和各种大型地下管道的施工。1969年起,在英、日和西欧各国开始发展一种微型盾构施工法,盾构直径最小的只有1米左右,适用于城市给水排水管道、煤气管道、电力和通信电缆等管道的施工。

相关主题
文本预览
相关文档 最新文档