当前位置:文档之家› 流域地表径流系数的计算方法研究

流域地表径流系数的计算方法研究

流域地表径流系数的计算方法研究
流域地表径流系数的计算方法研究

流域地表径流系数的计算方法研究

摘要:径流系数是描述降雨和径流关系的重要参数 ,在雨洪控制利用系统的理论研究、 规划、 设计计算中应用广泛 ,在流域或区域的雨水径流总量、 径流峰流量、 流量过程线以及非点源污染物总量、 各设施规模的计算中也起着极其重要的作用。由于径流系数有着不同的含义,其相应的统计计算方法、适用条件、应用目的和取值不尽相同。而且要获得流域的径流系数通常是比较困难的,在一些特殊流域基本上很难获得能满足要求的径流实测资料,尤其在多年平均径流量的计算中实测数据资料往往相当缺乏,在这样的情况下有必要利用一些特殊的方法去满足工程建设对水文数据的需求。本文综合了大量的数据以及列举了多个例子,详细地介绍了不同情况下径流系数的推求方法,并在此基础上研究总结提出了过程中发现的一些问题和心得。

关键词:流域 径流量 降雨量 径流系数

一 引言

流域径流系数是指同一流域面积、同一时段内径流量与降水量的比值,以小数或百分数表示。计算式为:α=R/P ,式中α为径流系数,R 为径流深度,P 为降水深度。α值变化于0~1之间,湿润地区α值大,干旱地区α值小。我国台湾地区河流年平均径流系数>0.7,表明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。

根据计算时段的不同,可分为瞬时雨量径流系数、雨量径流系数、年径流系数、多年平均径流系数等。径流系数综合反映流域内自然地理要素对降水─径流关系的影响。

瞬时雨量径流系数是指某一特定的流域或汇水面上 ,降雨期间随时间变化的径流厚度和降雨厚度之间的瞬时变化关系 ,是一个动态的变量 ,这个意义上的径流系数就是瞬时雨量径流系数。雨量径流系数是指降雨时 ,在某一汇水面上产生的径流量 (厚度 )和降雨量 (厚度 )的比值 ,一般用于估计一场降雨在某一汇水区域内单位面积产生的平均径流厚度。年径流系数和多年平均径流系数反映了流域降雨厚度和径流厚度长时间的关系 ,是一个累积结果。在各种径流系数中应用较为广泛的是年径流系数和多年平均径流系数。径流系数的计算主要是要计算流域相应时间段内径流量与降雨量。

二 径流量的计算

(一) 年径流量的计算

流域年降雨次数为n 次,且每次降雨所产生的径流量均有实测数据资料,则流域的年径流量可按下式计算。

Q=

∑=n

1

i Qi (1)

式中 Q ——流域年径流总量(mm ); Q i ——第i 次降雨产生的径流量(mm )。

(二) 多年平均径流量的计算

1.有长期实测资料的多年平均径流量的计算

所谓的有长期实测资料,是指实际观测的年数n 在20年以上。它包括有丰、平、枯水年的观测资料,由它计算的径流量多年平均值基本上是稳定的。在这种情况下,可以由下式(2)计算径流量的多年平均值,以此值代表多年平均径流量,即:

Q 平均=

n

1∑=n

1

i Qi (2)

式中: Q 平均——流域多年平均径流量(mm ); Qi ——序列号为i 的年份流域径流径流量(mm )。 2.有短期实测资料的多年平均径流量的计算

若实测系列长度小于20a ,用上述方法计算误差会太大,为了提高计算的精度,保证计算结果的可靠性,就必须对实测径流系列进行相关展延,然后用上述方法计算。目前常用的方法有两种。

(1) 利用径流资料插补延展系列。

该方法的关键是找到和流域自然地理条件相似的邻近的参照流域,且参照流域具有长序列实测年径流序列。利用相关分析验证研究区流域和参照流域是否具有相关关系,如果两流域相关关系密切,则可以用两者的相关趋势函数插补延展研究区的短期年径流量实测资料序列。当年径流量资料序列很短,不足以建立年相关时,也可以先建立月相关序列,插补延展月径流量,然后计算年径流量,但用月径流量相关来插补延展年径流量时,会使误差累积,精度较低。

(2) 利用降雨量资料插补延展序列。

如果研究区的上下游或邻近地区找不到具有长序列的径流量资料的参照流域,而在研究区流域或邻近参照流域有较长序列的年降水量资料,则可以选择降水量作为参照变量与研究区短期实测径流量资料进行相关分析,如果两个序列之间相关关系密切,则可以利用较长实测年降水量资料进行插补延展研究区的径流量序列。

如下表列举了贵州省大煤矿流域1967年到2004年的降雨量实测系列,而该流域只有1967年到1984年及1991年到2004年的实测径流序列,因此需要用降雨量序列插补延展1984年到1991年径流量序列序列。插补结果如下表。

表1 贵州省大煤矿流域多年雨量径流量数据 年份 雨量/mm 径流深/mm 年份 雨量/mm 径流深/mm 1967~1968 1035.7 846.8 1968~1969 1006.0 470.3 1969~1970 974.3 457.9 1970~1971 1133.4 532.7 1971~1972 850.5 399.7 1972~1973 1006.0 470.3 1973~1974 992.9 466.7 1974~1975 987.6 464.2 1975~1976 974.6 458.1 1976~1977 1013.9 476.5 1977~1978 973.0 457.3 1978~1979 958.6 450.5 1979~1980 1026.5 482.5 1980~1981 1006.5 473.1 1981~1982 864.8 406.5 1982~1983 1082.7 508.9 1983~1984 1025.3 481.9 1984~1985 880.2 413.5

1985~1986 973.0 457.0

1986~1987 893.9 419.9 1987~1988 895.1 420.5 1988~1989 860.2 404.1 1989~1990 869.3 408.4 1990~1991 766.1 360.0 1991~1992 1056.7 496.6 1992~1993 827.9 389.1 1993~1994 901.9 423.9 1994~1995 966.8 454.4 1995~1996 1009.5 474.5 1996~1997 1048.8 492.9 1997~1998 824.0 387.3 1998~1999 946.7 444.9 2000~2001 1068.3 502.1 2001~2002 1038.3 488.0 2002~2003 843.1 396.3 2003~2004 783.1 368.1

y = 0.4691x + 0.5978

R 2 = 0.9993

350

370390410430450470490

510530550800

900

10001100

1200

降雨量(mm)

径流量(m m )

图1 径流量与降雨量相关曲线图

3.无实测资料时河流径流量推求方法 (1)等值线图法

把相同数值的点连接起来的线叫等值线。某一流域的水文特征值的等值线图即可反映出该流域水文特征值的地理分布规律。闭合流域多年径流量的主要影响因素是气候因素,而气候因素有地区性,即降雨量与蒸发量具有地理分布规律,同理,受降雨量和蒸发量影响的多年平均年径流量也具有地理分布规律。因此可利用这一特点绘制多年平均年径流量的等值线图,并可以用它来推算无实测资料流域的多年平均年径流量。

应用等值线图推求多年平均年径流深时,先在图上勾绘出研究流域的分水线,再找出流域的形心,而后根据等值线内插读出形心处的多年平均年径流深值。如果流域面积较大或地形复杂,等值线分布不均匀,也可用加权平均法推算,即:

Y =(y 1f 1 +y 2f 2 +……+y n f n )/F (3)

式中:y 1——相邻两径流深等值线的平均值; f 1——相邻两等值线间面积; F ——流域总面积。 (2) 水位比拟法

如前所述,水文现象具有地区性,如果某几个流域处在相似的自然地理条件下,则其水文现象具有相似的发生、发展、变化规律和相似变化特点。与研究流域有相似自然地理特征的流域称为相似流域(即参证流域)。水文比拟法就是以流域间的相似性为基础,将相似流域的水文资料移用至研究流域的一种简便方法。其中移用相似流域研究资料的方法较多,如选择相似流域的径流模数、径流深度、径流量、径流系数以及降水径流相关图等。但是,地球上不可能有两个流域完全一致,或多或少都存在一些差异,倘若相似流域与研究流域之间仅在个别因素上有些差异时,可以考虑不同的修正系数加以修正。

若研究流域与相似流域的气象条件和下垫面因素基本相似,仅流域面积有所不同,这时只考虑面积的影响,则研究流域的正常年径流量有如下关系式:Q 研 /F 研 =Q 相 /F 相。如果使用径流深或径流模数,则不需要修正即可使用。

若两流域的年降水量有不同时,则Q 研 /P 研 =Q 相 /P 相。

式中:P 研 和P 相 ——分别为研究流域、相似流域的年降水量。

(3) 径流系数法

当小流域内(或附近)有年降水量资料,且降水量与径流关系密切时,可利用多年平均降雨量与径流量间的定量关系计算年径流量,即利用年降雨量的多年平均值乘以径流系数推求多年平均径流量间的流量,可由下式计算之:

W=1000×C ×P ×F (4) 式中:W ——多年平均径流总量,m ;C 该地区年径流系数,与研究区植被、地形,地质、主河道长度等因素有关,可通过调值并参考省、地《水文手册》确定;P ——研究地区多年平均降雨量(mm ),可从省、地区的《水文手册》查出,或向附近水文站、雨量站查询;F ——研究流域的集水面积(km )。

(4) 水文查勘法

对于完全没有资料,也找不到相似流域的小河或间歇性河流,此时可进行水文查勘,收集水文资料,进行正常年径流量的估算。这项任务一般是通过野外实地查勘访问,了解多年期间典型水位过程线,河道特性,建立水位流量关系曲线,从而推算出近似的流量过程线,并估算其正常年径流量。水文查勘工作,不仅对完全无资料的小河有必要,就是对有资料的水流域也是不可缺少的。

(5) 经验公式法

经验公式都是根据各地实测资料分析得出的,这些径流公式一般可以在当地的《水文手册》中查得。如:

Q=KF n

(5)

式中:Q ——多年平均径流量(m 3

);

F ——流域面积(km 3

);

K 、n ——分别为地区性参数,取值可查水文手册。 三 降水量的计算

(一) 一次降水过程中降水量的计算方法

1. 算术平均法

算术平均法是将该流域各站测得的同期雨量相加后,除以总站数,即为流域面雨量。其数学表达式为:

P 平均=

n

1

∑=n

1

i Pi (6)

式中:n ——总站数;P i ——为各站同期雨量(m )。

2. 等雨量线法

根据流域内各测站实测的雨量资料绘出等雨量线 ,然后用求积仪或其它方法求各相邻两等雨量线间的面积 ,再分别乘以各相邻两等雨量线雨深的平均值 ,即得该面积上的降水总量。将各面积上的降水总量相加 ,除以全流域的总面积 ,即得流域的面雨量。用数学关系式表示为:

P =

A

1

=n

1

i 2

P P i

1-i +a i (7) 式中: P i-1,P i ——第i-1和第i 条等雨量线代表的降雨量,i=1,2,3,…,n ; a i ——第i-1和第i 条等雨量线之间的面积,i=1,2,3,…,n ; A ——总面积;

n ——等雨量线的条数。

2 邵阳地区2000年各站年降水量

站名 东经 北纬 降雨量

/ (° ) / (° ) /mm 站名 东经 北纬 降雨量

/ (° ) / (° ) /mm 汪家田 110. 58 26. 52 1 744. 3 武 冈 110. 60 26. 72 1 391. 2 鸦槎铺 110. 80 26. 75 1 313. 8 武 阳 110. 32 26. 73 1 514. 2 瓦屋塘 110. 33 26. 93 1 582. 7 红 岩 110. 50 26. 90 1 548. 3 高 沙 110. 68 26. 97 1 326. 9 黄 桥 110. 85 27. 03 1 369. 2 洗 马 110. 47 27. 32 1 768. 0 栗山界 110. 45 27. 15 1 693. 0 长 塘 110. 52 27. 13 1 563. 4 金屋塘 110. 35 27. 07 1 982. 3 金盆形 110. 45 27. 03 1 658. 7 洞 口 110. 55 27. 07 1 541. 5 山 门 110. 68 27. 23 1 495. 8 苏家洞 110. 80 27. 32 1 396. 1 匡家铺 110. 93 27. 53 1 423. 4 隆 回 110. 98 27. 13 1 329. 9 枯 桑 111. 03 26. 93 1 276. 6 麻 林 110. 63 26. 47 1 623. 6 新 宁 110. 87 26. 45 1 599. 4 回龙寺 111. 10 26. 75 1 264. 2

三门江 111. 23 26. 93 1 425. 8 罗家庙 111. 25 27. 02 1 333. 7 檀木塘 111. 85 27. 12 1 223. 6 邵 东 111. 73 27. 23 1 301. 1 官桥铺 111. 62 27. 18 1 292. 2 五丰铺 111. 47 26. 88 1 429. 9 诸家亭 111. 58 27. 03 1 284. 9 短陂桥 111. 57 27. 27 1 330. 5 茅 坪 111. 47 27. 23 1 390. 6 刘付冲 111. 47 27. 43 1 946. 2 高 坪 111. 12 27. 48 1 316. 7 岩口铺 111. 23 27. 22 1 360. 9 大河滩 111. 38 27. 50 1 243. 6 双 林 110. 93 27. 73 1 762. 7 白茅坪 110. 37 26. 27 1 402. 9 界 溪 110. 13 26. 38 1 880. 3 黄 桑 110. 05 26. 43 1 691. 0 黄土头 109. 98 26. 50 1 867. 3 朝 仪 109. 97 26. 58 1 863. 9 丰 家 110. 07 26. 57 1 659. 4 党 坪 110. 08 26. 60 1 570. 3 小沙江 110. 75 27. 52 1 551. 8

图2 用距离倒数加权法绘等值线

3. 数值法

通常数值法是指森泰多边行法或三角形法,它实际上是以权重系数决定的计算方法。三角形法比森泰多边行法计算方便。三角形法的具体做法是先在流域内自先设定均匀分布的网格点,再将各网格点置于相应的三角形的重心上,以此求出代表此三角形面积上的平均雨深。然后各三角形区域的平均雨深乘上三角形面积,得出三角形区域的降水总量,再将各三角形区域降水总量相加,除以流域总面积,即得流域面雨量,用数学关系式表示为:

P =∑=n

1

i /A a P i i (8)

式中: P i ——任意三角形区域平均雨深; a i ——任意三角形面积;

A ——流域总面积。

4

4

3

3

2

2

11

a a a a P P P P

图3 泰森多边形

(二) 年降雨量的计算方法

如果流域一年中所有场次的降雨量均已测出,则流域的年降雨总量可按下式计算: P=

∑=n

1

i i P (9)

式中:P i ——第i 次降雨的雨量;

n ——一年中的降雨次数。 (三) 多年平均降雨量的计算

若流域有长期年降雨量资料,则流域的多年平均降雨量为:P =

n

1

∑=n

1

i i P ,一般要求实

际观测年数n 在20a 以上。

若流域只有短期年降雨量实测资料,则可以用插补法延长实测序列,通常所用的插补法有:

1. 对选用的雨量站 , 若本站与参证站某时段(如: 年、月) 降水量数值较为接近 , 则说明成雨条件大体一致 , 降水量在面上分布比较均匀 ,这时 , 各参证站降水量算术平均值作为插补站相应时段降水量。

2. 非汛期降水量较少 , 各年变化不大时 , 采用本站同月降水量的历年平均值插补缺测月份。

3. 年降水量缺测时 , 若参证站与插补站有较长的平行观测资料 , 且降水成因一致 , 根据相临站的长系列资料用相关分析法插补或延长 , 也可用降水量等值线图内插。 四 总结和建议

1.径流系数是受降雨过程、土壤性质、流域坡度、土地利用类型以及先前湿润状况等因素综合影响的代表径流和降雨之间关系的系数,以不同的含义及大小具体体现在降雨过程、产流过程和汇流过程中。

2.径流系数的计算关键是对径流量与降雨量的计算,而径流量与降雨量的计算关键是要获得实测数据资料,因此实测径流数据和降雨数据是非常重要的。

3.场(次)雨量径流系数可用于计算单场降雨的径流总量。在应用中,一方面可对开发前、后设计重现期的降雨事件的雨水径流总量进行计算分析和制定控制对策;也可以粗略计算单场降雨的雨水资源量;峰流量径流系数可用于计算设计重现期降雨事件的径流峰流量,除了用于传统的管渠设计计算,也用于对开发前后径流峰流量的控制。

4.年均径流系数一方面可用于粗略计算年均径流总量或雨水资源总量,另一方面可间接估算非点源污染物年均总量。

5.为准确反映降雨和径流之间的关系,首先需要明确不同径流系数的概念,对汇水面的特征参数、气候因素、不同条件下的产流和汇流进行监测和综合分析,以区别和修正用于不同条件的不同径流系数。

6.传统的城市雨水排放理念和方法主要针对一定设计标准下的峰流量排放,因此主要用峰流量径流系数。但现代城市新型雨洪控制利用理念和方法则必须针对径流污染控制、雨水径流总量和峰值的控制(限制排放)、滞蓄利用等,因而需要根据目标和具体要求,采用不同的径流系数。对不同的雨水径流系数概念及其主要影响因素进行梳理和总结,主要为城市雨洪控制利用系统的理论分析、规划、设计计算中径流系数的合理确定提供参考。但是降雨和径流之间的关系非常复杂、多变,在应用中要根据实际情况分辨主次因素,选择不同的径流系数并确定其大小,其中一些问题(如参数选取、确定等)还需进一步深入研究。

参考文献:

[1] 徐恒力.水资源开发与保护.地质出版社.北京.2001年8月.124-125.

[2] 芮孝芳.水文学原理.中国水利水电出版社.北京.2004年8月.52-54.

[3] 张红梅.水文统计讲义.水资源与环境学院.北京.2010年3月. 20-25.

[4] 何玉敬丁国梁.无实测资料时河流径流量推求方法的适用性分析.新疆昌吉.昌吉水文水资源勘测局.2009年9月(上旬)第08卷第25期第186期 .

[5] 李学美刘新华任伯帜.无资料非闭合小流域矿区径流来水量计算方法.湖南科技大学土木工程学院.湖南湘潭.2009年 9月第 24卷第 3期.

[6] 于丽玲卢昌卢昊.山区小流域径流系数计算方法探讨.伊春水文局.黑龙江.2005 年第6 期(第33 卷).

[7] 雷祖培彭国才.无资料地区径流计算中儿个技术问题的探讨.韶关市水利水电勘测设计院.广东.2000年第二期.

[8] 郭天亮. 沟尾溪涝区整治工程地表径流系数计算. 潮州市水利水电勘测设计院. 2009年8月. 总第 219期.

[9] 唐宁远车伍潘国庆. 城市雨洪控制利用的雨水径流系数分析. 北京建筑工程学院城市雨水与水环境研究中心. 北京. 2009年 11月第 25卷第22期.

[10] 范银贵.空间插值方法在绘制降水量等值线中的应用.湖南省邵阳水文水资源勘测局.湖南邵阳.2002年6月第22卷第3期.

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

2_4GHz低噪声放大器的研究

第25卷第4期 杭州电子科技大学学报Vol.25,No.4 2005年8月Jo urnal of Ha ngzhou Dianzi Uni versi ty Aug.2005 2.4GHz 低噪声放大器的研究 潘少祠,官伯然 (杭州电子科技大学电子信息学院,浙江杭州310018) 收稿日期:2005-07-01 作者简介:潘少祠(1981-),男,广东佛冈人,本科毕业生,电子信息工程. 摘要:低噪声放大器是对来自天线的微伏级信号进行放大的射频接收端的放大模块。该低噪声放 大器主要由输入匹配网络、微波晶体管放大器和输出匹配网络组成。匹配网络采用微带线形式建 立,微波晶体管采用NPN 硅晶体管BFP420。利用Microwave Office 进行电路仿真和优化。该放大器 满足小信号放大器的指标要求,可以用于射频接入电路的前端。 关键词:无线接入射频电路;低噪声放大器;晶体管 中图分类号:TN722.3 文献标识码:A 文章编号:1001-9146(2005)04-0046-04 0 引 言 无线接入射频电路很多应用在小型设备或便携式电子产品中,如:笔记本,PDA,手机等;目的是实现设备之间的无线连接和信息交换。低噪声放大器在射频电路中是非常重要的。低噪声微波晶体管放大器已广泛地应用于宇宙通讯、雷达、电子对抗、遥测遥控、射电天文、大地测绘、微波通信、电视以及各种高精度的微波测量系统中的前端低噪声放大器,以完成对微弱信号的放大作用。因此,对低噪声微波晶体管放大器的基本要求是:噪声系数低、足够的功率增益、工作稳定可靠、足够的带宽和较大的动态范围等。此外,在不同的应用情况下,可能对其体积、重量、耗电量等等提出限制性要求。微波晶体管放大器还在向更高工作频率、低噪声、宽频带、集成化和标准化发展。本文主要是通过研究低噪声放大器的稳定性、噪声、增益,设计一个满足技术指标的低噪声放大器。放大器模块采用高增益低噪声NPN 晶体管B FP420设计,具有较低的噪声系数和合适的增益,在射频通信电路中能满足电路的要求。 1 低噪声放大器组成 低噪声放大器由输入匹配网络、微波晶体管放大器和输出匹配网络组成。匹配网络采用微带线、分支调节器和波长阻抗变换器建立。低噪声放大器的组成框图,如图1 所示。 图1 低噪声放大器组成框图 图1中,左边方框是输入匹配网络,其增益G S ;中间方框是晶体管网络,其增益G 0;右边框输出匹配网络,其增益G L 。选定晶体管和确定偏置后,在已定频率下的S 参数是确定的。然后再利用S 参数设

需用系数的计算

需用系数和功率因素的一些问题 PE=141KW KX=0.65,COSX=0.85 PJS=92KW SJS=108KVA LJS=163A 据cosφ=0.85 得tgφ=0.62 有功功率计算:Pjs=Pe×kx=141kW×0.65=91.65kW 无功功率计算:Qjs=Pjs×tgφ=91.65kW×0.62=56.82kVar 计算负荷:Sjs=√Pjs2+ Qjs2=√91.652+56.822=107.84kVA 计算电流:Ijs=108kVA×1000/380V/1.73=164A 其中tgφ、cosφ、KX又是如何得出来的? 需用系数,包括同时系数的,由同时系数得的。同时系数只同时使用的设备同时间的概率,需用系数指计算电流的需用系数。 需用系数除了得考虑同时系数(即考虑各种设备不会同时使用的系数),还需要考虑负荷系数(即各种设备部可能都达到额定值)。这样算下来的计算负荷就小于各种设备总负荷的相加值。 kx是需用系数,是由同时系数乘以负荷系数得来的。用来描述用电设备的真实负荷和设备额定负荷之间的长期关系。我们可以通过需用系数来计算计算负荷。这种方法就叫需用系数法,是三种常用的计算

负荷的方法之一,也是最常用和简单的方法。 kx可以查表得来,表中通过你对负荷性质的筛选可以找到你需要的kx值。比如是大范围办公照明还是电镀车间还是电解车间等等。。。表中除了有kx之外还有tgφ、cosφ都可以查。属于经验数据。当然。如果只求计算负荷的话,只要cosφ就好了。不需要用tgφ。从你给出的式子也可以看出这一点。 Sjs=Pjs/cosφ 关于计算电流中的1.73是什么? 根号3等于1.732。。。。它只取了小数点后两位。 这样看就能把他们的单位换算看清楚些 108kVA×1000=108000 VA 108000va除以380V=....安 由于这个是三项电,它的单项电流需要乘以根号3 ...乘以1.73=164A 所以Ijs=164安1、cosφ、Kx是经验数据; 2、根号3=1.732. 计算电流,用这样的公式形式会更容易理解: Ijs=[(Pe/3)/220]*Kx/cosφ =[(141000/3)/220]*0.65/0.85 =163.3(A .

噪声系数测量手册1:噪声系数定义及测试方法

噪声系数测量手册 Part 1. 噪声系数定义及测试方法 安捷伦科技:顾宏亮一.噪声系数定义 最常见的噪声系数定义是:输入信噪比/ 输出信噪比。它是衡量设备本身噪声品质的重要参数,它反映的是信号经过系统后信噪比恶化的程度。噪声系数是一个大于1的数,也就是说信号经过系统后信噪比是恶化了。噪声系数是射频电路的关键指标之一,它决定了接收机的灵敏度,影响着模拟通信系统的信噪比和数字通信系统的误码率。无线通信和卫星通信的快速发展对器件、子系统和系统的噪声性能要求越来越高。 输入信噪比SNR input=P i/N i 输出信噪比SNR output=P o/N o 噪声系数F =SNR input/SNR output通常用dB来表示NF= 10Log(F) 假设放大器是理想的线性网络,内部不产生任何噪声。那么对于该放大器来说,输出的功率Po以及输出的噪声No 分别等于Pi * Gain以及Ni*Gain。这样噪声系数=(Pi/Ni)/(Po/No)=1。但是现实中,任何放大器的噪声功率输出不仅仅有输入端噪声的放大输出,还有内部自身的噪声(Na)输出,下图为线性双端口网络的图示。 双端口网络噪声系数分析框图 Vs: 信号源电动势Rs: 信号源内阻

Ri: 双端口网络输入阻抗R L: 负载阻抗 Ni: 输入噪声功率Pi: 输入信号功率 No: 输出噪声功率Po: 输出信号功率 Vn: 该信号源内阻Rs的等效噪声电压Ro: 双端口网络输出阻抗 输出噪声功率: N o = N i * Gain + N a ; P o=P i * Gain 噪声系数= (P i * N o)/(N i* P o) = (N i * Gain + N a) /(N i * Gain)= 1 + Na/(N i * Gain) > 1 根据IEEE的噪声系数定义:The noise factor, at a specified input frequency, is defined as the ratio of (1) the total noise power per unit bandwidth available at the output port when noise temperature of the input termination is standard (290 K) to (2) that portion of (1) engendered at the input frequency by the input termination.” a.输入噪声被定义成负载在温度为290K下产生的噪声。 b.输入噪声功率为资用功率,也就是该负载(termination)能产生的最大功率。 c.假定了被测件和负载阻抗互为共轭关系. 如果被测件是放大器,并且噪声源阻抗为50ohm,那么假定了 该放大器的输入阻抗为50ohm。 综合上述的结论,我们可以这样理解噪声系数的定义:当输入噪声功率为290K温度下的负载所产生的最大功率情况下,输入信噪比和输出信噪比的比值。 资用功率指的是信号源能输出的最大功率,也可以称为额定功率。 信号源输出框图 只有当源的内阻和负载相等(复数互为共轭),源输出最大功率. P available= [V S/(R S+ R L)]2 * R L当R S= R L时候P available= V S2/(4*R S) 由此可见,资用功率是源的本身参数,它只和内阻以及电动势有关,和负载没有关系。

2020年径流量与径流系数

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 径流量与径流系数 径流系数 径流系数,一定地区任意时段内径流量(或得流总量)与同时段内相应的降水量之比值。以小数或百分数计。 径流系数(runoff coefficient),一定地区任意时段内径流量(或径流总量)与同时段内相应的降水量之比值。以小数或百分数计。即:径流系数=径流量/降水量 在干旱地区,径流系数小,甚至趋近于零;在湿润地区较大,径流系数同所取时段不同分别称为次径流系数、洪峰径流系数、月径流系数、年径流系数和多年平均径流系数。 径流系数(runoff coefficient)是一定汇水面积地面径流量(毫米)与降雨量(毫米)的比值,是任意时段内的径流深度y(或径流总量W)与同时段内的降水深度x(或降水总量)的比值。径流系数说明在降水量中有多少水变成了径流,它综合反映了流域内自然地理要素对径流的影响。其计算公式为a=y/x。 同一流域面积、同一时段内径流深度(R)与降水量(P)的比值称为径流系数,以小数或百分数计,表示降水量中形成径流的比例,其余部分水量则损耗于植物截留、填洼、入渗和蒸发。 径流系数同一流域面积、同一时段内径流量与降水量的比值,以小数或百分数表示。计算式为:α=R/P,式中α为径流系数,R为径流深度,P为降水深度。α值变化于0~1之间,湿润地区α值大,干旱地区α值小。我国台湾地区河流年平均径流系数>0.7,表明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。根据计算时段的不同,可分为多年平均径流系数、年平均径流系数和洪水径流系数等。径流系数综合反映流域内自然地理要素对降水─径流关系的影响。 径流量 中文名称:径流量 英文名称:runoff 定义:为时段流量,可分地面径流、地下径流两种。表示径流大小的方式有

β系数的计算方法

β系数得计算方法 一、公式法 运用公式法计算行业β系数得具体步骤如: 1。计算市场整体收益率。计算公式为: 式中:R 为第t期得市场整体收益率;为沪深300指数第溯期末 得收盘数;为沪深3oo指数第t—1期期末得收盘数。。 2.计算各参照上市公司收益率.计算公式为: 式中:为参照上市公司第t期得收益率;为参照上市公司第溯期末 得股票收盘价;为参照上市公司第t—I期期末得股票收盘价。 3.计算市场整体收益率与各参照上市公司收益率得协方差。我们可以利用EXCEL中得协方差函数“COVAR”来计算。 4。计算市场整体收益率得方差。我们可利用EXCEL中得方差函数“VAKP"来计算。 5.计算各参照上市公司受资本结构影响得β系数。 式中:BL为参照上市公司受资本结构影响得p系数. 6.计算各参照上市公司消除资本结构影响得β系数。计算公式为: 式中:Bu为参照上市公司消除资本结构影响得β系数;T为参照上市公司得所得税税率;D为参照上市公司债务得市场价值;E为参照上市公司股权得市场价值。7。计算被评估企业所在行业受资本结构影响得B系数,即被评估企业所在行业得β系数。计算公式为: 式中:为被评估企业所在行业受资本结构影响得β系数;为被评估企业所在行业消除资本结构影响得β系数,为被评估企业所在行业得所得税税率,一般取25%;e(D÷E)为被评估企业所在行业得债务股本比。 二、线性回归法 利用线性回归法计算行业β系数得具体步骤如下: 1。计算市场整体收益率。同公式法 2.计算无风险报酬率.取各年度得一年定期存款利率作为无风险年报酬率,再将其转换为月报酬率。 3.计算市场风险溢价。市场风险溢价为“” . 4。计算各参照上市公司得收益率。同公式法。 5.计算市场风险溢价与各参照上市公司收益率得协方差。参照公式法下市场整体收益率与各参照上市公司收益率得协方差得计算 6.计算市场风险溢价得方差。参照公式法下市场整体收益率得方差计算。7.计算各参照上市公司受资本结构影响得β系数。同公式法. 8.计算各参照上市公司消除资本结构影响得β数。同公式法。 9.计算被评估企业所在行业受资本结构影响得β系数,即被评估企业所在行业得β系数.同公式法。 方法一、二摘自《财会月刊·全国优秀经济期刊》(长安大学经济与管理学院徐

噪声系数测量

RF & Microwave e-Academy Program
Powerful tools that keep you on top of your game
RFMW 202: Noise Figure Basics
Technical data is subject to change. Copyright@2004 Agilent Technologies Printed on Jan, 2004 5988-8495ENA
1

RFMW 202: Noise Figure Basics
Welcome to RFMW 202, the module on the basics of noise figure. This module will take you about 60 minutes for you to complete. If you have not already done so, we recommend that you study the modules RFMW 101 and MEAS 102 before this one.
2

Fundamental Noise Concepts
Fundamental noise concepts
How do we make measurements?
What DUTs can we measure?
What influences the measurement uncertainty?
In this module we will first look at the concepts of noise (why is it important), then on to how to make measurements and we will conclude with some detailed information on measurement uncertainty and tools. Let’s now go straight into concepts of noise.
3

RF噪声系数的计算方法

噪声系数的计算及测量方法 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为

径流量与径流系数

径流量与径流系数 令狐采学 径流系数 径流系数,一定地区任意时段内径流量(或得流总量)与同时段内相应的降水量之比值。以小数或百分数计。 径流系数(runoff coefficient),一定地区任意时段内径流量(或径流总量)与同时段内相应的降水量之比值。以小数或百分数计。即:径流系数=径流量/降水量 在干旱地区,径流系数小,甚至趋近于零;在湿润地区较年夜,径流系数同所取时段不合辨别称为次径流系数、洪峰径流系数、月径流系数、年径流系数和多年平均径流系数。 径流系数(runoff coefficient)是一定汇水面积空中径流量(毫米)与降雨量(毫米)的比值,是任意时段内的径流深度y(或径流总量W)与同时段内的降水深度x(或降水总量)的比值。径流系数说明在降水量中有几多水酿成了径流,它综合反应了流域内自然地理要素对径流的影响。其计算公式为a=y/x。 同一流域面积、同一时段内径流深度(R)与降水量(P)的比值称为径流系数,以小数或百分数计,暗示降水量中形成径流的比例,其余部分水量则损耗于植物截留、填洼、入渗和蒸发。 径流系数同一流域面积、同一时段内径流量与降水量的比值,以小数或百分数暗示。计算式为:α=R/P,式中α为径流系数,R为径流深度,P为降水深度。α值变更于0~1之间,湿润地区

α值年夜,干旱地区α值小。我国台湾地区河流年平均径流系数>0.7,标明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。根据计算时段的不合,可分为多年平均径流系数、年平均径流系数和洪水径流系数等。径流系数综合反应流域内自然地理要素对降水─径流关系的影响。 径流量 中文名称:径流量 英文名称:runoff 界说:为时段流量,可分空中径流、地下径流两种。暗示径流 年夜小的方法有流量、径流总量、径流深、径流模数等。 应用学科:地理学(一级学科);水文学(二级学科) 径流量 在水文上有时指流量,有时指径流总量。即一按时段内通过河流某一断面的水量。 计算公式为:径流量=降水量蒸发量 单位为:立方米/秒 将瞬时流量按时间平均,可求得某时段(如一日、一月、一年等)的平均流量,如日平均流量、月平均流量、年平均流量等。在某时段内通过的总水量叫做径流总量,如日径流总量、月径流总量、年径流总量等。以立方米、万立方米或亿立方米计。 多年平均径流量 指多年径流量的算术平均值。以米3/秒计。用以总括历年的径流资料,估计水资源,并可作为丈量或评定历年径流变更、最年

X射线机暴光参数计算法

X射线机曝光参数计算法 基本参数确定 一、以透照厚度为准:单壁单影=T;双壁单影或双壁双影=2T 1、≤10mm时,1mm相当于5KV; 2、10~20mm时,1mm相当于6.2KV; 3、21~30 mm时,1mm相当于9KV; 4、31~40 mm时,1mm相当于12KV; 二、焦距 焦距每增加或者减少100mm,电压增大或者减少10KV。 三、时间 1分钟=25KV 三、X射线机曝光参数为(基数): 透照厚度T=8mm时,电压170KV,时间为1分钟。 四、X射线机焦点到窗口的距离 XXQ 2005 120 mm XXQ 2505 150 mm XXQ 3005 170 mm 五、计算方法 1、当透照厚度增加或者减少1 mm时,电压变化按(一)中各变化范围执行; 2、当焦距每增加或者减少100mm时,压变化按(二)中执行; 3、时间每增加或者减少1分钟,电压增加或者减少25KV; 例:计算φ219*14管焊口的曝光 第一步:确定所用X射线机型号,XXQ 2505或者XXQ 3005型; 第二步:计算焦距-----219+150=369 mm或者219+170=389 mm 第三步:确定焦距和电压变化量,我们一般以X射线机曝光正常基数为准,即600 mm;这里φ219*14的焦距为219+150=369 mm或者219+170=389 mm,比基数600 mm缩短231 mm或者211 mm,那么电压就应该减去23.1KV或者21.1KV。 第四步:计算透照厚度变化时,电压变化量,我们基本厚度是8 mm,现在透照厚度是 14×2=28 mm。这样比基本厚度8 mm增加20mm,根据(一)中4参照,电压补偿量为: 20 mm×8KV=160KV。因为基数是170KV,故正常曝光参数为:170KV+160KV-23.1KV=306.9KV 或者170KV+160KV-21.1KV=308.9KV,时间1分钟。 第五步:因为1分钟=25KV,在此基础上计算XXQ 2505或者XXQ 3005型的曝光参数: 1、XXQ 2505:用240KV拍片,其时间为(306.9 KV-240 KV)÷25KV/分钟=2.68 分钟;这里2.68分钟是在原来1分钟基础需要补偿的2.68分钟,故还应加上基础1分钟, 即正常曝光时间为2.68分钟+1分钟≈4分钟

流域径流系数的计算方法研究

流域地表径流系数的计算方法研究 摘要:径流系数是描述降雨和径流关系的重要参数 ,在雨洪控制利用系统的理论研究、 规划、 设计计算中应用广泛 ,在流域或区域的雨水径流总量、 径流峰流量、 流量过程线以及非点源污染物总量、 各设施规模的计算中也起着极其重要的作用。由于径流系数有着不同的含义,其相应的统计计算方法、适用条件、应用目的和取值不尽相同。而且要获得流域的径流系数通常是比较困难的,在一些特殊流域基本上很难获得能满足要求的径流实测资料,尤其在多年平均径流量的计算中实测数据资料往往相当缺乏,在这样的情况下有必要利用一些特殊的方法去满足工程建设对水文数据的需求。本文综合了大量的数据以及列举了多个例子,详细地介绍了不同情况下径流系数的推求方法,并在此基础上研究总结提出了过程中发现的一些问题和心得。 关键词:流域 径流量 降雨量 径流系数 一 引言 流域径流系数是指同一流域面积、同一时段内径流量与降水量的比值,以小数或百分数表示。计算式为:α=R/P ,式中α为径流系数,R 为径流深度,P 为降水深度。α值变化于0~1之间,湿润地区α值大,干旱地区α值小。我国台湾地区河流年平均径流系数>0.7,表明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。 根据计算时段的不同,可分为瞬时雨量径流系数、雨量径流系数、年径流系数、多年平均径流系数等。径流系数综合反映流域内自然地理要素对降水─径流关系的影响。 瞬时雨量径流系数是指某一特定的流域或汇水面上 ,降雨期间随时间变化的径流厚度和降雨厚度之间的瞬时变化关系 ,是一个动态的变量 ,这个意义上的径流系数就是瞬时雨量径流系数。雨量径流系数是指降雨时 ,在某一汇水面上产生的径流量 (厚度 )和降雨量 (厚度 )的比值 ,一般用于估计一场降雨在某一汇水区域内单位面积产生的平均径流厚度。年径流系数和多年平均径流系数反映了流域降雨厚度和径流厚度长时间的关系 ,是一个累积结果。在各种径流系数中应用较为广泛的是年径流系数和多年平均径流系数。径流系数的计算主要是要计算流域相应时间段内径流量与降雨量。 二 径流量的计算 (一) 年径流量的计算 流域年降雨次数为n 次,且每次降雨所产生的径流量均有实测数据资料,则流域的年径流量可按下式计算。 Q=∑=n 1 i Qi (1) 式中 Q ——流域年径流总量(mm ); Q i ——第i 次降雨产生的径流量(mm )。 (二) 多年平均径流量的计算 1.有长期实测资料的多年平均径流量的计算 所谓的有长期实测资料,是指实际观测的年数n 在20年以上。它包括有丰、平、枯水年的观测资料,由它计算的径流量多年平均值基本上是稳定的。在这种情况下,可以由下式(2)计算径流量的多年平均值,以此值代表多年平均径流量,即:

基尼系数及计算方法

基尼系数及计算方法 居民收入分配的差异程度,是当前人们所普遍关心的一个问题。收入分配差异的合理与否,一方面可以反映按劳分配原则的实现情况;另一方面是保障居民生活和社会稳定的重要条件。衡量收入差异状况最重要、最常用的指标是基尼系数(即吉尼系数)。 基尼系数(Gini coefficient)是20世纪初意大利经济学家基尼根据洛伦茨曲线提出的判断分配平等程度的指标(如下图),设实际收入分配曲线和收入分配绝对平等曲线之间的面积为A,实际收入分配曲线右下方的面积为B。并以A除以(A+B)的商表示不平等程度。这个数值被称为基尼系数或称洛伦茨系数。如果A为零,基尼系数为零,表示收入分配完全平等;如果B为零则系数为1,收入分配绝对不平等。该系数可在零和1之间取任何值。收入分配越是趋向平等,洛伦茨曲线的弧度越小,基尼系数也越小,反之,收入分配越是趋向不平等,洛伦茨曲线的弧度越大,那么基尼系数也越大。 洛伦茨曲线 图中,0M为45度线,在这条线上,每10%的人得到10%的收入,表明收入分配完全平等,称为绝对平等线。OPM表明收入分配极度不平等,全部收入集中在1个人手中,称为绝对不平等线。介于二线之间的实际收入分配曲线就是洛伦茨曲线。它表明:洛伦茨曲线与绝对平等线OM越接近,收入分配越平等;与绝对不平等线OPM越接近,收入分配越不平等。 实际应用中的计算公式是:

公式中:是按收入分组后各组的人口数占总人口数的比重;是按收入分组后,各组人口所拥有的收入占收入总额的比重;是从i=1到i的累计数,如,=Y1+Y2+Y3….+Yi。

计算基尼系数,可以用收入分组数据计算,也可用分户数据计算。但要注意的是,无论分组还是分户计算,均应先对数据按收入从低到高排序,分组计算时,一般应使分组的组距相等。用分组数据计算的基尼系数要明显小于分户数据的计算值,特别是当分组的组数不多时,差距更大。用分户数据计算基尼系数时,采用的计算指标不同,也会出现不同的结果。一般有两种计算方法,一种方法是按户总收入排序,按户计算基尼系数,此时,为每户收入占总收入的比例,为调查户数的倒数;另一种计算方法是按每户家庭的人均收入排序,此时,为每户人口占全部人口的比例,为本户人均收入占人均收入之和的比例。这两种计算方法,结果是有差异的,按人均收入计算的基尼系数要大于按户收入计算的基尼数据。在用基尼系数时进行不同地区、不同时期的收入差距比较时,应注意计算方法的一致性,不同计算方法得出的基尼系数是没有可比性的。 国际上通常用基尼系数来判定收入分配均等程度。基尼系数是界于0-1之间的数值,当基尼系数为0时,表示绝对平等;基尼系数越大,不均等程度越高;当基尼系数为1时,表示绝对不平等。市场经济国家衡量收入差距的一般标准为:基尼系数在0.2以下表示绝对平均;0.2-0.3之间表示比较平均;0.3-0.4之间表示较为合理;0.4-0.5之间表示差距较大; 0.5以上说明收入差距悬殊。例如:依据全国城市住户调查收入分组资料,计算出的基尼系数1978年为0.16,1988年为0.23,2000年为0.32,说明1978年我国城市居民个人收入差距不大,比较平均;1988年以后城市居民个人收入差距已经开始拉开,到2000年城市居民个人收入差距逐步拉大。 用基尼系数分析居民收入的差异,是一种比较普遍的方法。其特点:一是方法本身具有科学性,基尼系数的计算是将社会经济现象数学化了的办法,能从整体上反映居民集团内部收入分配的差异程度。二是基尼系数反映收入分配的差异程度精确、灵敏,可以反映差异程度细微的和连续的变化。三是在经济工作中可以作为一个综合经济参数纳入国家的计划管理和宏观调控之中。四是基尼系数在国际上应用广泛,便于在实际工作加强横向联系比较,学习和借鉴外地区和国外的经验。 推介一个简便易用的基尼系数计算公式 近年来,我国经济生活中,在国民经济整体快速发展的同时,不同行业、不同地区、不同个人之间的社会收入分配差距明显拉大,引起了社会各界人士的广泛关注,基尼系数也随之成为当前我国经济生活中最流行的经济学语词之一。 但是,对于如何计算基尼系数,目前国内经济学教科书鲜有介绍。就笔者手头所有的十几种经济学教科书来讲,绝大多数都只限于介绍定义,而没有具体计算公式。只有臧日宏编者《经济学》(中国农业大学出版社2002年7月第1版)和王健、修长柏主编《西方经济学》(中国农业大学出版社2004年10月第1版)这两种教科书给出了基尼系数的计算公式,但该公式推导过程相当复杂,理解记忆比较困难,实际计算烦琐。为此,笔者经反复思索,找到了一种简便易用的计算方法,并于笔者所著《经济学——入门与创新》(中国农业出版

齿轮各参数计算方法

齿轮各参数计算方法 1、齿数Z 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。为使齿轮免于根切,对于α=20度的标准支持圆柱齿轮,应取z1≥17 2、模数m 齿距与齿数的乘积等于分度圆的周长,即pz=πd。为使d为有理数的条件是 p/π为有理数,称之为模数。即:m=p/π 模数m是决定齿轮尺寸的一个基本参数。齿数相同的齿轮模数大,则其尺寸也大。

3、分度圆直径d 齿轮的轮齿尺寸均以此圆为基准而加以确定,d=mz 4、齿顶圆直径da和齿根圆直径df 由齿顶高、齿根高计算公式可以推出齿顶圆直径和齿根圆直径的计算公式: da=d+2ha df=d-2hf =mz+2m=mz-2×1.25m =m(z+2)=m(z-2.5) 5、分度圆直径d 在齿轮计算中必须规定一个圆作为尺寸计算的基准圆,定义:直径为模数乘以齿数的乘积的圆。实际在齿轮中并不存在,只是一个定义上的圆。其直径和半径分别用d和r表示,值只和模数和齿数的乘积有关,模数为端面模数。与变位系数无关。标准齿轮中为槽宽和齿厚相等的那个圆(不考虑齿侧间隙)就为分度圆。标准齿轮传动中和节圆重合。但若是变位齿轮中,分度圆上齿槽和齿厚将不再相等。若为变位齿轮传动中高变位齿轮传动分度圆仍和节圆重合。但角变位的齿轮传动将分度圆和节圆分离。 6、压力角αrb=rcosα=1/2mzcosα 在两齿轮节圆相切点P处,两齿廓曲线的公法线(即齿廓的受力方向)与两节圆的公切线(即P点处的瞬时运动方向)所夹的锐角称为压力角,也称啮合角。对单个齿轮即为齿形角。标准齿轮的压力角一般为20”。在某些场合也有采用α=14.5°、15°、22.50°及25°等情况。

噪声系数的原理和测试方法

噪声系数测试方法 针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。 图1:MAXIM公司TD-SCDMA手机射频接收电路。 利用频谱仪直接测试 利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于 100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。 测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出: 上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF的显式表达式如下: 或者: 关于方程2与方程3的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为: 接收机I/Q端口点频信号分别为:

电荷灵敏前置放大器噪声系数测量实验报告

电荷灵敏前置放大器噪声系数测量实验报告 班级:姓名:学号: 一、实验目的 1、研究电荷灵敏前置放大器不同功率谱的噪声成分及其特性; 2、通过实验数据定量分析成形时间对等效噪声电荷(ENC)的影响,从而分离出各个 噪声成分; 3、加深对电荷灵敏前置放大器噪声ENC的理解,同时熟练掌握电荷灵敏前放的噪声 测试方法以及主放和多道分析仪等常用核仪器的使用。 二、实验原理 核辐射测量中,探测器输出的信号往往较小,需要加以放大再进行测量。其中放大器又分为前置放大器与主放大器两部分。前置放大器的主要作用有两点: 1、提高系统性噪比; 2、减小信号经电缆传送时外界干扰的影响。 探测器将粒子的信息转化成电流或电压信号后直接传入紧跟其后的前置放大器。经前置放大器放大、成型后传输到线性放大器,经后续的电路处理得到粒子的电荷、能量、速度、时间等信息。 前置放大器紧跟探测器,一般直与和探测器做成一体,这样有利于提高信噪比,信号经前放放大,抗干扰能力增强,以方便较远距离的传输。 在能谱和时间测量系统中,前置放大器按输出信号所保留的信息特点,大致可以分为两类。一类是积分型放大器,包括电压灵敏前置放大器和电荷灵敏前置放大器,它有输出信号幅度正比于输入电流对时间的积分,即输出信号的幅度和探测器输出的总电荷量成正比。另一类是电流型放大器,亦即电流灵敏前置放大器,它的输出信号波形应与探测输出电流信号的波形保持一致。 前置放大器有多种,总的来说可以分为积分型放大器(包括电压灵敏前置放大器和电荷灵敏前置放大器)和电流型放大器(主要是电流灵敏前置放大器)。 电荷灵敏前置放大器原理图如下: 图1 电荷灵敏前置放大器原理图 由于前置放大器的噪声将经过主放大器的放大输出,所以其对最后信号的信噪比影响很大,本实验就是要测定前置放大器的噪声系数。前置放大器的噪声主要包括沟道热噪声、输入端串联电阻噪声、晶体管沟道1/f噪声、探测器漏电流散粒噪声、反馈电阻噪声、前放输

不同植物措施对南方红壤丘陵坡地地表径流系数和产沙量的影响

龙源期刊网 https://www.doczj.com/doc/7d6446317.html, 不同植物措施对南方红壤丘陵坡地地表径流系数和产沙量的影响 作者:陈海生 来源:《安徽农学通报》2018年第22期 摘要:采用野外径流小区实验,以自然裸露坡地为对照,利用2016年安吉县山湖塘综合观测场的降雨和土壤侵蚀过程数据,研究不同植物措施对降雨条件下红壤坡面产沙量和地表径流系数的影响。结果表明,在各种植物措施中,竹子保留地被小区的水土保持效果最好、最稳定,其次是竹子全面抚育小区,最差的是落叶经济林全面抚育小区。 关键词:植物措施;红壤丘陵坡地;径流系数;产沙量 中图分类号 S157 文献标识码 A 文章编号 1007-7731(2018)22-0071-02 坡面产流是指坡面上降雨和下垫面综合作用产生径流的过程。南方丘陵区红壤坡地降雨强度较大,土壤抗侵蚀不足,再加上人类过度开发造成的植被破坏,水土流失现象日益严重。丘陵坡地中植物具有蓄水保土、截留降水、减少地表径流、拦截泥沙等方面的作用。许多研究表明,植物措施能较好地调控南方红壤区坡面地表径流和土壤侵蚀。例如,梁娟珠在福建省长汀县的研究[1]认为,不同植被措施下坡面产流产沙分异规律明显,相对于裸地,盖度高的乔灌草、灌草、草本等措施的水土流失量最小,水土保持效果最为明显;黄鹏飞等在江西的研究[2]认为,不同植物措施对坡面年总径流深的消减效果,其中以柑橘加百喜草全园覆盖措施最好,其次为柑橘加百喜草带措施,柑橘纯林最差。本研究以安吉县山湖塘综合观测场标准径流小区为单元,研究在天然降雨条件下不同植物措施对南方丘陵区红壤坡地的水土保持效应,为该区域采取合适的植物措施用于控制土壤侵蚀提供依据。 1 材料与方法 1.1 自然概况安吉县山湖塘综合观测场属于太湖流域,地理坐标为东经119°34′00″,北纬30°37′00″。观测场建立在安吉水土保持科技示范园区内,位于递铺镇净土社区,距中心城区 8km。观测场所在的水保园区地貌类型属低山丘陵,土壤以红壤为主,土层浅薄,较易风化,从而导致水土流失严重。该区域总土地面积57.88hm2,土地利用状况为:有林地、疏林地和 荒坡35.88hm2,坡耕地20hm2,水面2hm2。原有水土流失面积31hm2,占总土地面积的 53.6%。 1.2 径流小区布设与监测内容安吉县山湖塘综合观测场,共设标准径流小区9个,尺寸均为20m×5m(长×宽),面积100m2,坡度20°。每个径流小区下均设3级集流池,每个集流池尺寸为1m×1m×0.9m(长×宽×高),每级之间设置5个分流孔,4个分流孔分流到池外,1个分流孔分流道下一级,集流池均没有遮盖。观测场各径流小区中,1号小区为梯地种植农作

特性系数计算方法

选定系统中最不利工作作用面积,如(图3-4-1)选择最不利管径标号如图。 (1) 计算最不利喷头(喷头0)的喷水量: 使用公式为: H K q 10= (3-38) q ——计算喷头喷水量,(L/min ) K —— 喷头流量系数,标准喷头K=80; H ——喷头工作压力,MPa ; s L L q /94.0min /4.5605.010800==??= (2) 管道沿程和局部损失: 设计流速:钢管流速一般不大于5m/s,配水干管一般不超过3m/s ,常用1~2m/s 。校核流速之按照下列公式就算: Q K v c = (3-39) 式中 v ——流速 (m/s ) c K ——计算管段流速系数 (m/s ),可查表; Q ——计算管段流量 (L/s ) 表3-15 流速系数表 (3)管道沿程水头损失按照下列公式计算: 2 A L Q h = (3-40) 式中 h ——沿程水头损失,(O mH 2) A ——管道比阻,可查表; L ——计算管段长度,(m ) Q ——计算管段流量,(L/s )

(4)计算1~0的扬程水头损失 管段1~0的管径使用DN25,流速为 s m Q K v c /79.195.0883.11=?== 点“1”到点0的水头损失为: m P a O mH ALQ h 0168.0678.1033 .1)6.03(4367.022 0~~12 ==?+?== (5)计算喷头1的出水量: 喷头1的工作压力为: m P a h H H 074.0014.006.00~~101=+=+= 1号喷头喷水量为: s L L H K q /07.1min /2.64074.010801011==??=?= 依次类推到喷头4 的节点(喷头)流量。 (6)特性系数的推导 图3-10 特性系数计算草 使用沿程损失公式计算: 452 4~54~54~54~5H H Q L A h -=?= (1) e e e e e H H Q L A h -=?=62~6~6~6~6 (2) 用(1)/(2)得: 4 5e 62 4 ~52~6H H H H Q Q e --= 4 5e 64 ~5~6H H H H Q Q e --=

噪声系数测量方法

噪声系数测量的三种方法 摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数(NF)有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 式1 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数:

* HG = 高增益模式,LG = 低增益模式 噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA 在低增益模式下),一些则具有非常高的增益和宽围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。

图1. 噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率围测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。

相关主题
文本预览
相关文档 最新文档