当前位置:文档之家› 干涉仪原理与使用

干涉仪原理与使用

干涉仪原理与使用
干涉仪原理与使用

第一章:为何使用干涉仪做检测

1-1干涉度量学

第一章为什么要使用干涉仪检测首先我们要先了解,什么就是干涉度量学?所谓干涉度量学就是指利用光干涉的效应来量测特定物理量的方法, 也就就是说藉由观察干涉条纹的变化, 来量测出待测物的特征

1-2何谓干涉仪

干涉仪就是什么? 一般来说, 只要就是利用光干涉的原理来量测的仪器便可以称为干涉仪, 但就是干涉仪的种类众多且多变化, 因此本课程中将针对最为外界常用之种类作介绍

1-3干涉仪之优缺点

干涉仪的优点及缺点

第一高精度

以光学组件来说, 因为组件的微小变化均会严重改变原有的光学质量,因此必须要有非常精确的量测仪器, 干涉仪具有精度非常高的优点, 最高可达1/100的波长甚至到1/1000的波长, 波长就是指干涉仪中使用光源的波长值、举例来说:一般干涉仪的波长为632、8( nm ),而632、8的百

分之一约为6个(nm) , 目前的奈米科技就是在这个尺度, 甚至有些更好的干涉仪可以到0、6个(nm ),从此可以瞧出干涉仪的精度有多好了

第二章:非球面玻璃模造的原理

第二、非接触式量测

另一种量测用的轮廓仪就是使用接触式的量测方式, 即使目前已可以微调接触的力量, 但对于表面较脆弱的被量测物就是否真的完全不会造成损害则仍无法确定、而当用干涉仪量测时, 就是把光照射到被量测的物体上, 所以干涉仪上的探针也就就是光, 并不会对物体表面照成任何伤害

第三使用探针来量测时无法一次量测所有的面积, 而可能必需分很多扫瞄线去量测, 相对来说, 干涉仪的量测速度就非常快了, 可能几秒钟就量完了, 而不需要等待几个小时的时间、

第四则就是干涉仪的缺点, 一个操作员在会使用干涉仪却不太清楚干涉仪的使用限制、条件及原理的时候, 可能会量测到不就是她所要的东西, 而且, 因为干涉仪就是用光线量测, 在调整上也会花费多的时间, 可能量测结果只要花几秒钟, 但事前的调整却要花费几十分钟甚至数个小

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 内容:理解水准测量的基本原理;掌握DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量(Height Measurement )的概念 测量地面上各点高程的工作, 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量(leveling) (2)三角高程测量(trigonometric leveling) (3)气压高程测量(air pressure leveling) (4)GPS 测量(GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数A ——后视点 b ——前视读数B ——前视点 1、A、B两点间高差: 2、测得两点间高差后,若已知A 点高程,则可得B点的高程:。 3、视线高程: 4、转点TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中,A 、B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿A 、B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到A 、B 两点间的高差值,有: h 1 = a 1 -b 1 h 2 = a 2 -b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论:A 、B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪(level) 如图所示,由望远镜、水准器和基座三部分组成。

双频外差激光干涉仪

双频外差激光干涉仪 班级名:应用物理学1401班 作者:U201410186 赵润晓 同组成员:U201410187 王羽霄 实验时间:2016年11月30日

摘要:本实验在分析双频外差激光干涉仪的基础上,构建光路,实现了利用双频干涉侧脸位移量的功能。 关键词:双频外差激光干涉仪声光调制器光路构建 一、引言 【实验目的及原理】 1.实验目的。 ①了解双频外差激光干涉仪(dual-frequency heterodyne interferometer)的工作原理。 ②熟悉各种光学镜片的功能及原理。 ③熟悉双频外差干涉仪基本光路的设计和搭建,通过声光调制器(或称声光移频器)产生双频激光光束,并观察干涉仪的干涉信号。 2.实验原理。 激光的发明使得精密测量有了新的发展方向,用激光测量长度(位移或距离)主要方法有两种。一是以迈克尔逊干涉仪为基础的单频干涉仪;另一种是双频激光干涉仪。 ①单频激光干涉仪,从激光器发出的光束经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来,会合在分光镜上而产生干涉现象。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件(光电传感器)和电子线路(信号放大器)等转换为电压信号;然后经整形、放大后输入信号采集系统算出相位差,最后再由相位差算出可动反射镜的位移量(一个周期对应半波长)。由于激光频率甚高(1014Hz量级),无法直接测量光的相位,光程差检测的传统方法都是干涉强度法,即测量由相位差所引起的光干涉信号的强度变化,间接地测量光程差。 单品激光干涉仪因此具有稳定性差的缺点。许多内部(电子噪声和长期漂移等)和外部因素(环境变化,如温度、大气压力、折射率等的变化)都会对测量结果产生影响。 ②目前高精度的激光干涉仪大多为双频激光干涉仪,产生双频激光的方法主要是利用塞曼效应(Zeeman Effect)和声光调制器(Acousto-Optical Modulators,AOM)。塞曼效应受频差闭锁现象影响,产生的双频频差一般较小,通常最大频差不超过4MHz。声光调制方法得到的频差通常较大,一些产品双频激光频差达到20MHz以上。双频激光干涉仪是应用直接测量两个信号的相位差来决定位移的。这种位移(亦即光程差)信息载于两种频率光束干涉后产生的拍频信号上;因此,对由光强变化引起的直流电平变化不敏感,所以抗干扰能力强。它常用于检定测长机、三坐标测量机、光刻机和加工中心等的坐标精度,也可直接用作测长机、高精度三坐标测量机等的测量系统。利用相应附件,还可进行高精度直线度测量、平面度测量和小角度测量。 本实验运用的是基于声光调制器的双频外差激光干涉仪。见图1。氦氖激光器输出的激光光束通过分光镜BS1分成两束,分别经过声光移频器产生频率为f1和f2的光束(原理参考背景知识)。两束光再分别通过分光镜BS2和BS4各自分成两束,频率f1和f2的光束经过分光镜反射后产生干涉,形成参考光束,并通过光电探测器PD1接收干涉信号。另外,透过BS2和BS4的f1

最新实验3.14-迈克尔逊干涉仪的调整与使用讲义

实验3.14 迈克尔逊干涉仪的调整与使用 实验简介 迈克尔逊干涉仪是一种分振幅的双光束干涉测量仪器,是美国科学家迈克尔逊(A.A.Michelson)于1881年设计制造的一种精密干涉测量仪器,可用于测量光波波长、折射率、物体的厚度及微小长度变化等,其精度可与光的波长比拟。 迈克尔逊干涉仪在历史发展史上起了很大的作用,迈克尔逊及其合作者曾用此仪器做了“以太漂移”实验、用光波波长标定米尺长度、推断光谱精细结构三项著名实验,第一项实验解决了当时关于“以太”的争论,为爱因斯坦建立狭义相对论奠定了基础,第二项实现了长度单位的标准化(用镉红光作为光源标定标准米尺长度,建立了以光波为基准的绝对长度标准),第三项工作研究了光源干涉条纹可见度随光程差变化的规律,并以此推断光谱。迈克尔逊和莫雷因在这方面的杰出成就获得了1907年诺贝尔物理学奖。 迈干仪结构简单、光路直观、精度高,其调整和使用具有典型性,根据迈克尔逊干涉仪基本原理发展的精密干涉测量仪器已经广泛应用于生产和科研领域。因此,了解它的基本结构,掌握其使用方法很有必要。 实验目的 1、了解迈克尔逊干涉仪的结构及工作原理,掌握其调试方法 2、学会观察非定域干涉、等倾干涉、等厚干涉及白光干涉条纹 3、学会用迈克尔逊干涉仪测量激光波长及钠光双线波长差 实验原理 1、迈克尔逊干涉仪的结构及工作原理

迈干仪由分光镜1G 、补偿板2G 、两反射镜1M 、2M 和观察屏E 组成,分光镜的后表面镀有半透半反射膜,将入射光分成两束,一束透射光1,一束反射光2,这两束光分别被1M 、2M 反射后,经半透半反射膜的反射和透射在观察屏上相遇,由于这两束光是相干光,在屏上干涉产生干涉条纹,其光路如上图所示。‘2M 是2M 被分光镜反射所成的像,光束1和光束2之间的干涉等效于1M 、‘2M 之间空气膜产生的干涉。补偿板是一个与分光镜平行放置且材料、厚度完全相同的玻璃板,其作用是补偿两束光使得两束光在玻璃中的光程相等。由于玻璃的色散,不同波长的光在干涉仪中具有不同的光程差,无法观测白光干涉条纹,在分光镜1G 和反射镜2M 之间加入补偿板,这两束光在相同的玻璃中都穿过三次,不同波长的光在干涉仪中具有相同的光程差,这对观察白光干涉很有必要。反射镜1M 、2M 分别装在相互垂直的两个臂上,反射镜2M 位置固定(称为定镜),1M 位置固定在滑块上,可通过转动粗调手轮、微调手轮沿臂长方向移动(称为动镜),在该方向上附有主尺,其位置可通过主尺、粗调手轮上方读数窗口及微调手轮示数读出,其读数原理与千分尺读数原理相同。粗调手轮转动一周,动镜2M 沿臂长方向上移动1mm ,手轮上刻有100个刻度,因此粗调手轮每转动一个小刻度相当于动镜沿臂长方向移动0.01mm ,微调手轮转动一周,相当于粗调手轮转动一个小刻度,手轮上也刻有100个刻度,因此微调手轮转动一个小刻度,相当于动镜移动了0.0001mm ,加上一位估读位,可读到0.00001mm 位。反射镜1M 、2M 的方位可通过其后面的三个螺钉来调节,在反射镜2M 的下方还有两个互相垂直的拉簧螺丝用以微调2M 的方位。 2、点光源产生的非定域干涉条纹及激光波长的测量 激光经短透镜会聚后成为一点光源,水平入射到分 光板上,经M 1、M 2反射后产生的干涉现象等效于两个 虚光源S 1、S 2'发出的光产生的干涉,如图所示。S 1、S 2' 分别是点光源经G 被M 1、M 2反射所成的像,虚光源S 1、 S 2'发出的光由于是同一束光分出的两束光,具有相干 性,在其相遇的空间处处相干,因此是非定域干涉。用 S 1 S ·

双频激光干涉仪测量

双频激光干涉仪测量 激光干涉仪测长原理 典型的激光干涉仪由激光器L、偏振分光镜PBS测量反射镜M参考反射镜R、光电检测器D检偏器P和三个入14波片Q1、Q2和Q3组成。激光为线偏振光,经偏振分光镜分为E1和E2两线偏振光。当两干涉臂中入/4波片快轴(或慢轴)与X轴夹角相等且为45 度时,两束光通过入/4波片后均成为圆偏振光,反射后再次通过入/4波片,又转换为线 偏振光,但其振动方向相对原振动方向旋转了90度,且由于两干涉臂光程产生了相位差 0 ,根据公式: 0 =2 0 = 0 =4n L/ 入 式中:入为激光波长,干涉光路的作用是把位移L转变为合成光振动方向的旋转角 0,进而 转换成光电信号的相位0,信号处理器的作用就是测量出0 ,从而计算出位移L。 垂直度的测量工具在一台机器 施工实例:多轴系统 双频激光干涉仪的工作原理双频激光干涉仪其双频激光测量系统由氦氖双频遥置激光干涉仪和电子实时分解系统所组成。它具有以下优点:稳定性好,抗干扰能力强,可在较快的位移速度下测量较大的距离,使用范围广,使用方便,测量精度高。 基本原理:如图11-2 所示,激光双频干涉仪的氦氖激光管,在外加直流轴向磁场的作用下,产生塞曼效应,将激光分成频率为fl和f2,旋向相反的两圆偏振光,经入/4波 片变为线偏振光。调整入/4玻片的旋转角度,使 fl 和f2 的振动 平面相互垂直,以互垂直, 以作激光干涉 图11-2 双频激光干涉仪的工作原理图 1.激光管 2.入/4波片 3.参考分光镜 4.偏振分光棱境 5.基准锥体棱镜 6.移动测量棱体 7.10.12. 检偏振镜8.9.11. 光电管13. 光电调制器 仪的光源。当两个线偏振光经过参考分光镜3时(见图11-2),大部分则由偏振分光棱境4 分成两束。偏振面垂直入射面的f2 全反射到与分光镜固定在一起的基准锥体棱镜上;

实验二 双频激光干涉实验

实验二 双频激光干涉实验 一、 实验目的 了解双频激光干涉测量原理,设计测量长度与角度的干涉系统,并且比较一般干涉测量与双频激光干涉测量的异同。 二、 实验原理 1. 测长原理如图1所示: 其中L1 为稳频的激光器,Mm 、Mr 为两个全反射组件,P1、P2 为检偏器,D1、D2 为光电探测 器。Mm 固定在被测物体上。 输出激光含频差为f ?的两正交线偏振光分量1f 、2f 。输出光经分光镜 BS 后,一 部分光被反射,经检偏器 P 1, 两频率分量干涉产生拍频,该信号被光电探测器D1 接 收,形成参考信号 Sr 。透射光经线性干涉仪后,1f 、2f 被分开, 1f 进入参考臂,2f 进入测量臂,由两角锥棱镜反射返回后,在线性干涉仪上会合,经检偏器 P2 后发生干 涉,光电探测器 D2 接收干涉信号,形成测量信号 Sm 。 此时如果测量镜以速度v 移动,则1f 的返回光频率发生变化,成为1D f f +?,D f ?为多普勒频差,1D f f +?通过线性干涉仪与2f 的返回光会合,经检偏后,其拍频被光电 探测器 D2 接收,Sr ,Sm 经前置放大后进入计算机进行计数。 计算机对两路信号进行比较,计算其差值±D f ?。进而按下式计算动镜的速度?和移动的距离得出所测的长度 L 。 设在测量中动镜的移动速度v (这里v 可以随时间变化),则由多普勒效应引起的频差变化为: 122 D v v f f c λ?== (1-1) 式中:1f 激光频率,c 光速,λ波长,D f ?为动镜移动时,由它反射回来的光频率 的

变化量,也就是经计算机比较计算出来的两路信号的差值。 设动镜的移动距离为D ,时间为t 则: 000()222 t t t D D D vdt f dt f dt N λλλε==??=??=+??? (1-2) N ε+为测量过程中动镜下的条纹数(N 为整数部分,ε为小数部分)。 00()t t D D N f dt f dt ε+=??=??∑? (1-3) 所以,位移D 的计算公式为: ()2D N λε= + (1-4) 2. 测角原理如图2所示: 如图,基于正弦尺的原理,利用角度干涉仪和角度靶镜,双频激光干涉仪就可以进行角度测量。其干涉光路的工作原理和测长的相似,只不过测量的位移变成了两个角锥棱镜的相对位置变化—D 。于是,在小角度的情况下,我们得到角度测量结果(弧度)为: D L α= (1-5) 三、 实验步骤 1. 在实验箱中找出需要用的零部件(不用的不要拿出): (1) P T-1105C 激光头、(2)PT-1303C 高速接收器、(3)PT-1201A 线性干涉仪、(4) PT-1202A 全反射组件、(5)PT-1210A 角度干涉组件、(6)角度靶镜、(7) PT-1801B 通用调节架、(8)连接电缆 各部件外形图如下所示:

水准仪的使用方法及注意事项

水准仪的使用方法及注意事项 水准仪广泛用于建筑行业,是测量水平高低的仪器,具有精度高、使用方便、快速、可靠等优点,使用在引测、大面积场地测量、楼面水平线标志、沉降观测等。现介绍水准仪的使用方法。 一、水准仪器组合: 1.望远镜 2.调整手轮 3.圆水准器 4.微调手轮 5.水平制动手轮 6.管水准器 7.水平微调手轮 8.脚架 二、操作要点: 在未知两点间,摆开三脚架,从仪器箱取出水准仪安放在三脚架上,利用三个机座螺丝调平,使圆气泡居中,跟着调平管水准器。水平制动手轮是调平的,在水平镜内通过三角棱镜反射,水平重合,就是平水。将望远镜对准未知点(1)上的塔尺,再次调平管水平器重合,读出塔尺的读数(后视),把望远镜旋转到未知点(2)的塔尺,调整管水平器,读出塔尺的读数(前视),记到记录本上。 计算公式:两点高差=后视-前视。 三、校正方法: 将仪器摆在两固定点中间,标出两点的水平线,称为a、b线,移动仪器到固定点一端,标出两点的水平线,称为a’、b ’。计算如果a-b≠a’-b ’时,将望远镜横丝对准偏差一半的数值。用校针将水准仪的上下螺钉调整,使管水平泡吻合为止。重复以上做法,直到相等为止。 四、保养与维修 1.水准仪是精密的光学仪器,正确合理使用和保管对仪器精度和寿命有很大的作用; 2.避免阳光直晒,不许可证随便拆卸仪器; 3.每个微调都应轻轻转动,不要用力过大。镜片、光学片不准用手触片; 4.仪器有故障,由熟悉仪器结构者或修理部修理; 5.每次使用完后,应对仪器擦干净,保持干燥。 S3水准仪的结构和使用方法 (一) 水准测量仪器 水准测量用的仪器、工具:水准仪、水准尺和尺垫。 1. 水准尺和尺垫 水准尺是水准测量中用于高差量度的标尺,水准尺制造用材有优质木材、合金材和玻璃钢等几种,有2 m,3 m,5 m等多种长度和整尺、折尺、塔尺等多种类型。水准尺按精度高低可分为精密水准尺和普通水准尺。 (1) 普通水准尺 材料:用木料、铝材和玻璃钢制成。 结构:尺长多为3 m,两根为一副,且为双面(黑、红面)刻划的直尺,每隔1 cm印刷有黑白或红白相间的分划。每分米处注有数字,对一对水准尺而言,黑、红面注记的零点不同。黑面尺的尺底端从零开始注记读数,两尺的红面尺底端分别从常数4687 mm和4787 mm开始,称为尺常数K。即K1=4.687 m,K2=4.787 m。设尺常数是为了检核用。 (2)精密水准尺 材料:框架用木料制成,分划部分用镍铁合金做成带状。 结构:尺长多为3 m,两根为一副。在尺带上有左右两排线状分划,分别称为基本分划和辅助分划,格值1 cm。这种水准尺配合精密水准仪使用。 (3)尺垫(尺台) 水准测量中有许多地方需要设置转点(中间点),为防止观测过程中尺子下沉而影响读数的准确性,应在转点处放一尺垫。尺垫一般由平面为三角形的铸铁制成,下面有三个尖脚,便于踩入土中,使之稳定。上面有一突起的半球形小包,立水准尺于球顶,尺底部仅接触球顶最高的一点,当水准尺转动方向时,尺底的

激光干涉仪分类及应用

激光干涉仪分类及应用 激光干涉仪以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量。激光干涉仪有单频的和双频的两种。 激光干涉仪的分类: 单频激光干涉仪 从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N为电脉冲总数),算出可动反射镜的位移量L。使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。 双频激光干涉仪 在氦氖激光器上,加上一个约0.03特斯拉的轴向磁场。由于塞曼分裂效应和频率牵引效应,激光器产生1和2两个不同频率的左旋和右旋圆偏振光。经1/4波片后成为两个互相垂直的线偏振光,再经分光镜分为两路。一路经偏振片1后成为含有频率为f1-f2的参考光束。另一路经偏振分光镜后又分为两路:一路成为仅含有f1的光束,另一路成为仅含有f2的光束。当可动反射镜移动时,含有f2的光束经可动反射镜反射后成为含有f2±Δf的光束,Δf是可动反射镜移动时因多普勒效应产生的附加频率,正负号表示移动方向(多普勒效应是奥地利人C.J.多普勒提出的,即波的频率在波源或接受器运动时会产生变化)。这路光束和由固定反射镜反射回来仅含有f1的光的光束经偏振片2后会合成为f1-(f2±Δf)的测量光束。测量光束和上述参考光束经各自的光电转换元件、放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算(乘1/2激光波长)后即可得出可动反射镜的位移量。双频激光干涉仪是应用频率变化来测量位移的,这种位移信息载于f1和f2的频差上,对由光强变化引起的直流电平变化不敏感,所以抗干扰能力强。它常用于检定测长机、三坐标测量机、光刻机和加工中心等的坐标精度,也可用作测长机、高精度三坐标测量机等的测量系统。利用相应附件,还可进行高精度直

水平仪的原理及应用和使用方法

水平仪的原理及应用和使用方法 1、水平仪的原理及应用: 一、简介 水平仪是一种量测小角度的常用量具。在机械行业和仪表制造中,用于量测相对于水平位置的倾斜角、机床类设备导轨的平面度和直线度、设备安装的水平位置和垂直位置等。按水平仪的外形不同可分为:框式水平仪和尺式水平仪两种;按水准器的固定方式又可分为:可调式水平仪和不可调式水平仪。 二、水平仪工作原理 水平仪的水准管是由玻璃制成,水准管内壁是一个具有一定曲率半径的曲面,管内装有液体,当水平仪发生倾斜时,水准管中气泡就向水平仪升高的一端移动,从而确定水平面的位置。 水准管内壁曲率半径越大,分辨率就越高,曲率半径越小,分辨率越低,因此水准管曲率半径决定了水平仪的精度。 三、应用水平仪 水平仪主要用于检验各种机床和工件的平面度、直线度、垂直度及设备安装的水平位置等。特别是在测垂直度时,磁性水平仪可以吸咐在垂直工作面上,不用人工扶持,减轻了劳动强度,避免了人体热量辐射带给水平仪的量测误差。

2、水平仪的使用方法: 水平仪刻度值用角度(秒)或斜率来表示,它的含义是以气泡偏移一格工作倾斜的角度表示,或以气泡偏移一格工作表面在一米长度上倾斜的高度表示。由于水平仪的使用倾角很小,所以tg ,如tg4 4 弧度=0.02mm/1000mm,测量时使水平仪工作面紧贴被测表面,待气泡稳定后方可读数。如需测量长度为L的实际倾斜值则可通过下式进行计算。 实际倾斜值=标称分度值 L 偏差格数;例如:标称分度值为0.02mm/m,L=200mm,偏差格数为2格,则实际倾斜值=0.02/1000 200 2=0.008mm。为避免由于水平仪零位不准而引起的测量误差,因此在使用前必须对水平仪零位进行检查或调整。水平仪零位检查和调整方法,将被校水平仪放在大致水平的平板上,紧靠定位块,待气泡稳定后以气泡的一端读数为a1,然后将水平仪调转180方位,准确地放在原位置,按照第一次读数的一边记下气泡另一端的读数为a2,两次读数差的一半则为零位误差,即 =(a1-a2)/2格。如果零位误差超赤许可范围,则需调整零位机构,见图1,反复调整螺钉1即可达到要求。 注:以上内容摘自广州市晶博电子有限公司网站:https://www.doczj.com/doc/e77253899.html,

频谱分析仪的工作原理

频谱分析仪的工作原理 频谱分析仪对于信号分析来说是不可少的。它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。下面结合我台DSNG卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍一下频谱分析仪的工作原理。 科学发展到今天,我们可以用许多方法测量一个信号,不管它是什么信号。通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复一个非正弦波信号F,从理论上来说,它是由频率F1、电压V1与频率为F2、电压为V2信号的矢量迭加(见图1)。从分析手段来说,示波器横轴表示时间,纵轴为电压幅度,曲线是表示随时间变化的电压幅度。这是时域的测量方法,如果要观察其频率的组成,要用频域法,其横坐标为频率,纵轴为功率幅度。这样,我们就可以看到在不同频率点上功率幅度的分布,就可以了解这两个(或是多个)信号的频谱。有了这些单个信号的频谱,我们就能把复杂信号再现、复制出来。这一点是非常重要的。 对于一个有线电视信号,它包含许多图像和声音信号,其频谱分布非常复杂。在卫星监测上,能收到多个信道,每个信道都占有一定的频谱成份,每个频率点上都占有一定的带宽。这些信号都要从频谱分析的角度来得到所需要的参数。 从技术实现来说,目前有两种方法对信号频率进行分析。 其一是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。我们把这种方法叫作动态信号的分析方法。特点是比较快,有较高的采样速率,较高的分辨率。即使是两个信号间隔非常近,用傅立叶变换也可将它们分辨出来。但由于其分析是用数字采样,所能分析信号的最高频率受其采样速率的影响,限制了对高频的分析。目前来说,最高的分析频率只是在10MHz或是几十MHz,也就是说其测量范围是从直流到几十MHz。是矢量分析。 这种分析方法一般用于低频信号的分析,如声音,振动等。 另一方法原理则不同。它是靠电路的硬件去实现的,而不是通过数学变换。它通过直接接收,称为超外差接收直接扫描调谐分析仪。我们叫它为扫描调谐分析仪。

激光干涉仪用途

简介 以激光波长为已知长度、利用迈克耳逊干涉系统(见激光测长技术)测量位移的通用长度测量工具。激光干涉仪有单频的和双频的两种。单频的是在20世纪60年代中期出现的,最初用于检定基准线纹尺,后又用于在计量室中精密测长。双频激光干涉仪是1970年出现的,它适宜在车间中使用。激光干涉仪在极接近标准状态(温度为20℃、大气压力为101325帕、相对湿度59%、C O2含量0.03%)下的测量精确度很高,可达1×10?7。 工作原理 一个角锥反射镜紧紧固定在分光镜上,形成固定长度参考光束。另一个角锥反射镜相对于分光镜移动,形成变化长度测量光束。 从激光头射出的激光光束(1)具有单一频率,标称波长为0.633μm,长期波长稳定性(真空中)优于0.05ppm。当此光束到达偏振分光镜时,被分成两束光—反射光束(2)和透射光束(3)。这两束光被传送到各自的角锥反射镜中,然后反射回分光镜中,在嵌于激光头中的探测器中形成干涉光束。 如果两光程差不变化,探测器将在相长干涉和相消干涉的两端之间的某个位置观察到一个稳定的信号。如果两光程差发生变化,每次光路变化时探测器都能观察到相长干涉和相消干涉两端之间的信号变化。这些变化(条纹)被数出来,用于计算两光程差的变化。测量的长度等于条纹数乘以激光波长的一半。 应当注意到,激光波长将取决于光束经过的空气的折射率。由于空气折射率会随着气温、压力和相对湿度的变化而变化,用于计算测量值的波长值可能需要对这些环境参数的变化进行补偿。在实践中,对于技术指标中的测量精度,只有线性位移(定位精度)测量需要进行此类补偿,在这种情况下两束光的光程差变化可能非常大。

产品用途 1.激光干涉仪是检定数控机床、坐标测量机位置精度的理想工具。检定时可按照规定标准处理测量数据并打印出误差曲线,为机床的修正提供可靠依据。 2.激光干涉仪配有各种附件,可测量小角度、平面度、直线度、平行度、垂直度等形位误差,在现场使用尤为方便。 2.1.线性测量 要对线性测量进行设定,使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上。这个组合装置称为“线性干涉镜”,它形成激光光束的参考光路。线性干涉镜放置在激光头和线性反射镜之间的光路上,如下图所示。

水准仪及其使用方法

水准仪及其使用方法 高程测量是测绘地形图的基本工作之一,另外大量的工程、建筑施工也必须量测地面高程,利用水准仪进行水准测量是精密测量高程的主要方法。 一、水准仪器组合: 1.望远镜 2.调整手轮 3.圆水准器4.微调手轮5.水平制动手轮6.管水准器7.水平微调手轮8.脚架 二、操作要点: 在未知两点间,摆开三脚架,从仪器箱取出水准仪安放在三脚架上,利用三个机座螺丝调平,使圆气泡居中,跟着调平管水准器。水平制动手轮是调平的,在水平镜内通过三角棱镜反射,水平重合,就是平水。将望远镜对准未知点(1)上的塔尺,再次调平管水平器重合,读出塔尺

的读数(后视),把望远镜旋转到未知点(2)的塔尺,调整管水平器,读出塔尺的读数(前视),记到记录本上。 计算公式:两点高差=后视-前视。 三、校正方法: 将仪器摆在两固定点中间,标出两点的水平线,称为a、b线,移动仪器到固定点一端,标出两点的水平线,称为a’、b ’。计算如果a-b≠a’-b’时,将望远镜横丝对准偏差一半的数值。用校针将水准仪的上下螺钉调整,使管水平泡吻合为止。重复以上做法,直到相等为止。 四、水准仪的使用方法 水准仪的使用包括:水准仪的安置、粗平、瞄准、精平、读数五个步骤。 1. 安置 安置是将仪器安装在可以伸缩的三脚架上并置于两观测点之间。首先打开三脚架并使高度适中,用目估法使架头大致水平并检查脚架是否牢固,然后打开仪器箱,用连接螺旋将水准仪器连接在三脚架上。 2. 粗平?粗平是使仪器的视线粗略水平,利用脚螺旋置园水准气泡居于园指标圈之中。具体方法用仪器练习。在整平过程中,气泡移动的方向与大姆指运动的方向一致。 3. 瞄准?瞄准是用望远镜准确地瞄准目标。首先是把望远镜对向远处明亮的背景,转动目镜调焦螺旋,使十字丝最清晰。再松开固定螺旋,旋转望远镜,使照门和准星的连接对准水准尺,拧紧固定螺旋。最后转动物镜对光螺旋,使水准尺的清晰地落在十字丝平面上,再转动微动螺旋,使水准尺的像靠于十字竖丝的一侧。 4. 精平 精平是使望远镜的视线精确水平。微倾水准仪,在水准管上部装有一组棱镜,可将水准管气

激光干涉仪原理及应用详解

激光干涉仪概述 SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,

为机床误差修正提供依据。 激光干涉仪性能特点 1.测量精度高、速度快,稳定性好 ①使用美国高性能氦氖激光器,结合伺服稳频控制系统,达到高精度稳频(0.05ppm) ②以光波长(633nm)为测量单位,分辨率可达nm级 ③使用高速光电信号采样和处理技术,测量速度可达到4m/s。 ④配合有环境补偿单元,在环境变化的情况下,也可以得到较高的测量精度 ⑤分离式干涉镜设计,避免了测量镜组由于主机发热而引起的镜组形变 2.应用范围广 ①可以实现线性、角度、直线度、垂直度、平面度等几何量的检测 ②结合我们的软件系统,可以用于速度,加速度,振动分析以及稳定度等分析 ③可实时监控精密加工机床等机器的动态数据,进行动态特性分析 3.软件界面友好 ①使用当前热门的软件界面开发工具,软件界面人性化,操作简单。 ②将静态测量和动态测量两种功能合并到一个软件中,更方便用户切换测量类型。

水准仪的认识与使用实验报告

竭诚为您提供优质文档/双击可除水准仪的认识与使用实验报告 篇一:水准仪的认识与使用实验报告 水准仪的认识与使用实验报告 1.实验时间: 指导老师: 分组号及成员: 2.实验目的: 3.实验仪器及工具: 4.实验任务及要求: 5.实验步骤: 6.实验数据记录及计算: 水准测量记录手簿 日期_____仪器编号_____观测_____天气_____地点_____记录_____ 实验地点: 8.实验总结: 教师评价:

篇二:实验一水准仪的认识及使用 实验一水准仪的认识及使用 一、实验目的 (1)认识Ds3微倾式水准仪的基本构造,各操作部件的名称和作用,并熟悉使用方法。(2)掌握Ds3水准仪的安置、瞄准和读数方法。(3)了解自动安平水准仪的性能及使用方法。 (4)练习水准测量一测站的测量、记录和高差计算。 二、实验组织 (1)性质:基础性实验。(2)时数:4学时。(3)组织:4人1组。三、实验设备 (1)每组借Ds3微倾式水准仪(或自动安平水准仪)l 台、水准尺1对、尺垫2个,记录板1块。(2)自备:铅笔。 四、实验方法及步骤1.微倾式水准仪的 构造 (1)了解微倾式水准仪和自动安平水准仪的构造,掌握各螺旋和部件的名称、功能及操作方法;(2)注意比较微倾式和自动安平光学水准仪构造上的区别。 微倾式Ds3水准仪水准尺自动安平水准仪 图1-1光学水准仪及水准尺 2.水准仪的安置 (1)仪器架设在测站上打开脚架,按观测者的身高调

节脚架腿的高度,使脚架架头大致水平,如果地面比较松软则应将脚架的三个脚尖踩实,使脚架稳定。然后将水准仪从箱中取出平稳地安放在脚架头上,一手握住仪器,一手立即用连接螺旋将仪器固连在脚架头上。 (2)粗略整平通过调节三个脚螺旋使圆水准器气泡居中,从而使仪器的竖轴大致铅垂。在整平过程中,气泡移动的方向与左手大拇指转动脚螺旋时的移动方向一致。如果地面较坚实,可先练习固定脚架两条腿,移动第三条腿使圆水准器气泡大致居中,然后再调节脚螺旋使圆水准器气泡居中。3.水准尺上读数 (1)瞄准转动目镜调焦螺旋,使十字丝成像清晰;松 开制动螺旋,转动仪器,用照门和准星瞄准水准尺,旋紧制动螺旋;转动微动螺旋,使水准尺位于视场中央;转动物镜调焦螺旋,消除视差,使目标清晰(体会视差现象,练习消除视差的方法)。 (2)精平(微倾式)转动微倾螺旋,使符合水准管气泡两端的半影像吻合(成圆弧状),即符合气泡严格居中(自动安平水准仪无此步骤)。 (3)读数从望远镜中观察十字丝横丝在水准尺上的分 划位置,读取四位数字,即直接读出米、分米、厘米的数值,估读毫米的数值。读数应迅速、果断、准确,读数后应立即重新检视符合水准器气泡是否仍居中,如仍居中,则读数有

频谱仪在分析无线电干扰中的应用

频谱仪在分析无线电干扰中的应用 2007-03-02 申浩张旭东 频谱仪是一种将信号电压幅度随频率变化的规律予以显示的仪器。频谱仪在电磁兼容分析方面有着广泛的应用,它能够在扫描范围内精确地测量和显示各个频率上的信号特征,使我们能够“看到”电信号,从而为分析电信号带来方便。 1频谱仪的原理 频谱仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图 频谱分析仪采用频率扫描超外差的工作方式。混频器将天线上接收到的信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后的信号被视频放大器进行放大,然后显示出来。由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。进行干扰分析时,根据这个频谱,就能够知道被测设备或空中电波是否有超过标准规定的干扰信号以及干扰信号的发射特征。

要进行深入的干扰分析,必须熟练地操作频谱分析仪,关键是掌握各个参数的物理意义和设置要求。 (1)频率扫描范围 通过调整扫描频率范围,可以对所要研究的频率成分进行细致的观察。扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。在设置这个参数时,可以通过设置扫描开始频率和终止频率来确定,例如:start frequency=150 MHz,stop frequency=160MHz;也可以通过设置扫描中心频率和频率范围来确定,例如:center frequency=155 MHz,span=10 MHz。这两种设置的结果是一样的。Span越小,光标读出信号频率的精度就越高。一般扫描范围是根据被观测的信号频谱宽度或信道间隔来选择。如分析一个正弦波,则扫描范围应大于2f(f为调制信号的频率),若要观测有无二次谐波的调制边带,则应大于4f。 (2)中频分辨率带宽 频谱分析仪的中频带宽决定了仪器的选择性和扫描时间。调整分辨带宽可以达到两个目的,一个是提高仪器的选择性,以便对频率相距很近的两个信号进行区别,若有两个频率成分同时落在中放通频带内,则频谱仪不能区分两个频率成分,所以,中放通频带越窄,则频谱仪的选择性越好。另一个目的是提高仪器的灵敏度。因为任何电路都有热噪声,这些噪声会将微弱信号淹没,而使仪器无法观察微弱信号。噪声的幅度与仪器的通频带宽成正比,带宽越宽,则噪声越大。因此减小仪器的分辨带宽可以减小仪器本身的噪声,从而增强对微弱信号的检测能力。根据实际经验,在测量信号功率时,一般来说,分辨率带宽RBW宜为扫描宽度的1%—3%,即可保证测量精度。 分辨带宽一般以3dB带宽来表示。当分辨带宽变化时,屏幕上显示的信号幅度可能会发变化。这是因为当带宽增加时,若测量信号的带宽大于通频带带宽,由于通过中频放大器的

单频-双频激光干涉仪

激光干涉仪 - 单频与双频激光干涉仪比较 单频的激光器它的一个根本弱点就是受环境影响严重,在测试环境恶劣,测量距离较长时,这一缺点十分突出。其原因在于它是一种直流测量系统,必然具有直流光平和电平零漂的弊端。激光干涉仪可动反光镜移动时,光电接收器会输出信号,如果信号超过了计数器的触发电平则就会被记录下来,而如果激光束强度发生变化,就有可能使光电信号低于计数器的触发电平而使计数器停止计数,使激光器强度或干涉信号强度变化的主要原因是空气湍流,机床油雾,切削屑对光束的影响,结果光束发生偏移或波面扭曲。这种无规则的变化较难通过触发电平的自动调整来补偿,因而限制了单频干涉仪的应用范围,只有设法用交流测量系统代替直流测量系统才能从根本上克服单频激光干涉仪的这一弱点。 而双频激光干涉仪正好克服了这一弱点,它是在单频激光干涉仪的基础上发展的一种外差式干涉仪。和单频激光干涉仪一样,双频激光干涉仪也是一种以波长作为标准对被测长度进行度量的仪器,所不同者,一方面是当可动棱镜不动时,前者的干涉信号是介于最亮和最暗之间的某个直流光平,而后者的干涉信号是一个频率约为1.5MHz的交流信号;另一方面,当可动棱镜移动时,前者的干涉信号是在最亮和最暗之间缓慢变化的信号,而后者的干涉信号是使原有的交流信号频率增加或减少了△f,结果依然是一个交流信号。因而对于双频激光干涉仪来说,可用放大倍数较大的交流放大器对干涉信号进行放大,这样,即使光强衰减90%,依然可以得到合适的电信号。由于这一特点,双频激光干涉仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等,也可以在普通车间内为大型机床的刻度进行标定,既可以对几十米的大量程进行精密测量,也可以对手表零件等微小运动进行精密测量,既可以对几何量如长度、角度.直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。总之,双频激光干涉仪的优越性主要有以下几点: 1. 精度高双频激光干涉仪以波长作为标准对被测长度进行度量的仪器。即使不做细分也可达到μm 量级,细分后更可达到n m量级。(安捷伦5530激光干涉仪线性精度能达到0.4PPM) 2. 应用范围广双频激光干涉仪除了可用于长度的精密测量外,测量角度、直线度、平面度、振动距离及速度等等,还可以分光进行多路测量。 3. 环境适应力强即使光强衰减90%,仍然可以得到有效的干涉信号。由于这一特点,双频激光干涉仪既可在恒温、恒湿、防震的计量室内检定量块、量杆、刻尺、微分校准器和坐标测量机,也可以在普通的车间内为大型的机床的刻度进行标定。

水准仪的使用方法及注意事项

水准仪的使用方法及注意事项 令狐采学 水准仪广泛用于建筑行业,是测量水平高低的仪器,具有精度高、使用方便、快速、可靠等优点,使用在引测、大面积场地测量、楼面水平线标志、沉降观测等。现介绍水准仪的使用方法。 一、水准仪器组合: 1.望远镜 2.调整手轮 3.圆水准器 4.微调手轮 5.水平制动手轮 6.管水准器 7.水平微调手轮 8.脚架 二、操作要点: 在未知两点间,摆开三脚架,从仪器箱取出水准仪安放在三脚架上,利用三个机座螺丝调平,使圆气泡居中,跟着调平管水准器。水平制动手轮是调平的,在水平镜内通过三角棱镜反射,水平重合,就是平水。将望远镜对准未知点(1)上的塔尺,再次调平管水平器重合,读出塔尺的读数(后视),把望远镜旋转到未知点(2)的塔尺,调整管水平器,读出塔尺的读数(前视),记到记录本上。 计算公式:两点高差=后视-前视。 三、校正方法: 将仪器摆在两固定点中间,标出两点的水平线,称为a、b线,移动仪器到固定点一端,标出两点的水平线,称为a’、b ’。计算如果a-b≠a’-b ’时,将望远镜横丝对准偏差一半的数值。用校针将水准仪的上下螺钉调整,使管水平泡吻合为止。重

复以上做法,直到相等为止。 四、保养与维修 1.水准仪是精密的光学仪器,正确合理使用和保管对仪器精度和寿命有很大的作用; 2.避免阳光直晒,不许可证随便拆卸仪器; 3.每个微调都应轻轻转动,不要用力过大。镜片、光学片不准用手触片; 4.仪器有故障,由熟悉仪器结构者或修理部修理; 5.每次使用完后,应对仪器擦干净,保持干燥。 S3水准仪的结构和使用方法 (一) 水准测量仪器 水准测量用的仪器、工具:水准仪、水准尺和尺垫。 1. 水准尺和尺垫 水准尺是水准测量中用于高差量度的标尺,水准尺制造用材有优质木材、合金材和玻璃钢等几种,有2 m,3 m,5 m等多种长度和整尺、折尺、塔尺等多种类型。水准尺按精度高低可分为精密水准尺和普通水准尺。 (1) 普通水准尺 材料:用木料、铝材和玻璃钢制成。 结构:尺长多为3 m,两根为一副,且为双面(黑、红面)刻划的直尺,每隔1 cm印刷有黑白或红白相间的分划。每分米处注有数字,对一对水准尺而言,黑、红面注记的零点不同。黑面尺

ZYGO干涉仪-使用说明

1目的 为了使员工正确熟悉的使用ZYGO干涉仪。本文详细说明了如何使用ZYGO 干涉仪来测试晶体的平行度、波前、平面度等指标。 2范围 本文件涉及用ZYGO 干涉仪检测平面元件的一般方法。 3 录取数据 在检验过程中将会生成以下记录: 3.1干涉图(保存文件名为*.Tif),在实时窗口上点击FILE-SA VE保存。 3.2测试数据(保存文件名为*.Dat),测试完成后点击SA VE DATE保存。 4 Zygo干涉仪的定义 4.1 应用(application) 应用是ZYGO 干涉仪中一系列功能的组合,保存为后缀名为“*.app”的文件。不同的应用用于不同项目的测量。比较常用的是GIP.app 用于一般的平面和球面的测量,GPI-Cylinde.app 用于柱面面形的测量,Angle.app用于平行角度的测试。 4.2 猫眼像(cateye) 又称为标准镜的像。标准镜的出射光在焦点处被返回时出现的干涉条纹,是透过干涉仪的光线与和它对称的标准面之间的干涉图形。 4.3 镜片像 从标准镜出射的光在整个零件表面被原路反射回来与标准面的反射光发生干涉产生的干涉图形。包含待测零件的表面或波前信息,是面形检测的主要信息来源。 4.4 升降台 可以升降的平台,带有小倾角调节功能,一般用于放置平面元件。 4.5 Align/View 模式 按下控制盒上的align/view 切换的2 个模式之一。align模式可以看到一个黑色固定的十字线和反射回干涉仪的光点,一般用于零件对准,特点是视场较大。View 模式是按下控制盒上的align/view 切换的2 个模式之一,可以看到干涉条纹,特点是放大率较高,但是视场较小。一般在align界面对准后在view界面观察条纹。

水准仪使用方法

水准仪、经纬仪、全站仪的使用方法 水准仪及其使用方法 高程测量是测绘地形图的基本工作之一,另外大量的工程、建筑施工也必须量测地面高程,利用水准仪进行水准测量是精密测量高程的主要方法。 一、水准仪器组合: 1.望远镜 2.调整手轮 3.圆水准器 4.微调手轮 5.水平制动手轮 6.管水准器 7.水平微调手轮 8.脚架 二、操作要点: 在未知两点间,摆开三脚架,从仪器箱取出水准仪安放在三脚架上,利用三个机座螺丝调平,使圆气泡居中,跟着调平管水准器。水平制动手轮是调平的,在水平镜内通过三角棱镜反射,水平重合,就是平水。将望远镜对准未知点(1)上的塔尺,再次调平管水平器重合,读出塔尺的读数(后视),把望远镜旋转到未知点(2)的塔尺,调整管水平器,读出塔尺的读数(前视),记到记录本上。 计算公式:两点高差=后视-前视。 三、校正方法: 将仪器摆在两固定点中间,标出两点的水平线,称为a、b线,移动仪器到固定点一端,标出两点的水平线,称为a’、b ’。计算如果a-b≠a’-b’时,将望远镜横丝对准偏差一半的数值。用校针将水准仪的上下螺钉调整,使管水平泡吻合为止。

重复以上做法,直到相等为止。 四、水准仪的使用方法 水准仪的使用包括:水准仪的安置、粗平、瞄准、精平、读数五个步骤。 1. 安置 安置是将仪器安装在可以伸缩的三脚架上并置于两观测点之间。首先打开三脚架并使高度适中,用目估法使架头大致水平并检查脚架是否牢固,然后打开仪器箱,用连接螺旋将水准仪器连接在三脚架上。 2. 粗平 粗平是使仪器的视线粗略水平,利用脚螺旋置园水准气泡居于园指标圈之中。具体方法用仪器练习。在整平过程中,气泡移动的方向与大姆指运动的方向一致。 3. 瞄准 瞄准是用望远镜准确地瞄准目标。首先是把望远镜对向远处明亮的背景,转动目镜调焦螺旋,使十字丝最清晰。再松开固定螺旋,旋转望远镜,使照门和准星的连接对准水准尺,拧紧固定螺旋。最后转动物镜对光螺旋,使水准尺的清晰地落在十字丝平面上,再转动微动螺旋,使水准尺的像靠于十字竖丝的一侧。 4. 精平 精平是使望远镜的视线精确水平。微倾水准仪,在水准管上部装有一组棱镜,可将水准管气泡两端,折射到镜管旁的符合水准观察窗内,若气泡居中时,气泡两端的象将符合成一抛物线型,说明视线水平。若气泡两端的象不相符合,说明视线不水平。这时可用右手转动微倾螺旋使气泡两端的象完全符合,仪器便可提供一条水平视线,以满足水准测量基本原理的要求。注意?气泡左半部份的移动方向,总与右手大拇指的方向不一致。 5. 读数 用十字丝,截读水准尺上的读数。现在的水准仪多是倒象望远镜,读数时应由上而下进行。先估读毫米级读数,后报出全部读数。 注意,水准仪使用步骤一定要按上面顺序进行,不能颠倒,特别是读数前的符合水泡调整,一定要在读数前进行。 五、水准仪的测量 测定地面点高程的工作,称为高程测量。高程测量是测量的基本工作之一。高程测量按所使用的仪器和施测方法的不同,可以分为水准测量、三角高程测量、GPS高程测量和气压高程测量。水准测量是目前精度最高的一种高程测量方法,它广泛应用于国家高程控制测量、工程勘测和施工测量中。 水准测量的原理是利用水准仪提供的水平视线,读取竖立于两个点上的水准尺上的读数,来测定两点间的高差,再根据已知点高程计算待定点高程。 如下图所示,在地面上有A、B两点,已知A点的高程为HA、为求B点的高程HB,在A、B两点之间安骨水准仪,A、B两点亡各竖立一把水准尺,通过水准仪的望远镜读取水平视线分别在A、B两点水准尺上截取的读数为a和b,可以求出A、B两点问的高差为:

相关主题
文本预览
相关文档 最新文档