当前位置:文档之家› 量子计算机发展简史

量子计算机发展简史

量子计算机发展简史
量子计算机发展简史

量子计算机发展简史

原著:Simon Bone & Matias Castro 翻译:bianca 2003年3月26日

内容摘要

听起来好像有点奇怪,计算机的未来可以被建筑在一杯咖啡周围。那些咖啡因分子恰巧是构建“量子计算机”--一种能够保证提供可在几秒钟内破解密码的思想回应功能的新型计算机的可能组成部件。

内容目录

1.介绍

1.1量子计算机的基本要素

1.2量子计算机的缺点--(电子)脱散性

1.3取得结果

2.通用计算的理论

2.1加热流失的信息

2.2通用量子计算机

2.3人工智能

3.建立一台量子计算机

3.1量子点

3.2计算流体

4.量子计算机的应用

4.1Shor算法--Shor的算法--一个范例

4.2Grover算法

4.3量子机械系统的模拟

5.量子通讯

5.1量子通讯是如何工作的

5.2量子比特的任务

6.当今进展及未来展望

7.结论

8.术语表

9.参照表

9.1书籍

9.2人物

9.3杂志文章

9.4网页

1.介绍

经常会有能使计算机的性能大大改善的新技术出现。从晶体管技术的引进,到超大规模集成电路的持续性发展,科技进步的速度总是如此无情。近日来,现代处理器中晶体管体积的减小成为计算机性能改进的关键所在。然而,这种不断的减小并不能够持续很长的时间。如果晶体管变得太小,那种对量子机械的未知影响将会限制它的性能。因此,看起来这些影响会限制我们的计算机技术,它们真的会吗?在1982年,诺贝尔奖获得者--物理学家Richard Feynman想出了“量子计算机” 的概念,那是一种利用量子机械的影响作为优势的计算机。有一段时间,“量子计算机”的想法主要仅仅停留在理论兴趣阶段,但最近的发展令这个想法引起了每一个人的注意。其中一个进步就是一种在量子计算机上计算大量数据的算法的发明,由Peter Shor(贝尔实验室)设计。通过使用这种算法,一台量子计算机破解密码可以比任何普通(典型)计算机都要快。事实上,一台能够实现Shor算法的量子计算机能够在大约几秒内破解当今任何密码技术。在这种算法的推动下,量子计算机的话题开始集中在动力上,全世界的研究人员都争当第一个制造出实用量子计算机的人。

1.1量子计算机的基本要素

在计算机的经典模型中,最基础的构建要素--比特,只能存在于两种截然不同的状态之一:0或是1。在量子计算机中,规则改变了。一个原子比特--经常被简称为“量比”(quantum bit) --不仅仅存在于传统的0和1状态中,还可以是一种两者连续或重叠状态。当一个量比处于这种状态时,它可以被认为存在于两种领域中:一种为0,而另外一种为1。一个基于这种量比的操作能够同时有效地影响两个值。因此,极为重要的一点是:当我们在量比上实行单一操作时,我们是在针对两种不同的值进行的。类似的,一个双量比系统能对4个值进行操作,而一个三量比系统就是8个值。因此,增加量比的数目能够以指数方式增加我们从系统获得的“量子并行效应”(量子并行效应)。在拥有正确算法类型的情况下,它能通过这种并行效应以远低于传统计算机所花费的时间内解决特定的问题。

1.2量子计算机的缺点--(电子)脱散性

使量子计算机如此强大的关键要点是,它对受量子机械规律决定的奇异的亚原子事件的依赖,而这也使它非常脆弱和难以控制。例如,假想一个处于连续状态的量比。一旦它和环境发生了可调节的相互影响,它就将脱散并落入两种传统状态中的一种,这就是脱散性问题。它已经成为了量子计算机作为建立在由连续性状态所带来的量子并行效应上的潜在力量的绊脚石。这个问题很复杂,即使只是看看量比也会引起它的脱散,这使从一台量子计算机获得结果的过程像量子计算机自己做运算一样难。

1.3取得结果

当一个利用量子并行效应的计算执行后,不同的领域将会得到许多不同的结果。事实上,我们只能通过关注各种结果之间的冲突来获得一个计算的结果。值得注意的是:关注一台量子计算机的结果(或者任何中间状态)将会阻止任何不同版本之间进一步冲突的发生。例如,可以阻止任何有用的量子计算继续进行。这种冲突可以用一个简单的例子来表明:在托马斯.杨(Young)的双缝干涉试验中,光通过两条平行细缝照向屏幕。展现在屏幕上的明暗条纹的图案是相长和相消的结果。用类似的方法,每种状态的计算结果都相长和相消出一个可以测量的结果。这个结果对于不同的算法有着不同的重要性,并且可以用于手工推算问题结果(例如:见Shor's algorithm - An example)。

图1 托马斯.杨(Young)的双缝干涉试验演示了光子的干涉。

2.通用计算的理论

所有计算机,从Charles Babbage的分析解析机(analytical engine)(1936)到建立在PC基础上的Pentium(tm),它们的共性之一,是在Alan Turing的著作中所阐述的古典计算理论。事实上,Turing的著作描述了通用的图灵机的概念,一种非常简单的计算机模型,它能

够被设计用来执行任何被自然地认为可计算的操作。所有的计算机都必然能够实现通用图灵机。尽管它们中的有些可能比其它的更快、更大或更昂贵,但它们在功能上是相同的,它们都能执行同样的计算任务。

2.1加热流失的信息

大量的时间都被花费在研究量子理论是否在计算机器上设置了基本限制。结论是,现在普遍相信:物理学并未在计算机器速度、可靠性和记忆容量上设置任何绝对的限制。然而,有一点需要考虑的是,信息可能在计算过程中被丢失。为了使一台计算机能够运行得快,它的操作必须是可逆的。(例如,它的输入必须完全可以从它的输出推出来)。这是因为不可逆的计算将会引起一种可换算成熵的信息的丢失,因此,系统散热的有限能力将会反过来限制计算机的性能。一个信息丢失的例子是一种常见的与门。一个与门有两个输入而只有一个输出,这就意味着在从输入门移动到输出门的过程中,我们损失了一比特的信息。

1976年,Charles Bennett证明了可以利用非门建立一种通用计算机,这种计算机在表示具有原始可逆操作的程序时不会降低它的速度。而有一种合适而且通用的非门可以用来制造计算机--Toffoli门(见图2)。

图2Toffoli门的输入是完全可以从它的输出推断出来的。

2.2通用量子计算机

Church-Turing理论:“存在或者可以制造一种计算机,这种计算机能够被设计进行任何自然物体能够进行的计算。”

在量子计算理论中,已经取得了一系列重大进步。第一个是由Richard Feynman在1982年发现的:一个简单级别的通用模拟器能够模拟任何既定的自然物体的行为。1984年,David Albert做出了第二个发现:他描述了一种“自我调节量子机器人”,这种机器人能够执行任何传统计算机都无法模仿的任务。通过指导这种机器人进行自我调节,它能够获得仅靠从外界环境进行度量绝对无法获得的“主观”信息。最后而且可能也是最重要的

发现是由David Deutsch在1989年做出的,他证明了所有既定计算机的计算能力遵从于量子计算机的规则,一种可以从一台单一的通用量子计算机中获得的规则。这种计算机可以通过Toffoli门的量子等价以及添加一些能够带来0和1状态的线性重叠的操作来实现。这样,一台通用量子计算机就完成了。这个发现需要对Church-Turing理论:“存在或者可以建造一种计算机,这种计算机能够被设计进行任何自然物体能够进行的计算。”进行一点调整。

2.3人工智能

量子计算理论和人工智能领域有一些有趣的联系。对于一台计算机是否真的能实现人工智能的争论已经持续了数年,并且很大程度上是哲学的争论。那些反对这种观点的人解释说:人类的思想,即使只是在理论上,也不可能在图灵机上实现的。

量子计算理论允许我们从一个有些微不同的视角来看待意识问题。首先值得注意的是,任何自然物体,从一块岩石到整个宇宙,都可以被看做是一台量子计算机;而任何可察觉的自然过程都可以被视为一种计算。在这些标准下,大脑可以作为一台计算机而意识就是一种计算。争论的下一个阶段主要是基于Church-Turing理论,并且证明:因为每一台计算机在功能上都是等价的,每台既定的计算机一定能模仿其它的计算机,所以用一台量子计算机模仿意识理性思维必然是可能的。

一些人相信量子计算机是突破人工智能问题的关键所在,但是另外一些人不同意。牛津大学的Roger Penrose认为,意识需要一种更奇特的(也是未知的)物理学。

3.建立一台量子计算机

一台量子计算机在设计上没有什么类似传统计算机,例如你不能使用晶体管和二极管。为了制造一台计算机就需要产生一种新的技术,一种能使“量比”在0和1之间以连贯重叠的状态存在的技术。尽管实现这个目标的最优方法仍然是未知的,但已有许多方法在实验中,并被证明取得了不同程度的成功。

3.1量子点

一个量比执行的范例是“量子点”,它基本上是一个被困在原子牢笼中的单一电子。当量子点暴露在刚好合适波长的激光脉冲下并持续一段时间,电子就会达到一种激发态:而第二次的激光脉冲又会使电子衰落回它的基态。电子的基态和激发态可以被视为量比的0和1状态,而激光在将量比从0状态撞击到1状态或从1撞击到0的应用,能够被看成是一种对取非功能的控制。

如果激光持续时间只有取非功能要求的一半,那么电子将同时处于基态和激发态的重叠中,这也等价于量比的连贯性状态。而更多复杂的逻辑功能可以通过使用成对的安排好的量子点被模拟出来。因此,看起来量子点是一个合适的建造量子计算机的候选人。然而不幸的是,有许多实际问题阻止了这种情况的发生:

1.电子在衰落回基态之前只能在激发态维持一微秒(百万分之一秒)。需要记住的是,每种激光脉冲需要持续的时间大约是1纳秒。这就对在信息散失前所能做出的运算步骤的数量有了限制。

2.构建量子点是一个非常艰难的过程,因为它们如此微?R桓龅湫偷牧孔拥阒本督鲇?0个原子(1纳米)。而使用这些量子点制造一台计算机的技术到目前为止还不存在。

3.为了避免数以千计的激光射入一个狭小的空间,量子点应当制造以回应不同频率的光。一束能够可靠地进行自我调整的激光将会选择性地瞄准有着不同光频率特性的不同组

别的量子点。又一次的,这是一项还不存在的技术。

3.2计算流体

量子点并不是唯一的经过试验的执行量比,其它技术试图使用个体原子或激光的分化作为信息的媒体,而脱散性是这些技术的普遍问题。人们尝试将这些实验从它们周围环境屏蔽起来,例如在千分之一的绝对零度的温度下将其冷却,然而这些方法在减少这个问题的影响方面取得了极其有限的成功。

量子计算领域的最新发展采用了一个根本性的新方法。这种方法放弃了量子媒质应当小并且和它的周围环境隔离的假设,而是使用大量的分子来储存这些信息。当处于磁场中时,一个分子中的每个核子都会在一个特定方向上的旋转,这个旋转特性可以用来描述它的状态,上旋表示1而下旋代表0。核子磁性共振技术可以被用来检测这些旋转状态,特殊无线电波脉冲能够把核子从上旋(1)撞击到下旋(0),反之亦然。

使用这种技术的量子计算机本身就是一个分子,而它的量比就是分子内的那些核子。但是这种技术并不能只使用一个单一分子来实现这些计算,而是用一整“杯”流体分子。这种方法的优势在于,即使液体分子彼此撞击,每个分子中核子的旋转状态仍能保持不变。脱散性仍然是一个问题,但是到目前为止,在这种技术中脱散前的时间已经比任何其它技术的时间要长许多。研究人员相信,几千个原始逻辑操作能够在量比脱散前实现。

麻省理工学院的Dr.Gershenfield,是流体计算技术的倡导者之一。他的研究队伍已经能够将1和1加起来,这是一个远远超越其它任何正在研究中的技术能力的简单任务。而能够计算更复杂任务的关键在于拥有更多的原比,但是这要求更多复杂的分子以及大量的核子,因此咖啡因分子成为一个可能的候?N蘼壅庵址肿邮鞘裁矗?0量比系统的进步都是显而易见的。Dr.Gershenfield希望这样一个系统在年底,将能够乘以数字15。

超过10量比系统的进步可能会更加困难。在一个给定的“计算流体”样本中,将会有大约偶数个上下旋状态,但是将会有一点在超过一个方向上的旋转存在。正是这些少量额外旋转的所发出的表现得好像它是一个单一分子的信号,使它能够被检测出来以及进行运算操作,而剩下的旋转将会有力地彼此抵消掉。这种信号相当微弱,并且在每个量比被加入的时候,以大约2倍的速度持续性减弱。这就会限制一个系统可能拥有的量比的数目,而易读的输出将会更难以检测出来。

4.量子计算机的应用

非常需要注意的是,一台量子计算机并不一定在所以计算任务上都会比一台传统计算机做得好。例如,乘法运算在一台量子计算机上执行的不比在一台类似的传统计算机上快。为了显示量子计算机的优越性,就需要使用开发量子并行效应能力的算法。这些算法难以阐述,而值得记住的最显著理论化的算法当属Shor的算法和Grover的算法。通过使用好这些算法,量子计算机能够大大优于传统计算机。例如,Shor算法允许以极快的速度因式分解大数字。一台传统计算机在分解1000位阿拉伯数字时需要花费

10,000,000,000,000,000,000,000,000年,而一台量子计算机只需大约20分钟。

4.1Shor算法--Shor的算法--一个范例

这是Peter Shor在1995年发明的算法,它能够快速地分解大数字。如果它曾经被使用过,它将会对密码系统有着深刻的影响,它会威胁到由公钥密码学所提供的安全性(例如RSA)。

受到威胁--公钥密码学

这是当前最常用的发送密码数据的方法。它通过使用两把密钥来工作,一把公开的,一把私人的。公开的密钥用来给数据加密,而私人的密钥用来解密。公开的密钥可以容易地从私人的密钥获得,而反之却不可能。然而,一个掌握着你公开密钥的窃听者原则上可以计算出你的私人密钥,因为它们在数学上是相联系的。为了破解私人密钥,需要分解公开密钥,然而这项任务被认为是无法处理的。

例如,1234乘以3433容易算出来,但计算4236322的因子就不那么容易了。分解一个数的质因子的计算复杂度随该数增长而迅速膨胀。破解RSA129(有129位阿拉伯数字)时,花费了1600位因特网用户8个月的时间。密码破译着认为,更多的数字应当被加到密钥中以抵抗计算机性能的增长(这将花费比宇宙年龄还长的时间来计算RSA140)。然而,对于使用运行Shor算法的一台量子计算机,密钥中的阿拉伯数字个数对问题的难度有着极小的影响。破译RSA140只需花费几秒钟的时间。

Shor算法--一个范例

这部分的目的是说明Shor算法有关的基本步骤。为了使问题相对简单易懂,我们将考察找到数字15的质因子问题。因为算法主要由三步组成,讲解将会分为3个阶段...

阶段1

算法的第一个阶段是将记忆寄存器放入一段它所有可能状态的连贯重叠中。字母“Q”将会用来表示一个处于连贯状态的量比。

图3 一个3量比寄存器可以同时表示8个传统状态

当一个量比处于连贯状态中,它可以被认为存在于两个不同的领域中。它作为“1”存在于一个领域中,而在另一个领域中,以“0”存在(见图1)。将这种想法扩展到3比特寄存器,我们可以想像为寄存器存在于8种不同的领域,在每个领域都可以表现一种传统的状态(例如,000, 001, 010, 011, 100, 101, 110, 111)。为了储存数字15,需要一个4比特的寄存器(能够同时在连贯状态下表现数字0到15)。

在寄存器上执行的计算可以被当做并行的一整组计算,每个领域一个。事实上,一个在寄存器上执行的计算是执行在寄存器所能够表现的所有可能值上的。

阶段2

第二个阶段的算法使用寄存器执行一个运算。运算细节如下:

1.数字N是我们希望分解的,N=15。

2.挑选一个随机数N,1

3.X达到存放在寄存器(寄存器A)中的大小,然后除以N。

4.这个操作的余数被放在第二个位寄存器中(寄存器B)。

图4 第二阶段的操作

这个操作之后,寄存器B包含有各个领域结果的叠加。这可以通过一个例子来极好的证明:如果我们令X为2,那么寄存器B中对应于寄存器A中的每个可能值的内容如下。

表格1 寄存器B的内容,N=15, X=2。

注意到寄存器B的内容符合一个重复的序列(1,2,4,8,1,2,4,8...),而这些重复的频率可以被称作f。在当前这种情况下,重复的频率(1, 2, 4, 8)有4个值,所以f=4。

阶段3

最后一个阶段可能是最难以理解的。重复的频率,f,在使用一台量子计算机时将会被发现,这是通过在寄存器B上执行一个复杂的操作,然后察看那些引起每个领域的结果彼此干扰的内容实现的。作为f的结果而发生的值在接下来的等式中被使用,以计算一个可能的质因子。

图5 用来计算质因子的等式

结果数字并不能保证它是一个质因子,但是是的可能性很大。而生成f值的干扰容易使正确答案作为不正确的答案而互相抵消掉。

在我们的例子中,f=4的值确实给出了一个正确的结果3。

答案并不能保证正确的事实并不重要,因为它可以通过乘法很容易地检查出来。如果答案是错误的,用不同的X值重复上述计算将会很有可能得到正确的解。

4.2Grover算法

Lov Grover曾经写过一个算法,使用量子计算机用比传统计算机快的速度检索一个未排序的数据库通常,这需要花费N/2个数字的时间来在一个具有N个入口的数据库中搜索发现一个特定的入口。Grover的算法使在N叉检索中进行相同的搜索变得可能。随着数据库的规模和综合程度增长,这种时间上的节省变得具有显著意义。这种算法所带来的加速是量子并行结构的结果。数据库有效地分布在大量的领域,并且允许一次单一的搜索定位要求的入口。更多数量的操作(与叉N成比例)要求实现,以满足显示一个可读结果的要求。

Grover的算法在密码系统领域有着重要的应用。使用这种算法破解数据加密标准(DES),一种用来保护银行间的经济事务及其它事物的标准,在理论上是可能的。这个标准是建立在一个双方都事先知道的56-比特的数字的基础上的,这个数字被用作加密和解密数据的密钥。

如果一个加密文档及它的原始资料都可以获得,那么就可能找到那个56-比特的密钥。一个使用传统方式的穷举搜索必须在找到正确解前搜索2的55次方个密钥。即使每秒钟尝试10亿个密钥,也需要花费超过一年的时间,而相比较而言Grover的算法找到密钥只需185次检索。对于传统的DES,一种阻止现代计算机破解密码的方法(例如,如果计算机越来越快),仅仅只要在密钥上添加额外的数字,就会使搜索的次数呈指数增长。然而,这对于量子算法速度的影响是可以忽略不计的。

4.3量子机械系统的模拟

1982年,Feynman推测说,量子计算机将能够比传统计算机更大程度地精确模拟量子机械系统。据推测,一台拥有几十个量子比特的量子计算机能够进行模拟,而这对于一台传统计算机来说,所需的时间是不现实的。这应当归因于计算机时间和内存的使用是按照讨论中的量子系统的规模呈指数增长的。

对于传统计算机,一个量子系统的动力学可以用近似值模拟。然而,一台量子计算机能够被“设计”,通过诱使它的变量发生交互作用来模拟一个系统的行为。它们模拟了正在讨论中的系统特性。例如,一台量子计算机能够模拟“笋瓜模型”(一种描述电子在晶体中移动的模型),而这样的任务是超出当今传统计算机的工作范围的。

5.量子通讯

在量子计算方面的研究开创了无旋转领域的量子沟通。这部分研究的目标是通过使用量子机械影响的特性,提供安全可靠的通讯设施。

5.1量子通讯是如何工作的

量子通讯利用光的偏振(例如,一个光子振动的方向)对数据进行编码。在一个方向上的振动可以被视为0,而另一个为1。常用的有两种偏振方式,直线型和对角型(见图6)。

图6 光的偏振可以被用来对数据进行编码。为了接收数据,滤光器的偏振化方向必须与光子的相匹配。

纳米技术发展史

纳米技术发展史 【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。 【关键词】发展纳米技术纳米材料 纳米技术基本概念 纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手 段。纳米技术以物理、化学的微观研究理论为 基础,以当代精密仪器和先进的分析技术为手 段,是现代科学(混沌物理、量子力学、介观物 理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。 纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。

过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于 自然界,只是以前没有认识到这个尺度 范围的性能。第一个真正认识到它的性 能并引用纳米概念的是日本科学家,他 们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。2、纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。3、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

简要分析计算机技术的发展趋势

简要分析计算机技术的发展趋势 最近几年,我国科学技术得到了较快发展,我国当前已经进入信息化社会,全国各个领域普遍应用计算机网络技术,计算机网络的应用给人们的生活生产带来了翻天覆地的变化,不但提高了人们的生活质量而且也促进了我国市场经济的快速发展,使我国经济与文化与国际间的差距越来越小,随着计算机的普遍应用为人们呈现了新的世界,大大提高了人们的生活水平。随着社会的快速发展,笔者认为计算机技术也将实现跨越式发展,将来的计算机技术将呈现为更为丰富的特点,在为人们生产提供极大便利的同时更为有效的改变人们的生活。 1 当前计算机技术的特点 1.1 网络化特点 计算机网络化技术就是有效结合计算机技术与现代通信技术将世界各地的计算机有机联系在一起,从而形成一个功能强大、规模巨大、传递信息速度较快的大型网络,利用大力整合世界各地的信息资源,从而形成丰富的优质资源在网络中以共享的形式存在。当前世界范围内的网络技术得到了广泛发展,各个大型公司、各级政府部门、家庭计算机已经实现了全面普及,结合网络技术将其有机联系在一起,有利于在极短的时间内实现信息的收集与处理、传输。 1.2 多极化特点 社会中拥有着各种各样的行业,不同行业对计算机有着不同的要求,尤其是在航天航空、现代军事当中应用着一些大型与巨型计算机,人

们在需求计算机方面不再只讲求小型个人计算机,而呈现为要求同时呈现微型、小型、大型、巨型等各种各样的计算机,已经表现为明显的多极化特点。 1.3 智能化特点 在第五代计算机中,计算机智能化就是利用提前编制一定的程序指令植入计算机当中,使计算机与人的思维、感觉产生一定的关系,从而可以加快处理信息的速度,在当前生活当中,计算机智能化研究已得到更多人的关注,如计算机机器人技术的出现。 1.4 多媒体化特点 在此方面的多媒体化就是将通信技术、计算机技术与大众传播技术有机结合在一起,可以同时拥有视频、图像、文本、图形、文字、声音等多种功能,将计算机技术中的丰富信息集成为一个整体,不受人机矛盾关系的影响,可以利用最为恰当的手段解决各种信息。 2 展望计算机的将来发展 笔者认为计算机技术的发展趋势可能包括下面这些: 2.1 巨型计算机技术 此类计算机技术有着较快的运算速度和极大的存储空间,无以伦比的功能,一般情况下,这种计算机的容量可以达到几百兆以上,运算速度可以上升到百亿次每秒,可以普遍应用于航空航天、地质勘测、气象卫星、国际科技等各个领域当中,深入研究此方面技术可以保证计算机软件与硬件技术得到较快发展。 2.2 神经网络计算机技术

物理学发展简史

物理学发展简史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学, 以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体(如:硅、锗等)和 化合物半导体(如:砷化镓等)两种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容 纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为 集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁 并放射同频率之光子,藉以将光加以增强。 (二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用:

量子计算机的发展现状与趋势_王建锋

高教论坛 量子计算机的发展现状与趋势 王建锋 (郑州大学体育学院体育教育系,河南郑州450000) 量子信息科学引入后,重新对计算、信息编码与处理进行了诠释。作为一门高效处理信息的学科,量子信息体现了科技的进步。该 学科融入了多个学科,包括信息科学、 物理学,以及材料学。因此,与传统的计算相比,也具有更强大的生命力。可以看出,自从应用量子 信息科学后,使计算机的更加安全,并且提高了通信的质量。 尽管量子计算机尚在初步发展阶段,但是该学科具有很大的发展潜力。因此,对量子计算机的发展现状与趋势进行探讨非常有必要。 1量子计算机的发展现状1.1研究概况(1)拓扑量子计算。 拓扑量子计算方案由一位数学物理学家提出。根据拓扑量子不受扰动的特点,完成量子计算机的构造。在此基础上,进行容错量子的计算。当前,该计算已经引起了国内外的重视。世界上很多大学已经开始了理论与实验方面的研究。在进行拓扑量子计算时,每个子都有几下几个特点。第一,有很多准例子,分为不同的类型,其作用是进行信息的初始化。第二,当每个子进行交换时,只要满足辫群规 则,就能实现拓扑量子门。 然后,完成信息的处理。第三,在拓扑量子计算中,不用考虑环境影响的因素。所以,保证了处理的准确性。当前,美国已经根据相关研究,成功建立了基本的量子位。 (2)单向量子计算。 单向量子是一种新的途径。该计算采用了量子的纠缠态、经典通信,以及局域操作,来传递非局域作用,继而实现等价的非局域哈密顿量功能。所以,成功建立了一种高度纠缠的状态。该状态被称为图态。利用相邻的量子比特进行LOCC过程,可以完成出发端量子比特的逻辑门操作。根据以上原理,有助于完成电路的设计。可以看出,如何高效的转换量子比特数目图态是其模型计算的难点。 (3)绝热量子计算。 绝热量子计算的核心思想是:依靠绝热演化的性能,来等效实现量子玄正的变换。当表现为绝对零度时,系统则处于初始状态。此时,如果不存在能级交叉的现象,那么在理论上来将,系统就会保持基态。但是,在系统演化前后,基态就存在玄正变换的关系。在这种情况下,则可以根据绝热的过程,来实现量子计算。以上方案既有优点,也有缺陷。其优点在于保证系统处于基态。其缺陷为能隙缩小,延长了绝热演化的时间。针对以上问题,采用量子仿真技术就可以解决。该技术的应用,促进了科技的快速发展。 1.2实验进展(1)量子点体系。 量子点体系是在微加工方法的基础上,利用半导体二维电子气,然后成功研制出单电子晶体管。该体系符合量子力学规律,代表了未来量子计算机发展的方向。近年来,国际上多个单位通过研究,在这方面取得了很大进展。研究表明,当半导体量子点具备一定条件后,就可以作为量子芯片。尽管如此,量子芯片在应用的过程中,还存在很大的问题,比如受到周边环境影响较大。鉴于此,在未来的研究中,必须加大力度。 (2)超导量子电路。 该量子计算的核心是Josephson。根据不同的表征量子比特,将其分为三个类型,分贝是电荷、相位,以及磁通。研究表明,该量子电路的特点包括以下两个方面。一方面,利用量子电路结构,能够完成 电路的设计、制定。同时,也可以完成对磁通信号的调整、控制。另一 方面,根据当前的微电子制造工艺,提高了该量子电路的拓展性。 (3)离子阱体系。离子阱体系诞生后,首先实现了量子计算。当前,经过不断的研究,该体系已经在实验方面,取得了很大的进展,其水平非常高。近年来,主要的研究方向为:提高量子操控的单元技术、体系的拓展 等。 调查显示,美国已经启动了相关的计划,预计能够取得更大的研究成果。 2量子计算机的发展趋势近年来,美国实施了研究量子芯片的计划。该计划是时候,不仅推动了量子计算机的研究,而且加大了竞争。随着半导体芯片的快速发展,其晶体管的尺寸也不断减少。目前,与单位流感病毒的大小差不多。其次,晶体管的数目也逐渐减少,量子效应不断增强。在传统模式下,能够达到控制电子的物理极限。当单位晶体管只能容纳一个电子时,也必然满足量子学的规律。可以看出,芯片在发展的过程中,很大程度上依赖于新一代的量子力学计算芯片。随着半导体 微电子技术被突破后,就出现了量子芯片。 美国竞争力计划推行后,代表了量子芯片的实际应用。由于量子芯片与国家安全、产业安全息息相关,美国相关负责人已经将芯片科技提到重要战略位置。受美国的影响,日本、欧共体等也启动了相关的计划,引发了新的计算机技术竞争。目前,在新的发展形势下,给我国电子个工业也带来了机遇和挑战。因此,我们必须抓住机遇,稳步推行量子调控计划。只有这样,才能在未来不受制于人,实现信息技术的革新。调查显示,近年来,通过不懈的努力,我国已经加快了量子信息技术的发展,并取得了很大成绩。表现为:在多光子纠缠、量子密码技术方面,取得了很大的进展和突破。但是,与西方国家相比,我国的研究基础还很薄弱,缺乏原创性的成果,总体水平还不高。特别是在量子计算机学科主流方向上,与西方国家存在很大的差距。鉴于此,我国需要迫切开展更富有挑战性的量子计算机计划,同时不断壮大科研队伍,保证技术方面的支撑。只有加强基础建设,才能实现新一轮的突破,在国际竞争中抢占制高点。 随着社会、经济的快速发展,量子计算机以强大的计算能力,得到了广泛的应用。可以看出,在未来的发展中,量子计算机必然在世界领域内,占有一席之地。尽管如此,该体系在运作的过程中,依然存在很多问题。因此,世界各国需要加大研究的力度,不断创新技术,完善体系,以此来获得更大的研究成果。 参考文献 [1]邹奕成,毛杰.量子计算机的发展[J].科教导刊:电子版,2016(24):131-131.[2]刘超,梁丽,徐亮.计算机的发展趋势分析[J].产业与科技论坛,2013,12(2):91-92.[3]潘斌辉,孔外平.量子计算机的发展现状与趋势[J].中国科学院院刊,2010,25(5):4-8.[4]马宏源,李伟.量子计算机的研究与发展[J].北京电力高等专科学校学报:社会科学版,2010,27. 作者简介:王建锋(1974-),男,汉族,籍贯:河南省登封市大金店镇金东村,学士学位,讲师,研究方向:计算机。 摘要:与传统的计算工具相比,量子计算机更加先进。应用该工具后,在处理数据上发挥了更强大的功能,解决了以往比较困难的 数学问题。基于此, 引起了世界各国的重视。本文结合实际的工作经验,对量子计算机的发展现状进行了分析。然后,提出了在未来的时代中,量子计算机的发展趋势。 关键词:量子计算机;发展;现状;趋势;分析57··

浅谈量子力学的前沿进展

量子力学论文 题目:浅谈量子力学的前沿进展 学院: 专业: 学号: 姓名: 时间:2014年7月1日 指导教师:

浅谈量子力学的前沿进展 摘要:量子力学是在19世纪末发展起来的一门新科学,而且它还一直处于不断地发展中,在自然科学中具有重要作用。量子力学的规律已成功地运用于各个领域,物理、材料、化学、生命、信息和制药等,量子力学与我们的生活密切相关。量子力学是研究微观粒子的运动规律,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。本文将对量子力学目前的发展、应用以及前沿进展做出阐述。

关键词:量子力学;发展;前沿 Abstract Quantum Mechanics was a new subject that was formulated at the end of the 19th century and is still under development. It plays a key role in natural sciences. The theory of Quantum Mechanics is applied to a variety of areas, such as physics, materials, chemistry, life science, informatics and pharmacy and is closely related to our daily life. Quantum Mechanics is a basic theory that studies the motion law of microscopic particles and studies mainly atoms, molecules, condensed matter, and the structure and nature of atomic nucleus and fundamental particles. It has been one hundred years up to now when Quantum Mechanics was founded. It extended from kinetic theory at atomic level to Physics and other subjects and high-tech within one hundred years of development. As a matter of fact, it has beyond the scope of Physics; it is not only the backbone of modern matter science, but also one of the main theoretical basis of modern science and civilization construction. This paper will make a simple exposition for the modern development, application and leading edge of Quantum Mechanics.

量子计算机发展简史

量子计算机发展简史 原著:Simon Bone & Matias Castro 翻译:bianca 2003年3月26日 内容摘要 听起来好像有点奇怪,计算机的未来可以被建筑在一杯咖啡周围。那些咖啡因分子恰巧是构建“量子计算机”--一种能够保证提供可在几秒钟内破解密码的思想回应功能的新型计算机的可能组成部件。 内容目录 1.介绍 1.1量子计算机的基本要素 1.2量子计算机的缺点--(电子)脱散性 1.3取得结果 2.通用计算的理论 2.1加热流失的信息 2.2通用量子计算机 2.3人工智能 3.建立一台量子计算机 3.1量子点 3.2计算流体 4.量子计算机的应用 4.1Shor算法--Shor的算法--一个范例 4.2Grover算法 4.3量子机械系统的模拟 5.量子通讯 5.1量子通讯是如何工作的 5.2量子比特的任务 6.当今进展及未来展望 7.结论

8.术语表 9.参照表 9.1书籍 9.2人物 9.3杂志文章 9.4网页 1.介绍 经常会有能使计算机的性能大大改善的新技术出现。从晶体管技术的引进,到超大规模集成电路的持续性发展,科技进步的速度总是如此无情。近日来,现代处理器中晶体管体积的减小成为计算机性能改进的关键所在。然而,这种不断的减小并不能够持续很长的时间。如果晶体管变得太小,那种对量子机械的未知影响将会限制它的性能。因此,看起来这些影响会限制我们的计算机技术,它们真的会吗?在1982年,诺贝尔奖获得者--物理学家Richard Feynman想出了“量子计算机” 的概念,那是一种利用量子机械的影响作为优势的计算机。有一段时间,“量子计算机”的想法主要仅仅停留在理论兴趣阶段,但最近的发展令这个想法引起了每一个人的注意。其中一个进步就是一种在量子计算机上计算大量数据的算法的发明,由Peter Shor(贝尔实验室)设计。通过使用这种算法,一台量子计算机破解密码可以比任何普通(典型)计算机都要快。事实上,一台能够实现Shor算法的量子计算机能够在大约几秒内破解当今任何密码技术。在这种算法的推动下,量子计算机的话题开始集中在动力上,全世界的研究人员都争当第一个制造出实用量子计算机的人。 1.1量子计算机的基本要素 在计算机的经典模型中,最基础的构建要素--比特,只能存在于两种截然不同的状态之一:0或是1。在量子计算机中,规则改变了。一个原子比特--经常被简称为“量比”(quantum bit) --不仅仅存在于传统的0和1状态中,还可以是一种两者连续或重叠状态。当一个量比处于这种状态时,它可以被认为存在于两种领域中:一种为0,而另外一种为1。一个基于这种量比的操作能够同时有效地影响两个值。因此,极为重要的一点是:当我们在量比上实行单一操作时,我们是在针对两种不同的值进行的。类似的,一个双量比系统能对4个值进行操作,而一个三量比系统就是8个值。因此,增加量比的数目能够以指数方式增加我们从系统获得的“量子并行效应”(量子并行效应)。在拥有正确算法类型的情况下,它能通过这种并行效应以远低于传统计算机所花费的时间内解决特定的问题。 1.2量子计算机的缺点--(电子)脱散性

计算机科学前沿热点及发展趋势

计算机科学前沿热点及发展趋势 摘要:计算机科学围绕信息、知识、智能等主题发展迅速。文章系统地介绍了信息处理、文字与自然语言的理解、数据仓库和数据挖掘;知识科学;人工智能、人工神经网络的研究、遗传算法、逻辑学等领域研究中前沿的若干问题,并提出未来计算机科学的发展趋势。 关键词:信息技术知识科学智能技术发展趋势 在短短的60年里,计算机科学发展至今,取得了巨人的成就。从观念上改变了人们对世界的认识,将人类社会带入了信息时代。加速T人类社会的发展。在今天计算机科学技术已经成为人们日常生活工作中不可或缺的重要组成部分,而计算机技术的发展也将越来越多影响人类社会的进步。 1 计算机科学前沿热点 近年来,计算机科学中前沿的问题主要围绕信息、知识、智能三大研究领域展开讨论。本文中所指的信息是指客观事物的属性。而知识不同于信息,它是人们对信息经过大脑的加工与处理后,形成的规律、规则、方法及认识。智能则是指大脑从历史信息、知识的基础之上形成的对现有信息、知识的推理、演绎、判断的方法。 根据研究分析表明,在三大研究领域中,主要有以下前沿热点研究: (1)信息方面:信息处理、数据仓库和数据挖掘、生物信息学。 (2)知识方面:以知识科学与知识工程为主要研究的问题。 (3)智能方面:以人工神经网络的研究,机器证明,人工智能与专家系统,遗传算法,代数逻辑学形成了本研究领域的主要特色。 1.1 信息科学 1.1.1 信息处理技术 信息处理技术是当今计算机科学发展的重点,目前计算机处理的信息可分为符号和数据,因而一切要由计算机处理的对象首先是符号化和数字化。信息科学正在形成和迅速发展,现在主要的研究课题集中在以下六个方面: (1)信息源理论和信息的获取。主要研究自然信息源和社会信息源,以及从信息源提取信息的方法和技术。 (2)信息的传输、存储、检索、转化和处理。 (3)信号的测量、分析、处理及显示。 (4)模式信息处理。研究对文字、声音,图像等信息的处理、分类和识别,研制机器图像和语音识别系统。 (5)知识信息处理。研究知识的表示、获取和应用,建立具有推理和自动解决问题能力的知识信息处理系统,即专家系统。 (6)决策和控制。在对信息的采集、分析、处理、识别和理解的基础上作出判断、决策或控制,从而建立各种控制系统、管理信息系统和决策支持系统。 1.1.2 数据挖掘技术 传统的数据库技术是单一的数据资源,即以数据库为中心,对事务处理、批处理到决策分析等各种类型的数据处理工作。近年来,随着计算机技术的发展,对数据库中数据操作提出了更高的要求,希望计算机能够更多的参与数据分析与决策的制定等领域。数据库处理可以大致划分为两大类:操作型处理和分析型处理(或信息型处理)。这种分离,划清了数据处理的分析型环境与操作型环境之间的界限,从而由原来的以单一数据库为中心的数据环境发展为一种体系化环境,因而产生了数据挖掘技术。在这方面目前主要解决的前沿问题有: (1)异构数据的接口机制;(2)数据仓库的体系结构问题;(3)数据仓库的数据优化问题;(4)数据仓库中数据的获取与整理;(5)历史数据的提出和信息挖掘;(6)信息挖掘的方法学问题;

浅析量子力学

Despite the name, the Underground Railroad was not really a railroad, but was a network of people who assisted fugitive slaves. Many fugitives who escaped to the North and Canada received assistance along the way from individuals who were involved in this network. By the early 19th century, the organization became so successful that it is estimatal that between 1810 and 1850,100,000 slaves escaped from the South through the Underground Railroad. It was not a coincidence that it was called the Underground Railroad. Steam railroads had just emerged and the terms used to describe the people who helped and the fugitives were related to the railroad line. Fugitive slaves were called “parcels”and “passengers”, the helpers were the “conductors”, the people who provided their homes as refuge were called “stationmasters”, and the homes were referred to as “depots” or “station”. The route used was an important part of a successful escape. There were numerous secret routes that a conductor could use. The one used depended on where the search parties and slave catchers were stationed . Some trips required the use of many different routes. If it appeared that they might be in danger, a guide would change paths. Some guided and

计算机发展史简介

第一章计算机发展史简介 一.先驱者的贡献 帕斯卡(Biaise Pascal,1623~1662) ↖法国数学家、物理学家 ↖19 岁受机械时钟的启发发明第一个齿轮式机械计算器(1642 年),只能做加、减法 巴贝奇(C.Babbage,1791~1871) ↖英国数学家 ↖公认的计算机之父 ↖研制出差分机和分析机 ↖提出程序控制的思想 ↖提出了完整的通用计算机的设计方案,已经有许多的现代计算机的元素在里面,最终100 年后由艾肯实现 爱达.拜伦(Ada Augusts Lovelace,1815~1852) ↖英国数学家 ↖为巴贝奇的分析机编制程序 ↖虽然还没出现?°循环?±,?°子程序?±的概念,但其中已经蕴含了现在程序的思想。 ↖被称为世界上第一位程序员 艾肯(Howard Aiken,1900~1973) ↖美国数学教授 ↖制造出第一台机电式计算机MarkI ,后又制造出MarkII ↖MarkI 的一些参数: 以机电的方法代替机械的方法实现分析机,1944 年完成,在哈佛大学用了15 年 15.5米,高2.4米,75万个零部件 乘法速度是3 秒 图灵(Alan Turing,1912~1954) ↖英国科学家 ↖现代计算机诞生过程中最重要的两个 人物之一,另一个是冯. 诺依曼 ↖他对现代计算机的贡献有两个: 建立图灵机理论模型 提出定义机器智能的图灵测试 冯.诺依曼(Von.Neumann,1903~1957) ↖美国数学教授 ↖现代计算机之父 ↖两个方面的重要贡献 提出了存储程序的思想 在EDVAC设计中提出的计算机结构奠定了现代 计算机体系结构框架,被称为冯.诺依曼结构 二.现代计算机的诞生 第一台电子数字计算机电子计算机ENIAC的诞生 (Electronic Numerical Integrator And Computer) 电子数字积分计算机

未来计算机的发展趋势

未来计算机的发展趋势 目前,中间件技术已经发展成为企业应用的主流技术,如交易中间件、消息中间件、专有系统中间件、面向对象中间件、数据存取中间件、远程调用中间件等。 随着计算机应用的广泛和深入,又向计算机术本身提出了更高的要求。要起提高计算机的工作速度和存储量,关键是实现更高的集成度。传统的计算机的芯片是用半导体材料制成的,这在当时是最佳的选择。但随着集成的提高,它的弱点也日益显现出来。专家们认识到,尽管随着工艺的改进,集成电路的规模越来越大,但在单位面积上容纳的元件有限的,在1毫米见的硅片上最多不能超过25万个,并且它的散热、防漏电等因素制约着集成电路的规模,现在的半导体芯片发展即将达到理论上的极限。因此,有人预测现行的计算机系统将在2010年遇到无法逾越的障碍。为此,世界各国研究人员正在加紧研究开发新一代计算机,从体系结构的变革到器件与技术革命都要产生一次量的乃至质的飞跃。计算机的发展趋势表现为4种,即巨型化、微型化、网络化和智能化。未来新一代的计算机可分为模糊、量子、超导、光子和DNA5种类型。 1计算要的发展趋势 1)巨型化 巨型化是指计算机速度更快、存储容量更大、功能更强、可靠性更高的计算机。其运算能力一般在每秒百亿次以上,存容量在几百G字节以上。巨型计算机主要用于尖端科学技术和军事国防系统的研究开发。巨型计算机的发展集中体现了计算机科学技术的发展水平。

2)微型化 微型化是指发展体积更小、功能更强、可靠性更高、携带更便、价格更便宜、适用围更广的计算机系统。因为微型机可渗透到诸如仪表、家用电器、导弹弹头等中、小型机无法进入的领域,所以20世纪80年代以来发展异常迅速。预计微型机性在一起,今后将逐步发展到对存储器、通道处理机、高速运算部件、图形卡、声卡的集成,进一步将系统的软件固化,达到整个微型机系统的集成。 3)网络化 网络化是指利用通信技术,把分布在不同地点的计算机互联起来,按照网络协议相互通信,以达到所有用户都可共软件、硬件和数据资源的目的。目前计算机联网已经非常普遍,但是计算机网络化仍然有多工作要做。如网络上资源虽多,利用却并不便;联网的计算机虽多,计算机特别是服务器的利用率并不高;网络虽然便,但是却不安全,等等。计算机网络化在提供便、及时、可靠、安全、高效的信息服务面还有很多的工作要做。 目前各国在开发三网合一的系统工程,即将计算机网、电信网和有线电视网合为一体。将来通过网络能更好地传送数据、文体资料、声音、图形和图像,用户可随时随地在全世界围拨打可视和收看任意的电视和电影。 4)智能化 5)智能化是指让计算机具有模拟人的感觉和思维过程的能力。智能计算机具有解决问题和逻辑推理的功能,以及知识处理和知识库管理的功能等。 人与计算机的联系是通过智能接口,用文字、声音、图像等与计算机自然对话。智能化的研究领域很多,其中最有代表性的领域是专家系统和

浅谈量子力学与量子思维

量子力学:不平凡的诞生预示了不平凡的神奇 ——浅谈量子力学与量子思维 理学院物理系林功伟 量子力学自诞生以来,极大地推动了现代科学和技术的发展,已经深刻地改变了我们的生活方式。从电脑、电视、手机到核能、航天、生物技术,处处它都在大显身手,它已经把人类社会带入量子时代。但量子理论究竟带给了我们什么?这个问题,至今带给我们的仍只是无尽的想象。近年来,校长钱旭红院士,从改变思维的角度出发,在多种场合呼吁全社会要重视量子思维方式并加以运用,不久前又在“文汇科技沙龙”上,提议让“量子思维”尽早走入中小学课堂。那么,量子力学究竟是什么? 量子力学的诞生是一段波澜壮阔的传奇。它的发展史是物理学乃至整个科学史上最为动人心魄的篇章之一。不平凡的诞生预示了不平凡的神奇。在量子世界中,处事原则处处与我们熟悉的牛顿力学主宰的世界截然不同。在我们熟悉的世界,要么是波,要么是粒子。在量子世界,既是波也是粒子,既不是波也不是粒子,兼具波和粒子的特质,即波粒二象性。从而引申出量子叠加、测量塌缩、量子纠缠等种种神奇的现象。 量子叠加:鱼和熊掌亦可得兼 在经典的牛顿力学体系中,把粒子的运动都归结为确定轨道的机械运动。知道粒子某个时刻的运动状态与力的作用,就可以推断粒子的过去,也可以预知粒子的未来。就像一个算命先生,你告诉他生辰八字,他掐指一算就知道你的前世来生。在这种机械观下,仿佛一切都是注定的、唯一确定的。然而,在量子世界,一切都变得不一样。比如,有一天要从上海去北京,异想天开的你既想乘坐京沪高铁体验沿途的风光,又想搭乘飞机享受鸟瞰大地的感觉。我们习惯的方式是同

一时间我们只能选择其一,必须割爱其一。但在量子世界中你可以在火车上和飞机里共存量子叠加态上,鱼和熊掌亦可得兼。 这种量子叠加状态非常奇特。同一时刻,你既体验着高铁沿途的风光,也享受着飞机上鸟瞰大地的感觉,如果说同一时刻有两件事,但分别要求在火车上和在飞机里完成,量子叠加态的你完全可以神奇地一一照做。就像《西游记》中的孙悟空有分身术,同时一个上天一个入地。现在科学家们正利用这一原理来研制未来的量子计算机。量子计算机中的量子比特可以在无数的空间中量子叠加。它们并行地操作完成复杂的计算。已有研究表明这种量子并行计算确实可以在某些特定的复杂计算问题上大大提高效率。例如:一个400位的阿拉伯数字进行质数因子分解,目前即使最快的超级计算机也要耗时上百亿年,这几乎等于宇宙的整个寿命;而具有相同时钟脉冲速度的量子计算机可能只需要几分钟。还有利用量子快速搜索算法,可能很快从一个大森林里找到一片叶子,或者在一个沙滩上找到一颗沙子。在量子世界,“大海捞针”已不再是没有可能的事,简直“易如反掌”。 量子叠加不仅可以是同一个物质在它不同状态的叠加,还允许不同物质的叠加,哪怕这两个物质是迥然不同类的。比如光和原子,前者是宇宙中最快的,一眨眼可以绕地球好几周;后者可以慢悠悠地停留在某处。如果让它们量子叠加一起会怎么样呢?有种叫电磁诱导透明的技术就可以让光和原子相干叠加。叠加后我们称之为暗态极子,它是半光半原子的混合体,就像希腊神话中半人半神的帕尔修斯,既具备人的情感,也具备神的能力。人们发现这种半光半原子混合体的速度是介于之间的,它既不像光速那么快,也不像原子慢悠悠停留在某处,它的速度取决于光在其中叠加的比重。人们通过调节这个比重就可以让光乖乖地慢下来,需要的时候还可以让光再飞奔起来。在运用上,光子相互作用很小,而原子之间容易产生大的相互作用。有趣的是:最近,我们研究小组通过合理设计可以利用原子的优点来弥补光子的缺点,设计出强的单光子相互作用。如果把这个过程提升到量子思维的话,不就是我们生活中的“取长补短”“协同合作”吗?而这个思维能力正是当代社会所迫切需要的。

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

计算机未来发展趋势

计算机未来发展趋势 摘要:随着信息技术的发展,计算机在我们的日常生活中扮演了越来越重要的作用,本文所要论述的就是通过现有的技术以及当今在计算机领域还在研究中的尖端科技,对于计算机未来的一些展望以及计算机在未来可能的发展方向。 关键词 计算机发展方向微型化计算能力新型计算机智能

0引言 计算机在最近的几十年发展突飞猛进,是在众多行业中发展最快的高新领域之一,上世纪九十年代的人还难以预料今天计算机会如此强大,而今天的我们所预见的未来的计算机又将有几分准确性呢。不管未来的计算机是什么样的,根据现在的研究以及人们的需要来看,有几个特点可能会在较近的未来实现,计算机将会更加微型化,计算能力还会更加强大,而随着计算机与诸多领域的相互渗透,新型计算机也会应运而生,此外,计算机的智能化也是人们研究的热点问题。

1“更小更强大” 从1946年第一台计算机诞生以来,计算机都在向着计算能力更强大的方向发展,而随着计算机技术的民用化,为了更方便人们的生活,计算机又在向着更小的方向发展。“更小更强大”是计算机制造领域人们追求的目标。随着技术的发展,当今的计算机已经具有很强的计算能力和便携性,在以后的发展中,计算机要想更小而有计算能力更强,就需要有更精细更先进的生产技术,这才能使同样的面积具有更高的计算能力和更快的速度,现在CPU的生产技术已经达到纳米级,CPU的更加微小将同时带动电脑其他部件诸如内存、硬盘、显卡、主板的微型化,但与此同时,密集化将会产生更大的发热问题,这就需要研究人员采用更先进的散热技术和优化能力,只有电脑上的主要部件都微型化,才能实现整台电脑的微型化。但就计算能力而言,计算机领域著名的摩尔定律并不是一成不变的,因为分子原子也是有大小的,现在可以将硅处理到纳米级,但总是会遇到小到不能再处理的瓶颈,到那时再先进的生产技术也无济于事,这时便需要考虑到算法和计算方式的问题。在未来是否会有更加先进的计算方式取代二进制,是否会有更加简捷的算法,是计算机领域工作者应该考虑的。 2新型计算机 一方面,一部分人在对现有计算机进行更加深入的研究,而另一方面,一些人在计算机与其他领域的渗透中不断探索,研究新型的计算机。 2.1量子计算机

浅谈量子力学的哲学含义

浅谈量子力学的哲学含义 【摘要】量子力学的产生和发展受到经济生活的多方面影响,量子力学的产生也相应地对于政治、经济生活提供积极因素影响,量子力学中包含的量子场理论和微观粒子的提出,微观世界物质的特性等提出都在一定程度上包含一定的哲学含义。 【关键词】量子力学;哲学含义 1.量子力学的主要表述 量子力学确立了普遍的量子场实在理论。宇宙最基本的物理是量子场,量子场是第一性的,而实物粒子是第二性的。微观粒子没有经典物理学中的决定论表述,只有非决定论论述。量子力学的微观粒子理论中,包含具有叠加态的波函数,秉有波粒二象性和非定论的远程联系。特定的测量方式造成波函数的失落,越来越显露出它的本质特征。量子场实在论证明了宇宙的实在性,不同于德谟克里特所说的宇宙存在,宇宙更多如毕达哥拉斯和柏拉图描述的:宇宙是用数学公式表达的波函数以及所显示的各种图形的组合。 量子力学对于波粒二象性的揭示和微观粒子中反粒子存在的表述,阐释着物质和反物质的辩证存在关系。量子力学的多世界论认为世界大系统由多个平行世界构成,世界论中也存在反世界物质。无论是物质和反物质还是世界论中的反世界物质都表现着哲学中黑格尔和马克思主义哲学的正确性和真理性成分。其中物质与反物质是一对矛盾体,物质相对于反物质而存在。矛盾的普遍性阐释了时时刻刻存在矛盾的真理性。宇宙世界的基本属性是矛盾性和对立统一性。矛盾的特殊性要求必须正确把握主要矛盾和次要矛盾以及矛盾的主要方面和次要方面。主要矛盾的主要方面决定事物的根本性质。然而,在矛盾的哲学理论体系中,矛盾的双方是相对立而存在的,所谓物质和反物质的矛盾性从表象上分析是对立的存在,对立关系就是阐释着物质和反物质的相对应。在某一特殊世界领域中,各种客观实在具有方面上的相对关系。历史经验告诫区分“现实矛盾”和“逻辑矛盾”。 2.量子力学包含的矛盾哲理 其中逻辑矛盾表现在概念提出中的逻辑关系的对立;现实矛盾是隐藏在逻辑矛盾之下更深层次的以客观事实为导向的矛盾。任何话语系统不允许逻辑矛盾,A是B与A是-B同时为真,正如“正粒子”与“反粒子”碰撞,这两个命题是可以互相抵消为无的。然而,现实的矛盾,如“正电荷”和“负电荷”,“正粒子”和“反粒子”的相互矛盾关系,是长期存在的,共同构成了物质世界的矛盾客体。可以说矛盾的存在是世界物质性发展和产生的基本推动力。世界是充满矛盾的世界,矛盾构成了世界的真实存在。矛盾具有同一性和斗争性,在量子力学理论体系中正电荷和负电荷是在同一和斗争中不断转化的,正电荷和负电荷的交汇形成电荷的不带电中和性质,正负电荷在同一的过程中各自改变其特性以适应向新物质存在的客观转化。正负粒子的斗争性体现于正负粒子的正负电子相互碰撞和作用,不

相关主题
文本预览
相关文档 最新文档