当前位置:文档之家› 空间圆弧轨迹的解析描述技术

空间圆弧轨迹的解析描述技术

空间圆弧轨迹的解析描述技术
空间圆弧轨迹的解析描述技术

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

空间轨迹问题的三种模式及破解策略

空间轨迹问题的三种模式及破解策略 空间轨迹问题是近年来高考命题的一个热点题型,这类问题中涉及到的点,线,面较多,产生于空间,但落实到平面,空间关系复杂,往往交汇多个知识点,解题方法灵活多变,总给人无“法”可依,无“章”可循之感,是同学们公认的难点与失分点。本文将此类问题分为三种模式,各个击破,只要同学们能够准确识别模式就能正确解决,对空间轨迹问题我们的口号是“无需忍痛——分必得!” 【模式一】 定点+动点型——先定“大轨迹”,后寻“小轨迹”,特殊点定位 例1 在正方体1AC 中,点P 在侧面11BCC B 的内部及边界上运动,总有1AP BD ⊥,则点P 的轨迹是( ) A. 线段1B C B. 线段1BC C. 线段BC D. 线段11B C 分析: 我们知道过直线外一点与该直线垂直的直线都在过该点与此直线垂直的平 面内,设过A 与1BD 垂直的平面为α,有11P B C CB α∈平面,所求轨迹就是α 与侧面11BCC B 的交线,此处应是线段,下面只需要取两个特殊点定位即可,易知只有线段1B C 符合题意,故选A. 例2 已知正方体1AC 棱长为1,在正方体表面上与点A 距离为 3的点的集合曲线C ,则该曲线的长度为( ) A. B. C. D. 解:空间中与A 的点的集合是以A 为球心,曲线 C 就是该球面与正方体各面相交所得的截面。2313< <6个侧面均相交得到6段圆弧,可分为两种情况:ABCD,11AA D D , 11AA B B 为过球心的截面,截痕为大圆弧,易知三段圆弧圆心角均为6 π;1111A B C D ,11BCC B ,11CDD C 与球心距离为1的截面,截痕是小圆弧,三段小 3=,故各段圆弧圆心角均为2π,则曲线C 长度为 233533363236 ππ+= 方法点拨

解析几何专题一轨迹问题.

、直接法 解析几何专题一 轨迹问题 建系一一设点一一列式一一代换一一化简一一检验 例1长为2a 的线段AB 的两个端点分别在x 轴、 列式 y 轴上移动,求AB 中点P 的轨迹方程。 例2已知两个定点 A(-1,0)、B(2,0),求使 MBA 2 MAB 的点的轨迹方程。 例3 一动圆被直线x+2y=0和x-2y=0截得的弦长分别为8和4,求动圆圆心的轨迹方程。 二、定义法 例4动点P 到直线x+4=0的距离减去它到点M(2,0)的距离之差等于2,则P 的轨迹是() (A)直线 (B)椭圆(C)双曲线( D)抛物线 例5求经过原点,并以F(2,0)为它的一个焦点,长轴长为6的椭圆中心的轨迹方程。 例6已知两个圆O i 和02,它们的半径分别是1和2,且|OQ 2 | 4,动圆M 与圆O i 内切,又与圆 02外切,建立适当的坐标系,求动圆圆心 M 的轨迹方程,并说明轨迹是什么曲线。 、代入法 2 2 例7 P 在以F 1、F 2的双曲线—L 1上运动,则叶汗2P 的重心G 的轨迹方程为 16 9 U

y 2 36内一点,A 、B 是圆上两个动点且满足 APB 90,求矩形APBQ 2 仝1,过点M (0,1)的直线l 交椭圆于A 、B 两点,O 是坐标原点,点P 4 满足oP i (oA OB ),点N 的坐标为(1,1),当I 绕点M 旋转时,求: (1)动点P 的轨迹方程;(2) |NP 丨的最值。 例8已知P (4,0)是圆X 2 的顶点Q 的轨迹方程。 四、参数法 例9已知点M 在圆13x 2 13y 2 15x 36y 0上,点N 在射线OM 上,且满足| OM | |ON | 12 , 求动点N 的轨迹方程。 例10设椭圆方程为X 2

动量守恒定律专题8 动量守恒定律8“小球(滑块)--圆弧轨道”模型2018

动量守恒定律专题8 小球(滑块)----圆弧轨道模型例题1、如左下图,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆柱槽相切并从A点进入槽内.正确的是( CD ) A.小球离开右侧槽口以后,将做竖直上抛运动 B.小球在槽内运动的全过程中,只有重力对小球做功 C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒 D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向动量不守恒 解析小球从下落到最低点的过程中,槽没有动,与竖直墙之间存在挤压,动量不守恒;小球经过最低点往上运动的过程中,槽与竖直墙分离,水平方向动量守恒;全过程中有一段时间系统受竖直墙弹力的作用,故全过程系统水平方向动量不守恒,选项D正确;小球离开右侧槽口时,水平方向有速度,将做斜抛运动,选项A错误;小球经过最低点往上运动的过程中,槽往右运动,槽对小球的支持力对小球做负功,小球对槽的压力对槽做正功,系统机械能守恒,选项B错误,C正确. 例题2、带有1/4光滑圆弧轨道质量为M的滑车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲上滑车,到达某一高度后,小球又返回车的左端,则[BC ] A.小球以后将向左做平抛运动 B.小球将做自由落体运动 C.此过程小球对小车做的功为D.小球在弧形槽上升的最大高度为 例题3、如图所示,A和B并排放在光滑的水平面上, A上有一光滑的半径为R的半圆轨道,半圆轨道右侧顶点有一小物体C,C由顶点自由滑下,设A、B、C的质量均为m.求: (1)A、B分离时B的速度多大?(2)C由顶点滑下到沿轨道上升至最高点的过程中做的功是多少? 解析:小物体C自由滑下时,对槽有斜向右下方的作用力,使A、B一起向右做加速运动;当C滑至槽的最低点时,C、A之间的作用力沿竖直方向,这就是A、B分离的临界点,因C将沿 槽上滑,C对A有斜向左下方的作用力,使A向右做减速运动,而B以A分离时 的速度向右,做匀速运动。 所谓C沿轨道上升到最大高度,并不是C对地的速度为零,而是与A的相对 速度为零,至于C在题述过程中所做的功,应等于A、B、C组成的系统动能的增量(实际上是等于C的重力所做的功)。

《空间图形中的轨迹问题的基本解法》

空间图形中的轨迹问题的基本解法 在知识网络交汇点处设计试题是这几年高考命题改革的一大趋势。而以空间图形为素材的轨迹问题,由于具有其独特的新颖性、综合性与交汇性,所以倍受命题者的亲睐,但由于这类题目涵盖的知识点多,创新能力与数学思想方法要求高,而且这些题目远看象“立几”近看象“解几”,所以学生在解题中,往往是望题兴叹,百思而不得其解。本文试从几个例题来剖析这些问题的基本解法。 1 判断轨迹的类型问题 这类问题常常要借助于圆锥曲线的定义来判断,常见的轨迹类型有:线段、圆、圆锥曲线、球面等。在考查学生的空间想象能力的同时,又融合了曲线的轨迹问题。 例1 在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB与到直线B1C1的距离相等,则动点P所在曲线的形状为(D)。 A. 线段 B. 一段椭圆弧 C. 双曲线的一部分 D. 抛物线的一部分 简析本题主要考查点到直线距离的概念,线面垂直及抛物线的定义。因为B1C1 面AB1,所以PB1就是P到直线B1C1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D。 引申1 在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为2:1,则动点P所在曲线的形状为(B)。 A. 线段 B. 一段椭圆弧 C. 双曲线的一部分 D. 抛物线的一部分 引申2 在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为1:2,则动点P所在曲线的形状为(C)。 A. 线段

B. 一段椭圆弧 C. 双曲线的一部分 D. 抛物线的一部分 例2 (2006届天津市十二区县市重点中学第一次高考模拟联合测试)在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是(A)。 A. 圆或圆的一部分 B. 抛物线或其一部分 C. 双曲线或其一部分 D. 椭圆或其一部分 简析由条件易知:AC是平面BB1D1D的法向量,所以EP与直线AC 成等角,得到EP与平面BB1D1D所成的角都相等,故点P的轨迹有可能是圆或圆的一部分。 的棱长为a,定点例3(2005年浙江省模拟)已知正方体ABCD A B C D - 1111 M在棱AB上(但不在端点A,B上),点P是平面ABCD内的动点,且点P 的距 到直线A D 11 离与点P到点M的距离的平方差为a2,则点P的轨迹所在曲线为(A)。 A. 抛物线 B. 双曲线 C. 直线 D. 圆 中,过P作PF⊥AD,过F作简析在正方体ABCD A B C D - 1111 FE⊥A1D1,垂足分别为F、E,连结PE。则PE2=a2+PF2,又PE2-PM2=a2,所以PM2=PF2,从而PM=PF,故点P到直线AD与到点M的距离相等,故点P的轨迹是以M为焦点,AD为准线的抛物线。 点评正方体是空间图形中既简单、熟悉、又重要的几何体,具有丰富的内涵,在正方体中设计的轨迹问题,更是别具一格。 例4 在正方体ABCD A B C D 中,点P在侧面BCC1B1及其边界上 - 1111 运动,总有AP⊥BD1,则动点P的轨迹为__________。 简析在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面。易证BD1⊥面ACB1,所以满足BD1⊥AP的所有点P都在一个

高中数学圆锥曲线轨迹问题题型分析

有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数 )0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点) ,使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.

解析几何最值问题

解析几何最值问题的赏析 丹阳市珥陵高级中学数学组:李维春 教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题. 重点难点:图形的处理和变量的选择及最值的处理. 问题提出: 已知椭圆方程:14 32 2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。 问题分析: 1、 图形的处理: 不规则图形转化为规则图形(割补法) ABF ABE AENF S S S ??+= BEF AEF AENF S S S ??+= 2、 变量的选择: (1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式; (2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得 一元表达式。 3,最值的处理方法: (1) 一元表达式可用基本不等式或函数法处理; (2) 二元表达式可用基本不等式或消元转化为一元表达式。 X

问题解决: 解法一: 由基本不等式得62 24)34(2322 02000==+≤+=y x y x S 时取“=” 当且仅当0032 y x = 解法二: 00000 0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S (0,2),A B 因为,12 y += 20x +-=即1d =点E 到直线的距离:00( ,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134 x y +=在椭圆上22004312x y +=所以max S =所以

动量守恒定律专题8 动量守恒定律8“小球(滑块)--圆弧轨道”模型2018学案

动量守恒定律专题8 小球(滑块)----圆弧轨道模型 例题1、如左下图,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆柱槽相切并从A点进入槽内.正确的是( ) A.小球离开右侧槽口以后,将做竖直上抛运动 B.小球在槽内运动的全过程中,只有重力对小球做功 C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒 D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向动量不守恒 例题2、带有1/4光滑圆弧轨道质量为M的滑车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲上滑车,到达某一高度后,小球又返回车的左端,则[ ] A.小球以后将向左做平抛运动 B.小球将做自由落体运动 C.此过程小球对小车做的功为D.小球在弧形槽上升的最大高度为 例题3、如图所示,A和B并排放在光滑的水平面上, A上有一光滑的半径为R的半圆轨道,半圆轨道右侧顶点有一小物体C,C由顶点自由滑下,设A、B、C的质量均为m.求: (1)A、B分离时B的速度多大?(2)C由顶点滑下到沿轨道上升至最高点的过 程中做的功是多少? 例题4、两质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上,A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h。物块从静止滑下,然后滑上劈B。求物块在B上能够达到的最大高度。 例题5、如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧连一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O/点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m=1.0kg的小物块紧靠弹簧,小物块与水平轨道间的动摩擦因数μ=0.5.整个装置处于静止状态,现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A,g取10m/s2.求: (1)解除锁定前弹簧的弹性势能; (2)小物块第二次经过O/点时的速度大小; (3)最终小物块与车相对静止时距O/点的距离.

杂化轨道详细解说

高中化学7:杂化轨道 1、概念理解 原子在形成分子时,原子轨道不可能只重叠而本身不变,实际上个原子的价电子运动状态必然改变,而使成键能力尽可能增加,体系能量尽可能降低。能量相近的不同原子轨道重新合成相同数目的新原子轨道。通常有sp型、dsp型、spd型等。 杂化并非一个实际过程,而是一个数学概念。为了得到波动方程有关价层电子的解,及波函数而采取的一个步骤。 和原有的s、p轨道相比,杂化轨道分布图具有一个肥大的正瓣,这一区域大大有利于成键轨道之间的重叠。而且杂化轨道空间分布合理,降低了成键电子的排斥。2个方面都有利于体系能量的下降。 2、价层电子对互斥理论(VSEPR理论)对轨道形状的推测、价层电子对互斥理论(VSEPR理论): 对于一个ABm型分子(或离子),围绕中心A原子的价层对子对(包括成键电子对和未成键的孤电子对)的空间分布是受静电相互作用所支配。电子对之间尽可能互相远离,这样斥力小,体系趋于稳定。 、A原子价层电子对数的确定: [A原子价层电子数 + B原子提供的用于形成共价单键的电子数(双剑、三键均按生成一个单键考虑)]/2 若是阴离子,电子数要加阴离子电荷数,阳离子则要减去。 B是H或卤素元素,每个原子提供一个共用电子。 B若是是氧族元素,规定不提供共用电子。

四氯化碲TeCl4分子:Te有6个价层电子,加上4个Cl提供的共用电子,中心Te原子价层电子数等于10,对数为5。 SO42-离子:S有6个价层电子,规定O原子不提供共用电子,加上离子电荷数2,中心S原子价层电子数等于8,对数为4。 、VSEPR理论推测分子形状: 判断非过渡元素化合物的分子(或离子)的几何构型是相当成功的。价层电子对数在4以内,未发现例外;价层电子对数为5、6时,发现个别例外;价层电子对数为7以上时,中心不单一,出入较大;步骤:1、确定中心原子的价层电子对数 2、确定价层电子对对应的最佳分布构型:2直线、3平面三角、4正四面体、5三角双锥体、6正八面体。 3、依据价层电子对相互作用斥力大小选出最稳定布局。依此布局将配位原子排列在中心原子周围。 电子对之间斥力大小:孤-孤>孤-成>成-成 按照力学分析,很好理解。 2个同等力作用1个点,稳定结构是直线,夹角180度。 3个同等力作用1个点,稳定结构是平面,夹角120度。 4个同等力作用1个点,稳定结构是(正四面体、平面正方体等),正四面体夹角度。 5个同等力作用1个点,稳定结构是三角双锥体 6个同等力作用1个点,稳定结构是正八面体

专题_解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题 学大分教研中心 周坤 轨迹方程的探解析几何中的基本问题之一,也是近几年各省高考中的常见题型之一。解答这类问题,需要善于揭示问题的部规律及知识之间的相互联系。本专题分成四个部分,首先从题目类型出发,总结常见的几类动点轨迹问题,并给出典型例题;其次从方法入手,总结若干技法(包含高考和竞赛要求,够你用的了...);然后,精选若干练习题,并给出详细解析与答案,务必完全弄懂;最后,回顾高考,列出近几年高考中的动点轨迹原题。OK ,不废话了,开始进入正题吧... Part 1 几类动点轨迹问题 一、动线段定比分点的轨迹 例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。 ()()()00P x y A a B b 解:设,,,,,, ()( )0 11101a a x x y b b y λλλλλλλ+???=+=??? +??++?=??=? ?+? , 2225a b +=代入 () () 2 2 2 2 2 1125y x λλλ +++ = () () 2 2 2 2 2 125 2511x y λλλ+ =++

2225 14 P x y λ=+= 当时,点的轨迹是圆;① 1P y λ>当时,点的轨迹是焦点在轴上的椭圆;② 01P x λ<<当时,点的轨迹是焦点在轴上的椭圆③; 例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程. ()()113P x y B x y AB BP =-解:设,,,,有 ()()()()11 33131313x x y y ?+-= ?+-? ? +-?=?+-? 11332 312 x x y y -?=??? -?=??化简即: 22114x y +=代入 22 3331422x y --???? += ? ????? 得 所以点P 的轨迹为()2 2 116139x y ? ?-+-= ?? ? 二、两条动直线的交点问题 例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x = AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程 ()()()11M x y A t t B t t ++解:设,,,,,, ()()1313PM x y PA t t =+-=+-,,,,

解析几何中的最值问题.

解析几何中的最值问题 解析几何中的最值问题是很有代表性的一类问题,具有题形多样,涉及知识面广等特点。解决这类问题,需要扎实的基础知识和灵活的解决方法,对培养学生综合解题能力和联想思维能力颇有益处。本文通过实例,就这类问题的解法归纳如下: 一、 转化法 例1、 点Q 在椭圆 22 147 x y +=上,则点Q 到直线32160x y --=的距 离的最大值为 ( ) A B C D 分析:可转化为求已知椭圆平行于已知直线的切线,其中距离已知直线较远的一条切线到该直线的距离即为所求的最大值。 解:设椭圆的切线方程为 3 2 y x b =+,与 22 147 x y +=消去y 得 224370x bx b ++-=由?=01272=+-b 可得4(4)b b ==-舍去,与 32160x y --=平行且距离远的切线方程为3280x y -+= 所以所求最大值为d = = ,故选C 二 、配方法 例2、 在椭圆 22 221x y a b +=的所有内接矩形中,何种矩形面积最大? 分析:可根据题意建立关系式,然后根据配方法求函数的最值。 解:设椭圆内接矩形在第一象限的顶点坐标为A (),x y ,则由椭圆对称性,矩形的长为2x ,宽为2y ,面积为4xy ,与 22 221x y a b +=消去 y 得: 22b S x a =?=

可知当x a = 时,max 2S ab = 三、 基本不等式法 例3、 设21,F F 是椭圆14 22 =+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ?的最大值是 解: 124PF PF += 由12PF PF +≥得 44 )(2 2121=+≤ ?PF PF PF PF 即21PF PF ?的最大值是4 。 四、 利用圆锥曲线的统一定义 例4 、设点A (-,P 为椭圆22 11612 x y +=的右焦点,点 M 在椭 圆上,当取2AM PM +最小值时,点M 的坐标为 ( ) A (- B (- C D 解:由已知得椭圆的离心率为1 2 e = , 过M 作右准线L 的垂线,垂足为N ,由圆锥曲线的统一定义得 2MN PM = 2AM PM AM MN ∴+=+ 当点M 运动到过A 垂直于L 的直线上时, AM MN +的值最小,此时点M 的坐标为,故选 C 五、 利用平面几何知识 例5 、平面上有两点(1,0),(1,0)A B -,在圆22 (3)(4)4x y -+-=上取一点 P ,求使22 AP BP +取最小值时点P 的坐标。

四分之一圆轨道

四分之一圆轨道 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

四分之一圆轨道 如图所示,四分之一圆轨道OA与水平轨道AB相切,它们与另 一水平轨道CD在同一竖直面内,圆轨道OA的半径R=0.45m,水平 轨道AB长S1=3m, OA与AB均光滑。一滑块从O点由静止释放,当 滑块经过A点时,静止在CD上的小车在F=1.6N的水平恒力作用下 启动,运动一段时间后撤去力F。当小车在CD上运动了S2=3.28m 时速度v=2.4m/s,此时滑块恰好落入小车中。已知小车质量M=0.2Kg,与CD间的动摩擦因数u=0.4。<取g=10m/s2) 求:<1)恒力F的作用时间t。 <2)AB与CD的高度差h。 该滑块的质量为,运动到点的速度为,由动能定理得 ⑧

设滑块由点运动到点的时间为,由运动学公式得 ⑨ 设滑块做平抛运动的时间为,则 ⑩ 由平抛规律得 联立②④⑤⑥⑦⑧⑨⑩ 式,代入数据得 竖直平面内的轨道ABCD 由水平滑道AB 与光滑的 四分之一圆弧滑 道CD 组成,AB 恰与圆弧CD 在C 点相切,轨道放在光滑的水平面 上,如图所示,一个质量为m 的小物块<可视为质点),从轨道的A 端以初动能E 冲上水平滑道AB ,沿着轨道运动,由DC 弧滑下后停 在水平轨道AB 的中点。已知水平滑道AB 长L ,轨道ABCD 质量为 M=3m ,求:小物块在水平滑道上受的摩擦力的大小。b5E2RGbCAP 解:小物块冲上轨道的初速度设为 )21(2mv E v =,最终停在AB 的中 点,跟轨道有相同的速度,设为V 在这个过程中,系统动量守恒,有V m M mv )(+=①

轨迹方程(平面+空间)

第二章轨迹与方程 本章在上章建立的空间点与径向量及有序实数组的对应基础上,先介绍平面曲线的方程,然后过渡到曲面与空间曲线方程的研究,从而建立轨迹与方程的对应。 §2.1平面曲线的方程 教学目的:正确理解空间曲线与曲线方程的意义,并初步熟悉根据已知条件建立空间曲线方程的基本方法. 教学重难点:正确的理解空间曲线方程的意义, 并掌握根据已知条件建立空间曲线方程. 教学过程: 一.曲线的一般方程 1.平面曲线(包括直线): 具有某种特征性质的点的集合,即: ①曲线上的点都具有这些性质; ②具有这些性质的点都在曲线上. 反映: 曲线上的点) (y x满足一定的互相制约的条件.一般用方程) , F或 x (y , y=来表达. f ) (x 2. 定义2.1.1 当平面上取定了坐标后,如果一个方程与一条曲线有着关系: (1) 满足方程的) x必是曲线上某个点的坐标; (2) 曲线上任何一点的坐标满足这个 (y , 方程,那么这个方程就叫做这条曲线的方程,而这条曲线叫做这个方程的图形. 由上定义可得: ①研究曲线的几何问题转化为研究其方程的代数问题. ②已知曲线,要求它的方程,实际上就是在给定的坐标下,将这条曲线上的点的特征性质,用关于曲线上的点的两个坐标y x,的方程来表达. 例1求圆心在原点,半径为R的圆的方程. 解: 根据圆的定义,圆上任意点) (y M在圆上的充要条 x , M的特征性质,即) (y , x = 件是M到圆心O的距离等于半径R,即R

应用两点距离公式,得 R y x =+22 (1) 两边平方得 222R y x =+ (2) 由于方程(2)与(1)通解,所以(2)即为所求圆的方程. 完全类似的,可以求圆心在),(b a 半径为R 的圆的方程是: 222)()(R b y a x =-+-. 注: 求曲线的方程,有时在化简过程中,会增添不属于给定条件的内容, 此时,必须从方程的开始检查一下,把方程中代表那些不符合给定条件的点限制掉. 例2已知两点)2,2(--A 和)2,2(B ,4=-的动点M 的轨迹方程. 解: 动点M 4=- 用点的坐标来表达就是 ,4)2()2()2()2(2222=-+--+++y x y x (3) 移项得 ,4)2()2()2()2(2222+-+-=+++y x y x 两边平方整理得 ,2)2()2(22-+=-+-y x y x (4) 再两边平方整理得 2=xy (5) 因为方程(2)和(3)同解,而方程(4)与(3)却不同解,但当方程(4)附加了条件 02≥-+y x , 即2≥+y x 后,方程(4)与(3)同解,从而方程(4)与(3)同解,所以方程 )2(,2≥+=y x xy 为所求动点M 的轨迹方程. 二.曲线的参数方程 当动点按照某种规律运动时,与它对应的径向量也将随着时间t 的不同而改变(模与方向的改变),这样的径向量,称为变向量,记做(t r .如果变数)(b t a t ≤≤的每个值对应于变向量的一个完全确定的值(模与方向))(t r ,那么就说是变数t 的向量函数,并把它记做: =(t r , )(b t a ≤≤ (6)

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>, 2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

解析几何中的最值问题教案

解析几何中的最值问题 一、教学目标 解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。基本内容:有关距离的最值,角的最值,面积的最值。 二、教学重点 方法的灵活应用。 三、教学程序 1、基础知识 探求解析几何最值的方法有以下几种: (1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。 (2)不等式法:(常用的不等式法主要有基本不等式等) (3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法 (4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等) (1)函数法 例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2 219 x y +=上移动,试求PQ 的最大值。 分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ| 的最大值,只要求|OQ|的最大值。 说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。 例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2 213 x y +=上的一个动点,求S x y =+的最大值 (2)不等式法

跟踪物体空间运动轨迹

Research on Object Space Trajectory tracking Optimization Simulation LI Run ZHAO Zhi-wei Lanzhou Petrochemical College of Vocational Technology, Lanzhou 730060,China ABSTRACT: The paper researches the space objects trajectory modeling optimizatio.The traditional modeling methods need massive data collection ,which influences modeling effect.In order to better track and store the trajectory of moving objects ,then optimize trajectory modeling results ,the paper proposes an optimization algorithm based on the moving object trajectory description.by the spatial migration object level and vertical motion path curve, it infers the motion path curve of random position , and loads the error to track the maneuvering target, thus it can be obtained the maneuvering target of the filter data curve, and it then adopts the Kaerman wave filter to be in progress to motion target trajectory curve level and smooth.The experimental results show that this method can effectively describe the trajectory of moving objects and obtain the expected results . KEYWORDS: Trajectory modeling; Optimal trajectory; random error; Smiulation; Tracking Algorithm 0 Introduction Moving object trajectory model is a reaction of moving object trajectories through a certain method to obtain the correct description,which refers to a variety of relatively small finite spatial moving objects, such as a running vehicle, aircraft, ships, people, the launch of rocket and missile, even in the working state of the computer, mobile phone and other moving object ect [1-2]. In order to better track and store the moving object’s trajectories ,then solve the problems existing in the traditional method, this paper presents a moving object in the space of the horizontal and vertical motion description, and then derives spatial moving objects trajectory curve.but in order to smooth moving target trajectory curve with Calman filter, it must load random error to track moving targets, and then gain the target's filtering data curves. The simulation results show that this method has a certain rationality and feasibility, and it can effectively predict the space object trajectory ,and can realize simulation modeling of the moving objects trajectory [3-4]. 1 Moving object model design and trajectory modeling 1.1 Moving objects spatio-temporal model Object space motion model vividly describes the object motion geometric features. As a result of movement locus of object in three-dimensional space coordinates, so it is difficulty. In order to solve this problem, motion models need to add some dynamic characteristics, including the movement of the object position, moving speed, the region of space objects, the slant distance m R , angle of elevation m ε (angle of elevation or depression of objects) and azimuth angle m β and something else. through the model well describe the true motion state by useing

最新圆锥曲线轨迹问题(教师版)

第四讲 有关圆锥曲线轨迹问题(教师版) 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这 种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为 12 2=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则 2 22ON MO MN -=。),(y x M ,则 2 222)2(1y x y x +-=-+λ化简得 0)41(4))(1(2 2222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。 当1≠λ时,方程化为2 2 22 222)1(31)12(-+=+--λλλλy x 表示一个圆。 【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN , (M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -, ,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) y x Q M N O

相关主题
文本预览
相关文档 最新文档