当前位置:文档之家› 诱发典型小流域洪水的雨量阈值研究——以安昌河流域为例

诱发典型小流域洪水的雨量阈值研究——以安昌河流域为例

诱发典型小流域洪水的雨量阈值研究——以安昌河流域为例
诱发典型小流域洪水的雨量阈值研究——以安昌河流域为例

暴雨洪水计算分析

86. 4T 式中q w 水田设计排涝模数(m 3/s ? km 2) 暴雨洪水计算分析 《灌溉与排水工程设计规范》 表 3.1.2 灌溉设计保证率 表 3.3.3 灌排建筑物、灌溉渠道设计防洪标准 3.3.3 灌区内必须修建的排洪沟(撇洪沟),其防洪标准可根据排洪流量的大小,按 5~10a 确定。 附录 C 排涝模数计算 C.0.1 经验公式法。平原区设计排涝模数经验公式: Q=KRm A n ( C.0.1 ) 式中:q 设计排涝模数(m 3/s ? km 2) R --------------- 设计暴雨产生的径流深(mm ) K ——综合系数(反应降雨历时、流域形状、排水沟网密度、沟底比降等因素) m —峰量指数(反应洪峰与洪量关系) N ――递减指数(反应排涝模数与面积关系) K 、m 、n 应根据具体情况,经实地测验确定。(规范条文说明中有参考取值范围) C.0.2 平均排除法 1 平原区旱地设计排涝模数计算公式: q d = R (C . 0. 2-1) 86. 4T 式中qd 旱地设计排涝模数(m 3/s ? km 2) R ---- 设计暴雨产生的径流深( T ——排涝历时( d )。 说明:一般集水面积多大于 50km 2。 参考湖北取值, K=0.017,m=1, n=-0.238 ,d=3 2. 平原区水田设计排涝模数计算公式: q w = P -h 1-ET ' -F (C . 0. 2-2) mm )

P ——历时为T 的设计暴雨量(mm )h 1 ——水田滞蓄水深(mm) ET' ――历时为T的水田蒸发量(mm), —般可取3?5mm/d> F ――历时为T的水田渗漏量(mm), —般可取2~8mm/d>说明:一般集水面积多小于10km 2。 h 1=hm -h 0 计算。h m 、h 0 分别表示水稻耐淹水深和适宜水深。 《土地整理工程设计》培训教材 第四章农田水利工程设计 第二节:(五)渠道设计流量简化算法 1. 续灌渠道流量推算(1 )水稻区可按下式计算 Q = 0. 667 a Ae 3600t n 式中:a ――主要作物种植比例(占控制灌溉面积的比例) A ――该渠道控制的灌溉面积。 e ――典型年主要作物用水高峰期的日耗水量(mm),根据调查确定,一般粘壤土 地区水稻最大日耗水量8?11mm最大13mm。 t ――每天灌水时间(小说),一般自流灌区24小时,提水灌区20?22小时。 n ――渠系水利用系数。 (2)旱作区可按下式计算 Q = a mA 3600Tt n 式中:m ――作物需水量紧张时期的灌水定额,m 3/亩。T ――该次灌水延续时间,天。第四节:(二)排水流量 (1)、(2)前面两种计算公式同《灌溉与排水工程设计规范》(3)丘陵山区:a .10km 2

广东省综合单位线与推理公式法使用说明

广东省综合单位线与推理公式法使用说明 一、单位时线程序的使用:先准备以下数据:流域面积F,河长L,河流坡降J,流域所在分区和亚区(如果没有亚区,则不用输入),暴雨参数(Ht、Cvt、αt)及计算频率P。计算时数据可直接输入,也可以用数据文件输入,对于第一次计算的流域,最好直接输入数据,计算完后把这些数据文件保存起来,以后计算同一流域就可用这个数据文件来输入数据,并可对此数据文件进行修改。建立或修改数据文件可用EDIT<数据文件> 数据文件中数据顺序为:①工程名称(两边要加引号);②流域面积;③河长;④坡降;⑤分区号码(用数字输入顺序号,如Ⅵ号则输入数字6);⑥亚区(输入方法同分区号码的输入一样,如果没有亚区则不用输入);⑦H6、Cv6、α6,H24、Cv24、α24,H72、Cv72、α72(注意:有些小流域按《使用手册》规定还需输入1/6小时和1小时的H、Cv、α值,数据可分几行输入)。计算机中的m1值是直接查线得到的,有时m1值要在线与线之间读出,这时可在程序运行时对计算机算的m1值作出修改,输入自己查得的值。计算频率在计算过程中输入,可反复计算不同频率而不用重新输入各参数。计算结果可直接打印出来,也可用数据文件进行保存,经过修改后再打印。用数据文件保存的结果可用(EDIT<数据文件>)查看和修改。 二、推理公式程序的使用:使用推理公式程序计算前应先准备下列数据:流域面积F,河长L,河流坡降J,流域所在分区和亚区(如果没有亚区,则不用输入),汇流分区,暴雨参数(Ht、Cvt、αt)

及计算频率P。计算时数据可直接输入,也可以用数据文件输入,对于第一次计算的流域,最好直接输入数据,计算完后把这些数据文件保存起来,以后计算同一流域就可用这个数据文件来输入数据,并可对此数据文件进行修改。建立或修改数据文件可用EDIT<数据文件> 数据文件中数据顺序为:①工程名称(两边要加引号);②流域面积;③河长;④坡降;⑤汇流分区号码(输入数字:1.山区、2.高丘、3.低丘区、4.海南,分区号码用数字输入顺序号,如Ⅵ号则输入数字6);⑥亚区(输入方法同分区,如果没有亚区,则不用输入);⑦H6、Cv6、α6,H24、Cv24、α24,H72、Cv72、α72(注意:有些小流域按《使用手册》规定还需输入1/6小时和1小时的H、Cv、α值,数据可分几行输入)。计算机中的m值是直接查线得到的,有时m值要在线与线之间读出,这时可在程序运行时对计算机算的m值作出修改,输入自己查得的值。计算频率在计算过程中输入,可反复计算不同频率而不用重新输入各参数。计算结果可直接打印出来,也可用数据文件进行保存,经过修改后再打印。用数据文件保存的结果可用(EDIT<数据文件>)查看和修改。 三、调洪演算说明:本调洪程序为水库自由泄流情况下的调洪演算程序。在作用调洪程序前须先用记事本编写好水库的水位~库容~泄量数据文件,数据文件名自定(在DOS下用EDIT<数据文件>编号),库容曲线数据文件中的数据顺序是:Z1 V1 q1 Z2 V2 q2 … … … Zi Vi qi Zn Vn qn -1 -1 -1 Zi ,Vi ,qi分别为水位及对应的库容和泄量,数据文件最后以三个-1作为结束标志。如果在库容

文物古建火灾探测器选择的探讨

文物古建火灾探测器选择的探讨 摘要:文物古建的火灾自动报警设计中,首先需要选择火灾探测器。本文根据几种文物古建不同的性质和结构,探讨火灾探测器的选择。 关键词:文物古建、火灾自动报警、联动控制器、火灾探测器。 0 引言 2014年,古城古镇、古村古寨等文物古建发生火灾的情况不在少数。如:云南省迪庆州香格里拉县独克宗古城、贵州报京侗寨、湖南怀化洪江古商城、贵州剑河久吉苗寨等。火灾造成巨大的文化和经济损失。由于文物古建的特殊性,为了保护文物古建的风貌,喷淋系统难以应用,一旦发生火灾,只有依靠人力灭火,人员的反应速度决定了灭火的及时性,因此,火灾的预警显得尤为重要。 在火灾自动报警系统中,火灾探测器是第一个环节,选择合适的火灾探测器,才能对火情做出有效的探测和预警。文物古建多以砖木结构为主,本文中仅探讨此类结构的建筑。 1 常见文物古建型式分类 常见的文物古建,根据财产归属,可以分为公共性质的文物古建和民居性质的文物古建。公共性质的文物古建,并非个人所有,没有居民在其中生活,大部分的建筑同时也作为供游客旅游参观的场所。民居性质的文物古建,仍有居民在其中生活,层高不会太高。公共性质的文物古建,根据建筑内部高度,又可分为大空间和一般高度。设置探测器的要求各有不同。

图一江西瑶里镇程氏宗祠部分平面图 图二重庆湖广会馆禹王宫部分平面图

图三重庆湖广会馆禹王宫部分剖面图 除此之外,火灾探测器的设置还需要考虑到文物古建的外部,由于其他建筑或室外可燃物,导致文物古建本体被引燃。在实际工程中,我们发现,有的重要的文物古建仍作为功能建筑(如宴会厅、厨房等)使用,使得场地内情况更加复杂,火灾探测器的选择更加困难。 2 设计原则 根据《文物防火设计导则》 1.火灾探测器的布置宜采用重点保护与区域监测相结合的方式,突出重点,特别重要的文物建筑或场所应采用双重保护。特别重要的 文物建筑,一般指国家级文物保护单位。双重保护,指由两种不同探

福建省暴雨径流查算图表推理公式法

省推理公式计算设计洪水手册

一、基本公式: 推理公式是无资料地区由暴雨推求洪水比较常用的方法,我省中小型水利工程设计洪水的计算也通常采用这种方法(一般在流域面积200km 2 以下采用)。它是假定汇流时间降雨强度是均匀,并将汇形面积曲线概化为矩形,导出如下计算公式: 当τ≥c t 时,即全面汇流情况下, F R Q m τ τ 278 .0= (1) 当τ

小流域洪峰流量计算的公式

小流域洪峰流量计算的公式 1、推理公式 f Q n s m τ ψ278.0= 当τ≥c t ,时,n s u τψ-=1 当τ c t ,时,n c t n -? ? ? ??=1τψ n H s -= 12424 n --=410ψ ττ () n n n sF L m J ----??? ? ? ?= 414431410278.0τ ()n c s n t 1 1? ???? ?-=μ m Q ——设计频率的洪峰流量(m 3 /s ) ψ ——洪峰径流系数 τ ——汇流历时(h) S ——暴雨雨力(mm/h) n ——暴雨衰减指数,其分界点为1小时,当t<1,取n=n 1,

当t 1,取n=n 2 μ ——产流历时内流域内的平均入渗率(mm/h ) c t ——产流历时 24H ——设计频率的最大 24小时雨量(mm ) 计算步骤 1、根据地形图确定流域的特征参数F 、L 、J 2、由公式4 13 1 F J L =θ计算θ值,并根据相关公式计算汇流参数 m 3、由暴雨μ的参数等值线图确定设计流域的暴雨参数特征值 24 H 、C V 、C S 、n 1或n 2,并由皮尔逊Ⅲ型,结合频率查表, 确定指定频率下的K p 值,由()2412 24H K s K S n p p p -== 4、有《四川省水文手册》,查出 n -44 的值,并根据n s m -?? ? ? ? ???????=44 410383.0θτ计算0 τ值 5、查表确定μ值,并计算n s τμ,查图由n 、n s τμ两坐标 的焦点值,确定洪峰径流系数ψ 6、根据《四川省水文手册》,查出n -41的值,计算流域汇流时间n --=41 ψ ττ,计算τ值

辽宁省无资料地区设计暴雨洪水计算方法的研究

辽宁省无资料地区设计暴雨洪水计算方法 的研究 辽宁省无资料地区设~1- 暴雨洪水~1-算75-法的研究 唐继业吴俊秀单丽 (辽宁省水文水资源勘测局) 江秋兰 (辽宁省水文水资源勘测局抚顺分局116000) 【摘要】本文针对辽宁省水工程设计中的实际情况,在认真总结经验的基础上,对流域特大暴雨重现期进行了探 讨;根据不同地区的产流特点,提出了分层扣损的饱卸产漉及非饱和流模型;建立了辽宁中部平厚区的三水”转 亿摸型;提出了综台经验单位线转换为瞬时单位线的流计算方法;在小流域设计洪永计算上,建立了推理公式辽 宁击和概化过程发法.形成一垂适合辽宁特点的无资料地区设计暴雨洪水计算方法. 【关键词】重现期模型单位巍 无资料地区暴雨洪水计算问题,一直是国内外水学科专

家学者在不断探索和研究的课题.《辽宁省中小河流(无资料地区)设计暴雨洪水计算方法》一书经过3年的工作编制完成.该书通过对大量水文气象资料分析.全面阐述了辽宁省暴雨,洪水时空变化规律,探人分析了暴雨洪水相关参数,提供出设计洪水计算的新理论,新方法和一系列新图件基础 资料详实可靠,计算方法先进,综合成果符合部颁档计洪水计算规范》要求. l基本资料与系列代表性分析 1.1基本资料 车成果分析暴雨资料的选用时段为最大10rain,Ih,6h, 24h,3d等5个时段.资料系列取自有资料以来截止到1995 年,选用站数达306站,年限在25~9O年之间,共有12857 站年.系列最长的站是沈阳,大连,营口,均为91年,起讫时 间为1905—1995年. 1.2亲列代表性分析 首先从定性上开始,绘制各次实测大暴雨等值线图,了 解气象成因与天气系统组合;绘制3d,24h暴雨各站历年实测最高记录图;综合各次大暴雨等值线图,将历次笼罩范围

回弹处理软件说明书

本手册中的约定: A.灰色背景、带黑色方框的文字表示屏幕上的一个按钮或 B.-” 打开菜单项命令。 C.灰色背景、不带方框的文字表示屏幕上弹出的窗口中的 控件(如选择框、输入框等)名称。如打开文件窗口中 的文件名输入框。 D.Windows下分析软件中选择文件的方法: (1)单击鼠标左键可以选中单个文件; (2)按住 (3)按住单击鼠标左键可以选中一个文件后,

第一章、简介 回弹数据分析处理软件是由北京市康科瑞工程检测技术有限责任公司推出的用于回弹数据分析处理的软件。它可运行于安装了Windows95/98/2000/xp操作系统的计算机上。 本软件的处理对象是“KR-2回弹数据处理器”存储的数据文件(PHT文件)和“KR-1回弹数据处理器”、“HT225W全自动数字式回弹仪”存储的数据文件(RFC文件)或直接输入的回弹值,可以对测试数据按单个构件或者批进行计算处理。软件处理过程符合中华人民共和国行业标准《回弹法检测混凝土抗压强度技术规程》(JGJ/T 23-2001)。分析计算完成后不但可以保存或打印输出分析结果,而且还可以生成Microsoft Word格式的检测报告文档,用户只需稍加修改就可以完成检测报告。本软件涉及三种不同类型的文件,如表1.1所示。

第二章、安装 本软件的安装过程与常用的Windows软件的安装基本相似。本章将对本软件的安装和使用前的准备工作做详细的介绍。 安装步骤如下: 1、打开仪器配套光盘,双击康科瑞数显回弹数据处理软件文件,程序会先复制文件,复制结束后则会出现如图2.1的安装界面。点击下一步则进入下一步安装界面,点击取消则出现退出软 2.2),点击图2.2中的继续返回图的安装界面,点击退出则软件退出安装。 图2.1 图2.2 2、进入图2.3安装界面,在此界面点击浏览可以更改程序

暴雨洪水计算分析

《灌溉与排水工程设计规范》 表3.1.2灌溉设计保证率 表3.3.3灌排建筑物、灌溉渠道设计防洪标准 3.3.3灌区内必须修建的排洪沟(撇洪沟),其防洪标准可根据排洪流量的大小,按5~10a 确定。 附录C 排涝模数计算 C.0.1经验公式法。平原区设计排涝模数经验公式: Q=KR m A n (C.0.1) 式中:q ——设计排涝模数(m 3/s ·km 2) R ——设计暴雨产生的径流深(mm ) K ——综合系数(反应降雨历时、流域形状、排水沟网密度、沟底比降等因素) m ——峰量指数(反应洪峰与洪量关系) N ——递减指数(反应排涝模数与面积关系) K 、m 、n 应根据具体情况,经实地测验确定。(规范条文说明中有参考取值范围) C.0.2平均排除法 1平原区旱地设计排涝模数计算公式: )12.0.(4.86-= C T R q d 式中 q d ——旱地设计排涝模数(m 3/s ·km 2) R ——设计暴雨产生的径流深(mm ) T ——排涝历时(d )。

说明:一般集水面积多大于50km 2。 参考湖北取值,K=0.017,m=1,n=-0.238,d=3 2.平原区水田设计排涝模数计算公式: ) 22.0.(4.86'1----= C T F ET h P q w 式中q w ——水田设计排涝模数(m 3/s ·km 2) P ——历时为T 的设计暴雨量(mm ) h 1——水田滞蓄水深(mm ) ET`——历时为T 的水田蒸发量(mm ),一般可取3~5mm/d 。 F ——历时为T 的水田渗漏量(mm ),一般可取2~8mm/d 。 说明:一般集水面积多小于10km 2。 h 1=h m -h 0计算。h m 、h 0分别表示水稻耐淹水深和适宜水深。 《土地整理工程设计》培训教材 第四章农田水利工程设计 第二节:(五)渠道设计流量简化算法 1.续灌渠道流量推算 (1)水稻区可按下式计算 η αt Ae 3600667.0Q = 式中:α——主要作物种植比例(占控制灌溉面积的比例)。 A ——该渠道控制的灌溉面积。 e ——典型年主要作物用水高峰期的日耗水量(mm ),根据调查确定,一般粘壤土地区水稻最大日耗水量8~11mm ,最大13mm 。 t ——每天灌水时间(小说),一般自流灌区24小时,提水灌区20~22小时。 η——渠系水利用系数。 (2)旱作区可按下式计算 η αTt mA 3600Q =

火灾探测器的选择

火灾探测器的选择 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

5 火灾探测器的选择 一般规则 1 对火灾初期有阴燃阶段,产生大量的烟和少量的热,很少或没有火焰辐射的场所,应选择感烟火灾探测器; 2 对火灾发展迅速,可产生大量热、烟和火焰辐射的场所,可选择感温火灾探测器、感烟火灾探测器、火焰火灾探测器或其组合; 3 对火灾发展迅速,有强烈的火焰辐射和少量的烟、热的场所,应选择火焰火灾探测器; 4 对火灾初期有阴燃阶段,且需要早期探测的场所,宜增设一氧化碳火灾探测器; 5 对试用、生产或聚集可燃气体或可燃蒸汽的场所,应选择可燃气体探测器; 6 根据保护场所可能发生火灾的部位和燃烧材料的分析选择相应的火灾探测器(包括火灾探测器类型、灵敏度和响应时间等),对火灾形成特征不可预料的场所,可根据模拟试验的结果选择火灾探测器; 7 同一探测区域内设置多个火灾探测器时,可选择具有复合判断火灾功能的火灾探测器和火灾报警控制器,提高报警时间要求和报警准确率要求。 点型火灾探测器的选择 表对不同高度的房间点型火灾探测器的选择

注:表中A1、A2、B、C、D、E、F、G为点型感温探测器的不同类别,其具体参数见附录G。 下列场所宜选择点型感烟火灾探测器: 1 饭店、旅馆、教学楼、办公楼的厅堂、卧室、办公室、商场、列车载客车箱等; 2 计算机房、通信机房、电影或电视放映室等; 3 楼梯、走道、电梯机房、车库等; 4 书库、档案室等; 符合下列条件之一的场所,不宜选择点型离子感烟火灾探测器: 1 相对湿度经常大于95%; 2 气流速度大于5m/s; 3 有大量粉尘、水雾滞留; 4 可能产生腐蚀性气体; 5 在正常情况下有烟滞留; 6 产生醇类、醚类、酮类等有机物质。 符合下列条件之一的场所,不宜选择点型光电感烟火灾探测器: 1 有大量粉尘、水雾滞留; 2 可能产生蒸汽和油雾; 3 高海拔地区; 4 在正常情况下有烟滞留。

中小流域洪水计算分析

中小流域洪水计算分析 发表时间:2019-12-12T11:17:55.660Z 来源:《建筑学研究前沿》2019年18期作者:冯晶 [导读] 经过合理性分析认为瞬时单位线法推求的设计洪水更符合当地的防洪标准,且利于后期防洪预警指标的精确性。 陕西省水文水资源勘测局陕西西安 710069 摘要:强降雨引发的山洪地质灾害,是近年来威胁人类生存及发展的重要原因。一些中小流域上水文站点分布不均且监测资料匮乏,洪水计算方法合理性及成果有效性亟待验证。本文以陕西省延安市吴起县乱石头川流域为例,主要阐明有关洪水计算的几种方法,其中以瞬时单位线计算结果为主,结合推理公式、分布式模型及经验公式的计算结果,通过合理性分析,对比分析适合该流域的洪水计算成果,为后期山洪预警提供有效基础数据。 关键词:山洪灾害;洪水计算;瞬时单位线 引言: 吴起县位于黄土高原梁状丘陵沟壑区,地处东经107°38′57″至108°32′49″,北纬36°33′33″至37°24′27″之间。区域总面积约3791.5 km2。境内以白于山为界,分为洛河与无定河两大水系。吴起县年平均降雨量483.4 mm,降水量分布东南部多而西北部少,降水多集中在在夏季,年内水量变化比较大,吴起县洪水一般发生在7~9月。 吴起县特殊地形地貌和复杂的气象气候条件导致区域山洪灾害频发。研究区内水文站点稀少,监测资料匮乏,设计洪水计算标准不一,成果合理性有待验证,因此针对无资料地区设计洪水分析研究至关重要。 1 研究方法 以陕西省延安市吴起县乱石头川流域为例,流域内无实测小流域基础资料,因此设计洪水计算主要采用无资料地区的水文计算。 吴起县地处黄土高原,气候干燥,雨量较少流域土壤常处于干旱状态,暴雨历时短,强度大,时空分布极不均匀,主雨段多集中在1~2小时,产流历时一般不超过6小时。吴起县乱石头川流域属黄土丘陵沟壑Ⅱ区,黄土层深厚,植被差,地下水埋藏深,包气带不可能达到饱和,其产流方式为“超渗产流”。根据《陕西省中小流域设计暴雨洪水图集》吴起县属于Ⅰ2区。在雨洪同频率的假设下,基于《延安地区实用水文手册》,设计暴雨采取图表查算法,得到各个不同频率下设计暴雨1小时、3小时、6小时、24小时的面雨量。流域内设计暴雨历时按流域面积大小分为三级:流域面积小于100km2时设计历时采用6小时;流域面积介于100~300km2时设计历时采用12小时;流域面积介于300~1000km2时设计历时采用24小时。 设计洪水采用瞬时单位线法、推理公式法、及经验公式法推求设计洪水,通过与已建工程的采用值对比,以及各方法对不同流域面积的适应性评价,确定本流域内最佳的设计洪水结果。其中设计洪水过程线的推求,采用概化过程线法推求。主雨峰段过程线采用五点概化过程线法;次雨峰段过程线采用三角形概化过程线法。两过程线叠加成出口断面的地面径流过程线。 2 计算结果 本次研究区位于吴起县乱石头川流域,共设断面3组计算断面,分别为营盘渠子小组2#、朱渠小组2#、乱石头组下游2#,流域面积分别为484.61km2、731.86km2、748.52km2。各个控制断面瞬时单位线法设计洪水计算成果如表1示。 表1 瞬时单位线法设计洪水成果 3 成果合理性分析 (1)不同方法下设计洪水成果比较 在进行无资料地区设计洪水计算时,经验公式法、瞬时单位线法、水文比拟法、推理公式均为常用的方法。洪峰流量汇水面积相关法和综合参数法均属经验公式。经验公式主要是依据各区的概化条件总结而来,其考虑的参数相对较少,计算方式较为简单,适用范围1000km2以内。瞬时单位线法则在理论上更为严谨,计算过程复杂,其适用范围在1000km2以内。推理公式一般用于面积较小流域的设计洪水计算。 (2)上下游关系之间的合理性检查 同一流域从上游到下游依次为,营盘渠子小组2#、朱渠小组2#、乱石头组下游2#。设计洪水洪峰流量,在趋势上满足,同一流域上,从上游到下游洪峰流量依次增大的规律。 (3)与历史洪水资料的检查 根据发生洪水地点与评价对象接近原则,将设计洪水成果与调查历史洪水的成果进行比较。营盘渠子组和朱渠组的设计洪水洪峰流量,与历史洪水洪峰流量还是较为接近的。 4 结论 中小流域的设计洪水计算方法众多,本文基于雨洪同频的条件,主要讨论了无资料地区设计洪水的推求方法,根据吴起县乱石头川的流域特征及资料的完整性,考虑到防洪安全,经过合理性分析认为瞬时单位线法推求的设计洪水更符合当地的防洪标准,且利于后期防洪

1混凝土强度回弹计算小软件(精)

构件名 称 测 区12345678910111213141516 角度修正值 角度修正后 测试面修正值 测试面修后 1505136424846424450473946483853490侧面 46.20.046.20.046.258.50.02384044424145444447474450534744440侧面 44.60.044.60.044.654.60.03464347444744454047404648474747450侧面 45.80.045.80.045.857.50.04484846454645484443474545484246440侧面45.80.045.80.045.857.50.05425049464051474948475046444445481侧面47.00.047.00.047.058.10.06524540474046404643454643454746440侧面45.00.045.00.045.055.60.07544447504347484246525353484052421侧面47.80.047.80.047.860.00.08455154474447464647524543494449470侧面46.80.046.80.046.860.00.0 9474848464643454445494645425045410侧面 45.80.045.80.045.857.510414948504554504746434047604844420侧面 46.80.046.80.046.860.01143 42 42

46 40 48 36 42 40 50 40 46 38 42 38 44 侧面42.2 0.0 42.2 0.0 42.2 49.1

2020年公务员行测考点:数学推理公式

2020年公务员行测考点:数学推理公式 1、分数比例形式整除 若a∶b=m∶n(m、n互质),则a是m的倍数,b是n的倍数。 若a=m/n×b,则a=m/(m+n)×(a+b),即a+b是m+n的倍数 2、尾数法 (1)选项尾数不同,且运算法则为加、减、乘、乘方运算,优先使用尾数进行判定; (2)所需计算数据多,计算复杂时考虑尾数判断快速得到答案。常用在容斥原理中。 3、等差数列相关公式 和=(首项+末项)×项数÷2=平均数×项数=中位数×项数; 项数=(末项-首项)÷项数+1。从1开始,连续的n个奇数相加,总和=n×n,如:1+3+5+7=4×4=16,…… 4、几何边端问题相关公式 (1)单边线型植树公式(两头植树):棵树=总长÷间隔+1,总长=(棵树-1)×间隔 (2)植树不移动公式:在一条路的一侧等距离栽种m棵树,然后要调整为种n棵树,则不需要移动的树木棵树为:(m-1)与(n-1)的最大公约数+1棵; (3)单边环型植树公式(环型植树):棵树=总长÷间隔,总长=棵树×间隔 (4)单边楼间植树公式(两头不植):棵树=总长÷间隔-1,总长=(棵树+1)×间隔

(5)方阵问题:最外层总人数=4×(N-1),相邻两层人数相差8人,n阶方阵的总人数为n?。 5、行程问题 (1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长) (2)相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间 (3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间 (4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速 (5)往返相遇问题公式: 两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次 相遇距离B为S2) 单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第 二次相遇距离A为S2); 左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程。 同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程。 6、几何问题 (1)三角形三边关系公式: 两边之和大于第三边,两边之差小于第三边。 (2)勾股定理: 直角三角形中,两直角边的平方和等于斜边的平方。常用勾股数:(3、4、5);(5、12、13);(6、8、10)。

应用推理公式求解小流域设计暴雨洪水

应用推理公式求解小流域 设计暴雨洪水 (图解法) 仅供内部参考使用 编者:陆雪华 2011.10.20

为了统一和方便大家在应用推理公式求解小流域设计暴雨洪水,编者根据SL44-2006《水利水电工程设计洪水计算规范》有关要求及2005版《浙江省短历时暴雨集》推举设计暴雨点,面雨量。暴雨衰减系数等计算方法,编写了本市水 利水电工程应用0.2780.278p m n S h Q F F ψ ττ ==推理公式图解设计洪峰流量及其相 应汇流时间τ计算一文,供同志们设计时参考使用,在应用过程中若发现有错误及不解之处请及时与本人联系以便修正和解释。本文尽供本院内使用,切勿外传。 编者:陆雪华 2011.10.20

应用0.278p m n S Q F ψ τ =推理公式图解Q m ,τ值 式0.278p m n S Q F ψ τ =,它与其它推理公式如0.278m Q F a a τ- = ,0.278m h Q F τ =计算原理是一样的,只不过是表现形式有所不同,今求证如下: 在全面汇流(t B >t)情况下,式0.278m h Q F τ =中h 是代表相应于τ时段的最大 净雨,它也可用R τ来表示,因此0.278 =0.278 m R h Q F F ττ τ =。而式 _ 0.2780.278 m R Q F F a a τττ == ,参见《长江流域规划办公式水文处编写:(水利工程实用水文水利计算一书)P 70页式(2-85)》。 式_ 0.278m Q F a a τ= 中: a 为洪峰径流系数,它与式0.278p m n S Q F ψτ =中ψ意义相同,只是使用符号 不同而已,因此a ψ=。 _ a τ为τ时段内最大(毛)雨量的平均强度,其值为_ p n a S ττ = ,所以: 0.2780.278p m n S Q F a a F τψ τ - == (1) 现就利用公式(1)图解计算设计洪峰流量Q m 及相应汇流时间τ举例如下,供大家设计时参考。 例:某工程流域面积21.13km F =,主流长 1.682km L =,平均坡度j 0.165=,求其20年一遇及200年一遇设计洪峰流量Q p 及相应汇流时间τ。 解: 1. 确定P 5%=,P 0.5%=设计暴雨雨力S p 值 本工程流域面积较小t

5 火灾探测器的选择

5 火灾探测器的选择 一般规则 1 对火灾初期有阴燃阶段,产生大量的烟和少量的热,很少或没有火焰辐射的场所,应选择感烟火灾探测器; 2 对火灾发展迅速,可产生大量热、烟和火焰辐射的场所,可选择感温火灾探测器、感烟火灾探测器、火焰火灾探测器或其组合; 3 对火灾发展迅速,有强烈的火焰辐射和少量的烟、热的场所,应选择火焰火灾探测器; 4 对火灾初期有阴燃阶段,且需要早期探测的场所,宜增设一氧化碳火灾探测器; 5 对试用、生产或聚集可燃气体或可燃蒸汽的场所,应选择可燃气体探测器; 6 根据保护场所可能发生火灾的部位和燃烧材料的分析选择相应的火灾探测器(包括火灾探测器类型、灵敏度和响应时间等),对火灾形成特征不可预料的场所,可根据模拟试验的结果选择火灾探测器; 7 同一探测区域内设置多个火灾探测器时,可选择具有复合判断火灾功能的火灾探测器和火灾报警控制器,提高报警时间要求和报警准确率要求。 点型火灾探测器的选择 表对不同高度的房间点型火灾探测器的选择

附录G。 下列场所宜选择点型感烟火灾探测器: 1 饭店、旅馆、教学楼、办公楼的厅堂、卧室、办公室、商场、列车载客车箱等; 2 计算机房、通信机房、电影或电视放映室等; 3 楼梯、走道、电梯机房、车库等; 4 书库、档案室等; 符合下列条件之一的场所,不宜选择点型离子感烟火灾探测器: 1 相对湿度经常大于95%; 2 气流速度大于5m/s; 3 有大量粉尘、水雾滞留; 4 可能产生腐蚀性气体; 5 在正常情况下有烟滞留; 6 产生醇类、醚类、酮类等有机物质。 符合下列条件之一的场所,不宜选择点型光电感烟火灾探测器: 1 有大量粉尘、水雾滞留; 2 可能产生蒸汽和油雾; 3 高海拔地区;

(完整word版)贵州省暴雨洪水计算实用手册

贵州省暴雨洪水计算实用手册 (修订本) 小汇水流域部分 二零零四年九月

一、基本思路 推理公式法,是最早用作根据暴雨资料间接推求设计洪水最大流量的方法之一。我国于建国后,在铁路、公路、城市和工业区防洪排洪、城市排水以及中小型水电建设等方面,都广泛使用推理公式法计算设计洪水。 本次修订小汇水面积雨洪计算公式,主要考虑了影响雨洪计算公式结构的关键性的经验关系即汇流参数地区综合经验关系以及有关 的边界条件,参照外省的类似经验关系并结合我省的实际情况进行修订,主要有以下几个方面: 1、汇流参数m和流域几何特征值θ之间的地区综合关系m~θ,由于面积较小的小流域及特小流域中坡面汇流随着面积逐渐起主导 作用,不同θ值的流域汇流条件相对的差异较小,因而m~θ线坡度较缓;随着面积的增大,河槽汇流比重加大,汇流速度增加较快,汇流参数m增长较多,汇流m~θ线坡度较陡。所以,m~θ线是转折的。参照《小流域暴雨洪水计算》一书综合国内几个地区m~θ关系及邻近省区m~θ关系的趋势,结合我省某些自然地理分类(如Ⅰ2类)点据分布情况,我省m~θ线大约在θ=30处转折,当θ>30,m~θ线坡度较陡,即原《手册》确定的m=γθ0.73;当θ<30,m~θ线坡度较缓,如附图中所定m=γ1θ0.22。 2、确定小面积m~θ的趋势时,由于我省实测小面积资料特少,因此,除考虑点据分布外,还对我省可能出现的最小θ和m值进行估计,假定流域汇水面积为1平方公里时,对于主河道坡降很大(如

100%)的特小流域,设若干种流域形状系数,其最小的θ不小于3.0,取θ=3为应用范围的最小值。 由我省实测水文资料分析的汇流参数m值,最小值为m=0.4,原《手册》在与邻省区典型流域汇流参数比较的综合材料中,我省最小汇流参数为m=0.31~0.39,结合我省分类m~θ关系点据分布,Ⅰ2类(丘山间谷坝,强岩溶,植被差)的m值最低,其小面积的点据较多,依照其点据分布趋势,确定m~θ线在θ=30处转折后通过θ=3.0,m=0.3处,m~θ线与Ⅰ2类点据配合得还比较好,亦即在应用范围内取我省的最小汇流参数m=0.3。 如此,小汇水面积流域的m~θ关系拟定为m=γ1θ0.22。 3、鉴于其他各自然地理分类(Ⅰ1、Ⅱ1、Ⅱ2、Ⅱ3)小汇水面积流域的点据更少,同时考虑推导小汇水面积雨洪计算公式的方便,其他各自然地理分类的m~θ定为与Ⅰ2类m~θ平行的一组线,即均在θ=30处转折,m=γ1θ0.22。地区综合汇流参数的非几何特征系数γ1值综合如下表。 汇流参数γ1系数统计表

小流域流量计算

隧道口排水(小流域流量计算) 一、计算方法 该计算采用暴雨推算法。暴雨推理他是运用成因分析与经验推算相结合的方法,从实测的暴雨资料入手,应用地区综合分析方法来分析暴雨资料和地区特征关系,从而间接地推求设计流量。是一种半理论半经验的计算方法。 一次暴雨降雨在满足了植物滞留、洼地蓄水和表土储存后,当后降雨强度超过入渗能力时,超渗的雨量将沿着坡面汇流入河网。而决定小流域洪峰流量大小(即影响产流与汇流)的主要因素,一般有降雨量、降雨强度、降雨的时空分布和下垫面(如植物滞留洼地蓄水、土壤蒸发、入渗;汇水区的大小、形状、坡度)等。暴雨推理法把汇水区上的产、汇流条件概括简化,并引入一些假定,从而建立起主要因素和洪峰流量之间的推理关系和经验关系,通过统计分析计算,定量其参数,最后得到计算公式。 说明:本计算中有的参数均来自于十天高速水文计算书(第五册第一分册),有的来自现场,有的则来自有设计院提供的CAD 地形图。 二、基本公式及使用情况 暴雨推理公式: μF τ S 0.278 Q n p p 式中:Q P ——规定频率为P 时的洪峰流量(m 3/s ); S P ——频率为P 时的雨水(mm/h ),该地区取值62; μ——损失参数(mm/h );

n ——暴雨递减指数,按汇流时间及分区范围查表取值为 0.62; τ ——汇流时间(h ); F ——汇流区面积(k ㎡)。 (2)确定汇水区几何参数 在暴雨推理公式的查表及计算系数中,需要确定的汇水去几何参数有三个:即汇水面积F (km 2)、主河沟长度L (km )主河沟平均坡度I Z (‰)。 (3)公式中两个因子的计算方法及适用性 1)损失参数u 的计算 损失参数的计算考虑了以下几点: 按超渗产流概念,假定把地面点的所示概念话为产流流逝内所示等于常熟;影响损失参数的因素,主要考虑了土壤种类、植被、降雨量、汇水面积及地形情况等几项;分类和分区给出个系数和指数值。已扣除法(即计算固定损失率的方法)经行计算。 计算公式 1 1β P S K u = 式中:K1——系数,查表为0.90; 1β——指数,查表为0.88; 即01346290088 011..S K u .P =?==β(mm/h ) 2)汇流时间τ的计算 汇流时间τ是依据以下几点经行计算: 将汇水区内降雨概化为平均净雨过程,假定同一时段的汇水区内

暴雨洪水计算分析

暴雨洪水计算分析 《灌溉与排水工程设计规范》 表3.1.2灌溉设计保证率 表3.3.3灌排建筑物、灌溉渠道设计防洪标准 3.3.3灌区内必须修建的排洪沟(撇洪沟),其防洪标准可根据排洪流量的大小,按 5~10a确定。 附录C 排涝模数计算 C.0.1经验公式法。平原区设计排涝模数经验公式: Q=KRm A n (C.0.1) 式中:q ——设计排涝模数(m 3/s·km 2) R——设计暴雨产生的径流深(mm ) K——综合系数(反应降雨历时、流域形状、排水沟网密度、沟底比降等因素) m——峰量指数(反应洪峰与洪量关系) N——递减指数(反应排涝模数与面积关系) K 、m 、n 应根据具体情况,经实地测验确定。(规范条文说明中有参考取值范围)C.0.2平均排除法 1平原区旱地设计排涝模数计算公式: q d = R (C . 0. 2-1) 86. 4T 式中 qd ——旱地设计排涝模数(m 3/s·km 2) R——设计暴雨产生的径流深(mm )T ——排涝历时(d )。 说明:一般集水面积多大于50km 2。 参考湖北取值,K=0.017,m=1,n=-0.238,d=3 2. 平原区水田设计排涝模数计算公式: q w = P -h 1-ET ' -F (C . 0. 2-2) 86. 4T 式中q w ——水田设计排涝模数(m 3/s·km 2)

P ——历时为T 的设计暴雨量(mm ) h 1——水田滞蓄水深(mm ) ET`——历时为T 的水田蒸发量(mm ),一般可取3~5mm/d。 F ——历时为T 的水 田渗漏量(mm ),一般可取2~8mm/d。说明:一般集水面积多小于10km 2。 h 1=hm -h 0计算。h m 、h 0分别表示水稻耐淹水深和适宜水深。 《土地整理工程设计》培训教材 第四章农田水利工程设计 第二节:(五)渠道设计流量简化算法 1. 续灌渠道流量推算(1)水稻区可按下式计算 Q = 0. 667αAe 3600t η 式中:α——主要作物种植比例(占控制灌溉面积的比例)。 A ——该渠道控制的灌溉面积。 e ——典型年主要作物用水高峰期的日耗水量(mm ),根据调查确定,一般粘壤土 地区水稻最大日耗水量8~11mm,最大13mm 。 t ——每天灌水时间(小说),一般自流灌区24小时,提水灌区20~22小时。 η——渠系水利用系数。 (2)旱作区可按下式计算 Q = αmA 3600Tt η 式中:m ——作物需水量紧张时期的灌水定额,m 3/亩。 T ——该次灌水延续时间,天。第四节:(二)排水流量 (1)、(2)前面两种计算公式同《灌溉与排水工程设计规范》(3)丘陵山区: a .10km 2

火灾探测器的选择

5 火灾探测器的选择 5.1 一般规则 1 对火灾初期有阴燃阶段,产生大量的烟和少量的热,很少或没有火焰辐射的场所,应选择感烟火灾探测器; 2 对火灾发展迅速,可产生大量热、烟和火焰辐射的场所,可选择感温火灾探测器、感烟火灾探测器、火焰火灾探测器或其组合; 3 对火灾发展迅速,有强烈的火焰辐射和少量的烟、热的场所,应选择火焰火灾探测器; 4 对火灾初期有阴燃阶段,且需要早期探测的场所,宜增设一氧化碳火灾探测器; 5 对试用、生产或聚集可燃气体或可燃蒸汽的场所,应选择可燃气体探测器; 6 根据保护场所可能发生火灾的部位和燃烧材料的分析选择相应的火灾探测器(包括火灾探测器类型、灵敏度和响应时间等),对火灾形成特征不可预料的场所,可根据模拟试验的结果选择火灾探测器; 7 同一探测区域内设置多个火灾探测器时,可选择具有复合判断火灾功能的火灾探测器和火灾报警控制器,提高报警时间要求和报警准确率要求。 5.2 点型火灾探测器的选择 表5.2.1 对不同高度的房间点型火灾探测器的选择

注:表中A1、A2、B、C、D、E、F、G为点型感温探测器的不同类别,其具体参数见附录G。 5.2.2 下列场所宜选择点型感烟火灾探测器: 1 饭店、旅馆、教学楼、办公楼的厅堂、卧室、办公室、商场、列车载客车箱等; 2 计算机房、通信机房、电影或电视放映室等; 3 楼梯、走道、电梯机房、车库等; 4 书库、档案室等; 5.2.3 符合下列条件之一的场所,不宜选择点型离子感烟火灾探测器: 1 相对湿度经常大于95%;

2 气流速度大于5m/s; 3 有大量粉尘、水雾滞留; 4 可能产生腐蚀性气体; 5 在正常情况下有烟滞留; 6 产生醇类、醚类、酮类等有机物质。 5.2.4 符合下列条件之一的场所,不宜选择点型光电感烟火灾探测器: 1 有大量粉尘、水雾滞留; 2 可能产生蒸汽和油雾; 3 高海拔地区; 4 在正常情况下有烟滞留。 5.2.5 符合下列条件之一的场所,宜选择点型感烟火灾探测器;且应根据使用场所的典型应用温度和最高应用温度选择适当类别的感温火灾探测器: 1 相对湿度经常大于95%; 2 无烟火灾; 3 有大量粉尘; 4 吸烟室等在正常情况下有烟或蒸汽滞留的场所;

相关主题
文本预览
相关文档 最新文档