当前位置:文档之家› ANSYS中典型的非线性材料模型

ANSYS中典型的非线性材料模型

ANSYS中典型的非线性材料模型
ANSYS中典型的非线性材料模型

ANSYS中典型的非线性材料模型:

双线性随动强化(BKIN)

双线性等向强化(BISO)

多线性随动强化(MKIN)

多线性等向强化(MISO)

双线性随动强化(Bilinear Kinematic Hardening Plasticity)、双线性等向强化(Bilinear Isotropic Hardening Plasticity)均属于双线性模型。双线性模型通过两个直线段来模拟弹塑性材料的本构关系,即认为材料在屈服以前应力—应变关系按照弹性模量成比例变化,屈服以后,按比弹性模量小的另一个模量(切线模量)变化。模型有两个斜率:弹性斜率和塑性斜率。

对于服从Mises屈服准则,初始为各向同性材料的小应变非线性问题,一般采用双线性随动强化模型,这种材料包括大多数的金属材料。而对于初始各向同性材料的大应变问题则采用等向强化模型。需要输入的常数是屈服应力s y和切向斜率ET。(理想弹塑性材料ET=0)

多线性随动强化(Multilinear Kinematic Hardening Plasticity)、多线性等向强化(Multilinear Isotropic Hardening Plasticity)属于多线性模型。多线性模型与双线性模型类似,只是使用多条直线段来表示模拟弹塑性材料的本构关系,即认为材料在屈服以前应力—应变关系按照弹性模量成比例变化,屈服以后,则按照其位置不同,以不同的、小于弹性模量的另一个模量变化。

例1:

MP,EX,1,30E6

!定义第1类材料的弹性模量EX=30E6

MP,NUXY,1,0.3

!定义第1类材料的泊松比为NUXY=0.3

TB,BKIN,1

!激活数据表,应用经典双线性随动强化准则,并为第1类材料指定1个参考温度。

TBTEMP,70

!在数据表中为输入的应力—应变数据指定参考温度值TEMP=70

TBDATA,1,36000,0

!在数据表中从第1个空格开始填入数据,屈服应力36000,塑性斜率0 (红色为塑性选项)

例2:定义双线性随动强化模型的标准过程

MPTEMP,1,0,500

!定义杨氏弹性模量对应的温度

MPDATA,EX,1,,12E6

!定义杨氏模量的取值

MPDATA,EX,1,,8E6

TB,BKIN,1,2

!激活数据表,应用经典双线性随动强化准则,并为第1类材料指定2个参考温度。

TBTEMP,0.0

!设定温度取值为0

TBDATA,1,40E3,1.4E6

!设定温度为0时的屈服应力和切向斜率

TBTEMP,500

!设定温度取值为500

TBDATA,1,28E3,0.9E6

!设置温度为500时的屈服应力和切向斜率

TBLIST,BKIN,1

!列表显示输入的材料属性

/XRANGE,0,0.01

!设置X轴的取值范围

TBPLOT,BKIN,1

!绘图显示数据表

(蓝色标记的命令可以用来检查前面输入的材料塑性数据值是否正确)

【注意】与双线性模型相比,多线性模型材料属性输入时,需要输入的应变、应力数据多一些,其余过程是一致的,如:

TBDATA,1,3.67e-3,5e-3,7e-3,10e-3,15e-3

!定义多线性模型的应变值

TBDATA,1,44e3,50e3,55e3,60e3,65e3

!定义多线性模型的应力值

示例:

finish

/clear

/config,nres,2000

/prep7

!1.定义单元与材料性质--------------------

et,1,solid65,,,,,,,1 !K1=0,k7=1

et,2,link8

mp,ex,1,13585

mp,prxy,1,0.2

fc=14.3

ft=1.43

tb,concr,1

tbdata,,0.5,0.95,ft,-1

tb,miso,1,,11

tbpt,,0.0002,fc*0.19

tbpt,,0.0004,fc*0.36

tbpt,,0.0006,fc*0.51

tbpt,,0.0008,fc*0.64

tbpt,,0.001,fc*0.75

tbpt,,0.0012,fc*0.84

tbpt,,0.0014,fc*0.91

tbpt,,0.0016,fc*0.96

tbpt,,0.0018,fc*0.99

tbpt,,0.002,fc

tbpt,,0.0033,fc*0.85

显示应力应变关系曲线:TBPLOT,BKIN,1

用ANSYS进行桥梁结构分析..

用ANSYS进行桥梁结构分析 谢宝来华龙海 引言:我院现在进行桥梁结构分析主要用桥梁博士和BSACS,这两种软件均以平面杆系为计算内核,多用来解决平面问题。近来偶然接触到ANSYS,发现其结构分析功能强大,现将一些研究心得写出来,并用一个很好的学习例子(空间钢管拱斜拉桥)作为引玉之砖,和同事们共同研究讨论,共同提高我院的桥梁结构分析水平而努力。 【摘要】本文从有限元的一些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使用方法和利用APDL语言快速进行桥梁的结构分析,最后通过工程实例来更近一步的介绍ANSYS进行结构分析的一般方法,同时进行归纳总结了各种单元类型的适用范围和桥梁结构分析最合适的单元类型。 【关键词】ANSYS有限元APDL结构桥梁工程单元类型 一、基本概念 有限元分析(FEA)是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元模型是真实系统理想化的数学抽象。 真实系统有限元模型 自由度(DOFs)用于描述一个物理场的响应特性。

节点和单元 荷载 1、每个单元的特性是通过一些线性方程式来描述的。 2、作为一个整体,单元形成了整体结构的数学模型。 3、信息是通过单元之间的公共节点传递的。 4、节点自由度是随连接该节点单元类型变化的。 单元形函数 1、FEA仅仅求解节点处的DOF值。 2、单元形函数是一种数学函数,规定了从节点DOF值到单元内所有点处DOF值的计算方法。 3、因此,单元形函数提供出一种描述单元内部结果的“形状”。 4、单元形函数描述的是给定单元的一种假定的特性。 5、单元形函数与真实工作特性吻合好坏程度直接影响求解精度。 6、DOF值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情况吻合得很好。 7、这些平均意义上的典型解是从单元DOFs推导出来的(如,结构应力,热梯度)。 8、如果单元形函数不能精确描述单元内部的DOFs,就不能很好地得到导出数据,因为这些导出数

ansys非线性分析指南

ANSYS 非线性分析指南(1) 基本过程 第一章结构静力分析 1. 1 结构分析概述 结构分析的定义: 结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身、骨架;海洋结构,如船舶结构;航空结构,如飞机机身、机翼等,同时还包括机械零部件,如活塞传动轴等等。 在ANSYS 产品家族中有七种结构分析的类型,结构分析中计算得出的基 本未知量- 节点自由度,是位移;其他的一些未知量,如应变、应力和反力, 可通过节点位移导出。 七种结构分析的类型分别是: a. 静力分析- 用于求解静力载荷作用下结构的位移和应力等。静力分析 包括线性和非线性分析。而非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变,等。 b. 模态分析- 用于计算结构的固有频率和模态。 c. 谐波分析- 用于确定结构在随时间正弦变化的载荷作用下的响应。 d. 瞬态动力分析- 用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 e. 谱分析- 是模态分析的应用拓广,用于计算由于响应谱或PSD 输入 随机振动引起的应力和应变。 f. 屈曲分析- 用于计算屈曲载荷和确定屈曲模态,ANSYS 可进行线性特征值和非线性屈曲分析。 g. 显式动力分析- ANSYS/LS-DYNA可用于计算高度非线性动力学和复 杂的接触问题。 除了前面提到的七种分析类型,还有如下特殊的分析应用: ? 断裂力学 ? 复合材料 ? 疲劳分析

? p-Method 结构分析所用的单元:绝大多数的ANSYS 单元类型可用于结构分析。单元类型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元 1.2 结构线性静力分析 静力分析的定义: 静力分析计算在固定不变的载荷作用下结构的响应。它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是静力分析可以计算那些固定不变的惯性载荷对结构的影响,如重力和离心力;以及那些可以近似为等价静力作用的随时间变化载荷,如通常在许多建筑规范中所定义的等价静力风载和地震载荷。 静力分析中的载荷: 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。固定不变的载荷和响应是一种假定,即假定载荷和结构的响应随时间的变化非常缓慢,静力分析所施加的载荷包括: ? - 外部施加的作用力和压力 ? - 稳态的惯性力如中力和离心力 ? - 位移载荷 ? - 温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形、塑性、蠕变、应力刚化、接触、间隙单元、超弹性单元等,本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。 线性静力分析的求解步骤 1 建模 2 施加载荷和边界条件求解 3 结果评价和分析

ANSYS树形结构的材料模型库

ANSYS树形结构的材料模型库(?第一级●第二级?第三级?第四级?第五级) ?Linear:材料的线性行为 ●Elastic:弹性性能参数 ?Isotropic:各向同性弹性性能参数 ?Orthtropic:正交各向异性弹性性能参数 ?Anisotropic:各向异性弹性性能参数 ?Nonlinear:材料的非线性行为 ●Elastic:非线性的弹性模型 ?Hyperelastic:超弹材料模型(包含多个模型) ?Curve Fitting:通过材料实验数据拟合获取材料模型 ?Mooney-Rivilin:Mooney-Rivilin模型(包含2 、3、 5 与9 参数模型) ?Ogden:Ogden模型(包含1~5 项参数模型与通用模型) ?Neo-Hookean:Neo-Hookean模型 ?Polynomial Form:Polynomial Form模型(包含1~5 项参数模型与通用模型)?Arruda-Boyce:Arruda-Boyce:模型 ?Gent:Gent模型 ?Yeoh:Yeoh模型 ?Blatz-Ko(Foam):Blatz-Ko(泡沫)模型 ?Ogden(Foam) Ogden:(泡沫)模型 ?Mooney-Rivlin(TB,MOON):Mooney-Rivlin(TB,MOON) 模型 ?Multilinear Elastic:多线性弹性模型 ●Inelastic:非线性的非弹性模型 ?Rate Independent:率不相关材料模型 ?Isotropic Hardening Plasticity:各向等向强化率不相关塑性模型 ?Mises Plasticity:各向等向强化的Mises 率不相关塑性模型 Bilinear:双线性模型 Multilinear:多线性模型 Nonlinear:非线性模型 ?Hill Plasticity:各向等向强化的Hill 率不相关塑性模型 Bilinear:双线性模型 Multilinear:多线性模型 Nonlinear:非线性模型 ?Generalized Anisotropic Hill Potenial:广义各向异性Hill 势能率不相关模型 ?Kinematic Hardening Plasticity:随动强化率不相关塑性模型 ?Mises Plasticity:随动强化的Mises率不相关塑性模型 Bilinear:双线性模型 Multilinear(Fixed table):多线性模型 Nonlinear(General) :非线性模型 Chaboche Chaboche:模型 ?Hill Plasticity:随动强化的Hill 率不相关塑性模型 Bilinea:双线性模型 Multilinear(Fixed table):多线性模型 Nonlinear(General):非线性模型 Chaboche Chaboche:模型

安庆长江铁路大桥ANSYSAPDL建模

桥址概况 安庆长江铁路大桥是南京至安庆城际铁路和阜阳至景德镇铁路的重要组成部分,位于安庆前江口汇合口处下游官山咀附近,距上游已建成通车的安庆长江公路大桥约21km;线路在池州侧晏塘镇靠近长江的刘村附近右拐过江,过江后从安庆的长风镇穿过。 安庆铁路长江大桥全长2996.8m,其中主桥采用跨度为101.5+188.5+580+217.5+159.5+116m 的钢桁梁斜拉桥;非通航孔正桥采用6孔跨径64m预应力混凝土简支箱梁;东引桥采用16孔梁长32.6m预应力混凝土简支箱梁;跨大堤桥采用48.9+86+48.8m预应力混凝土连续箱梁;西引桥采用15孔梁长32.6m预应力混凝土简支梁及2孔梁长24.6m预应力混凝土简支梁,其中宁安线采用箱梁,阜景线采用T梁。 主桥桥式及桥型特点 主桥采用103+188.5+580+217.5+159.5+117.5m两塔钢桁斜拉桥方案,全长1366m。主梁为三片主桁钢桁梁,桁间距2x14m,节间长14.5m,桁高15m。主塔为钢筋混凝土结构,塔顶高程+204.00m,塔底高程-6.00m,斜拉索为空间三索面,立面上每塔两侧共18对索,全桥216根斜拉索。所有桥墩上均设竖向和横向约束,4#塔与主梁之间设纵向水平约束,3#塔与梁间使用带限位功能的粘滞阻尼器。主梁为”N”字型桁式,横向采用三片桁结构,主桁的横向中心距各为14m,桁高15m,节间距14.5m[2]。 结构构造 主桥采用两塔钢桁斜拉桥方案,主梁为三片主桁钢桁梁,主桁上下弦杆均为箱型截面,上弦杆内高1000mm,内宽1200mm,板厚20~48mm。下弦杆内高1400mm,宽1200mm,板厚20~56mm。下弦杆顶板向桁内侧加宽700mm与整体桥面板焊接。腹杆主要采用H型截面。H型杆件宽1200mm,高720和760mm,板厚20~48mm。根据不同的受力区段选用不同的杆件截面,在辅助墩附近的压重区梁段,腹杆采用箱型截面杆件。主桁采用焊接杆件,整体节点。在节点外以高强度螺栓拼接的结构形式,上下弦杆四面等强对接拼装。H 型腹杆采用插入式连接。箱型腹杆采用四面与主桁节点对拼的连接形式。主桁拼接采用M30高强螺栓。 项目进展 2005年元月,安庆长江铁路大桥项目前期工作协调领导小组办公室委托铁道第四勘察设计院编制《安徽省铁路总体规划安庆过江通道深化研究及大桥选址报告》,随后铁四院专家组来宜现场勘察,采集相关资料,并于2月份完成该报告。 2005年8月,安徽省发改委主持召开“安庆长江铁路大桥桥位专家咨询会”,邀请中国工程院院士陈新等知名专家对大桥桥位进行咨询研究,并对选址报告进行评审。 2005年10月,经省部协商,铁道部将沿江城际铁路及安庆长江铁路大桥项目补列入国家“十一五”规划,并向铁四院下达前期工作任务书。 2005年12月,铁道部主持召开了宁安城际铁路及安庆长江铁路大桥项目预可研报告审查会。 2006年元月,宁安城际铁路及安庆长江铁路大桥项目列入国家“十一五”规划。 2006年7月5日,安庆长江铁路大桥设计竞标工作会议在北京举行,经研究、审核、竞标,铁四院与中铁大桥院联合体中标。 2006年9月,中铁大桥院和铁四院正式启动工程可行性研究报告的编制程序,同时编制了桥梁建设对长江航道的影响书,河势分析,桥位所在枯、中水流影响、流速及航迹图。 2006年10月9日,安庆市与铁四院、中铁大桥院联合举行了宁安城际铁路及安庆长江

ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析

!ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析 !学习重点: !1、强化非线性屈曲知识 首先了解屈曲问题。在理想化情况下,当F < Fcr时, 结构处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 结构将返回到它的初始位置。当F > Fcr时, 结构处于不稳定平衡状态, 任何扰动力将引起坍塌。当F = Fcr时,结构处于中性平衡状态,把这个力定义为临界载荷。在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。 要理解非线性屈曲分析,首先要了解特征值屈曲。特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。 !理论解,根据Euler公式。其中μ取决于固定方式。 !有限元方法, 已知在特征值屈曲问题: 求解,即可得到临界载荷 而非线性屈曲问题: 其中为结构初始刚度,为有缺陷的结构刚度,为位移矩阵,为载荷矩阵。 非线性屈曲分析时考虑结构平衡受扰动(初始缺陷、载荷扰动)的非线性静力分析,该分析时一直加载到结构极限承载状态的全过程分析,分析中可以综合考虑材料塑性、几何非线性、接触、大变形。非线性屈曲比特征值屈曲更精确,因此推荐用于设计或结构的评价。 !2、熟悉WB中非线性屈曲分析流程 (1) 前处理,施加单元载荷,进行预应力静力分析。 (2) 基于预应力静力分析,指定分析类型为特征值屈曲分析,完成特征值屈曲分析。 (3) 在APDL模块将一阶特征屈曲模态位移乘以适当系数,将此变形后的形状当做非线性分析的初始模型。

ansys材料模型.doc

B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP,nuxy,1,.29 ! No units MP,dens,1,7850 ! kg/m3

B.2.7. Bilinear Isotropic Plasticity Example: Nickel Alloy MP,ex,1,180e9 ! Pa MP,nuxy,1,.31 ! No units MP,dens,1,8490 ! kg/m3 TB,BISO,1 TBDATA,1,900e6 ! Yield stress (Pa) TBDATA,2,445e6 ! Tangent modulus (Pa)

B.2.10. Bilinear Kinematic Plasticity Example: Titanium Alloy MP,ex,1,100e9 ! Pa MP,nuxy,1,.36 ! No units MP,dens,1,4650 ! kg/m3 TB,BKIN,1 TBDATA,1,70e6 ! Yield stress (Pa) TBDATA,2,112e6 ! Tangent modulus (Pa)

B.2.11. Plastic Kinematic Example: 1018 Steel MP,ex,1,200e9 ! Pa MP,nuxy,1,.27 ! No units

MP,dens,1,7865 ! kg/m3 TB,PLAW,,,,1 TBDATA,1,310e6 ! Yield stress (Pa) TBDATA,2,763e6 ! Tangent modulus (Pa) TBDATA,4,40.0 ! C (s-1) TBDATA,5,5.0 ! P TBDATA,6,.75 ! Failure strain

基于ANSYS的连续刚构桥分析操作篇

目录 一、工程背景 (1) 二、工程模型 (1) 三、ANSYS分析 (2) (一)前处理 (2) (1)定义单元类型 (2) (2)定义材料属性 (3) (3)建立工程简化模型 (3) (4)有限元网格划分 (5) (二)模态分析 (5) (1)选择求解类型 (5) (2)建立边界条件 (6) (3)输出设置 (6) (4)求解 (6) (5)读取结果 (6) (6)结果分析 (8) (三)结构试验载荷分析 (8) (1)第二跨跨中模拟车载分析 (8) (2)边跨跨中模拟车载分析 (9) 四、结果分析与强度校核 (10) (一)结果分析 (10)

(二)简单强度校核 (10) 参考文献 (11)

连续刚构桥分析 一、工程背景: 随着我国经济的发展,对交通运输的要求也不断提高;高速路,高铁线等遍布全国,这就免不了要架桥修路。截至2014年年底,我国公路桥梁总数已达万座,万延米i。进百万的桥梁屹立在我国交通线上,其安全便是头等大事。随着交通运输线的再扩大,连续刚构桥跨越能力大,施工难度小,行车舒顺,养护简便,造价较低等优点将被广泛应用。 二、工程模型: 现有某预应力混凝土连续刚构桥,桥梁全长为184m,宽13m,其中车行道宽,两侧防撞栏杆各主梁采用C50混凝土。桥梁设计载荷为公路—— 级。 图2-1桥梁侧立面图 上部结构为48m+88m+48m三跨预应力混凝土边界面连续箱梁。箱梁为单箱双室箱形截面,箱梁根部高5m,中跨梁高,边跨梁端高。箱梁顶板宽,底板宽,翼缘板悬臂长,箱梁高度从距墩中心处到跨中合龙段处按二次抛物线变化。0号至3号块长3m(4x3m),4、5号块长,6号块到合龙段长4m(6x4m),合龙段长2m。边跨端部设横隔板,墩顶0号块设两道厚横隔板。0号块范围内箱梁底板厚度为,1号块范围内底板厚度由线性变化到,2号块到合龙段范围内底板厚度由线性变化到。全桥顶板厚度为。0到5号块范围内腹板厚度为,6至7号块范围内腹板厚度由线性变化到,8号块到合龙段范围内夫板厚度为。 下部结构桥采用C50混凝土双薄壁墩,横向宽,厚,高25m双壁间设系梁,下设10mX10m矩形承台,厚。ii 图2-2主梁纵抛面图 图2-3 箱梁截面图 三、ANSYS分析: (一)前处理

ANSYS建模两种方法和给材料添加材料属性

ansys 实体建模详细介绍3--体 用于描述三维实体,仅当需要体单元的时候才需要定义体。生成体时自动生成低级别的对象,如点、线、面等。 Main menu / preprocessor / modeling / create / volumes 展开体对象创建菜单 1.1 Arbitrary :定义任意形状 a) Through kps :通过关键点定义体 b) By areas :通过边界面生成体 1.2 Block :定义长方体 a) By 2 corners & Z :通过一角点和长、宽、高来确定长方体。 b) By center,corner,Z:用外接圆在工作平面定义长方体的底,用Z方向的坐标定义长方体的厚度。 c) By dimensions :通过指定长方体对角线两端点的坐标来定义长方体。 1.3 Cylinder :定义圆柱体 a)solid cylinder :圆柱体,通过圆柱底面的圆心和半径,以及圆柱的长度定义圆柱 b)hollow cylinder(空心圆柱体):通过空心圆柱体底面圆心和内外半径,以及长度定义空心圆柱 c)partial cylinder(部分圆柱):通过空心圆柱底面圆心和内外半径,以及圆柱开始和结束角度,长度来定义任意弧长空心圆柱。 d)by end pts&Z :通过圆柱体底面直径两端的坐标和圆柱长度来定义圆柱 e)By dimensions:通过圆柱内外半径、圆柱两底面Z坐标、起始和结束角度来定义圆柱。 1.4 Prism :棱柱体 a) Triangular:通过定义正三棱柱底面外接圆圆心与棱柱高度来定义正三棱柱 b) Square、pentagonal、hexagonal、septagonal、octagonal分别为正四棱柱、五棱柱、六棱柱、七棱柱、八棱柱。其体操作与正三棱柱生产方法类似。 c) By inscribed rad:通过正棱柱底面内切圆和棱柱高来定义正棱柱。 d) By circumscr rad:通过正棱柱底面外接圆和棱柱高来定义正棱柱。 e) By side length:通过正棱柱底面边长、边数、棱柱高来定义正棱柱。 f) By vertices :通过棱柱底面多边形定点和棱柱高来定义不规则的棱柱。 1.5 Sphere :球体 a) Solid sphere(实心球体):通过球心和半径来定义实心球体。 b) Hollow sphere(空心球体):通过球心和内外球半径来定义空心球体。 c) By end points:通过球直径定义球体。 d) By dimensions:通过球的尺寸定义球体。 1.6 Cone :圆锥体 a) By picking:通过在工作平面上定位圆锥体底部圆的圆心和半径以及圆锥体的高来定义圆锥体。 b) By dimensions:通过圆锥体尺寸定义圆锥体 1.7 Torus :圆环体

ANSYS 非线性_结构分析

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 1

第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析 非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 2

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 3

非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。 接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。 几何非线性 如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。 4

Ansys桥梁计算

桥梁计算(常用的计算方法) 在Ansys单元库中,有近200种单元类型,在本章中将讨论一些在桥梁 工程中常用到的单元,包括一些单元的输人参数,如单元名称、节点、自由度、实常数、材料特性、表面荷载、体荷载、专用特性、关键选项KEYOPl等。***关于单元选择问题 这是一个大问题,方方面面很多,主要是掌握有限元的理论知识。首先 当然是由问题类型选择不同单元,二维还是三维,梁,板壳,体,细梁,粗梁,薄壳,厚壳,膜等等,再定义你的材料:各向同性或各向异性,混凝土的各项?参数,粘弹性等等。接下来是单元的划分与网格、精度与求解时间的要求等 选择,要对各种单元的专有特性有个大概了解。 使用Ansys,还要了解Ansys的一个特点是笼统与通用,因此很多东西 被掩盖到背后去了。比如单元类型,在Solid里面看到十几种选择,Solid45,Solidl85,Solid95等,看来区别只是节点数目上。但是实际上每种类型里还 有Keyopt分成多种类型,比如最常用的线性单元Solid45,其Keyopt(1):in●cludeorexclude extradisplacement shapes,就分为非协调元和协调元,Keyopt (2):fullintegration。rreducedintegration其实又是两种不同的单元,这样不同 组合一下这个Solid45实际上是包含了6种不同单元,各有各的不同特点和 用处。因此使用Ansys要注意各单元的Keyopt选项。不同的选项会产生不 同的结果。· 举例来说:对线性元例如Solid45,要想把弯曲问题计算得比较精确,必 须要采用非协调模式。采用完全积分会产生剪切锁死,减缩积分又会产生 零能模式(ZEM),非协调的线性元可以达到很高的精度,并且计算量比高阶 刷、很多,在变形较大时,用Enhanced Strain比非协调位移模式(Enhaced Displacement)更好(Solidl85)。但是这些非协调元都要求网格比较规则才 行,网格不规则的话,精度会大大下降,所以如何划分网格也是一门实践性 很强的学问。 采用高阶单元是提高精度的好办法,拿不定主意时采用高阶元是个比 较保险的选择,但是高阶单元在某些情况下也会出现剪切锁死,并且很难发 现,因此用减缩积分的高阶元通常是最保险的选择,但是在大位移时,网格 扭曲较大,减缩积分就不适用。 不同结构形式的桥梁具有不同的力学行为,必须针对性地创建其模型,? 选择维数最低的单元去获得预期的效果(尽量做到能选择点而不选择线,能 选择线而不选择平面,能选择平面而不选择壳,能选择壳而不选择三维实 体)。下面的几节介绍一下桥梁工程计算中经常会用到的单元。 ***桥梁仿真单元类型

关于ansys非线性分析的几点忠告

关于非线性分析的几点忠告 了解程序的运作方式和结构的表现行为 如果你以前没有使用过某一种特别的非线性特性,在将它用于大的,复杂的模型前,构造一个非常简单的 模型(也就是,仅包含少量单元),以及确保你理解了如何处理这种特性。 通过首先分析一个简化模型,以便使你对结构的特性有一个初步了解。对于非线性静态模型,一个初步的 线性静态分析可以使你知道模型的哪一个区域将首先经历非线性响应,以及在什么载荷范围这些非线性将 开始起作用。对于非线性瞬态分析,一个对梁,质量块及弹簧的初步模拟可以使你用最小的代价对结构的 动态有一个深入了解。在你着手最终的非线性瞬时动态分析前,初步非线性静态,线性瞬时动态,和/或模 态分析同样地可以有助于你理解你结构的非线性动态响应的不同的方面。 阅读和理解程序的输出信息和警告。至少,在你尝试后处理你的结果前,确保你的问题收敛。对于与路程 相关的问题,打印输出的平衡迭代记录在帮助你确定你的结果是有效还是无效方面是特别重的。 简化 尽可能简化最终模型。如果可以将3─D结构表示为2─D平面应力,平面应变或轴对称模型,那么这样做, 如果可以通过对称或反对称表面的使用缩减你的模型尺寸,那么这样做。(然而,如果你的模型非对称加 载,通常你不可以利用反对称来缩减非线性模型的大小。由于大位移,反对称变成不可用的。)如果你可 以忽略某个非线性细节而不影响你模型的关键区域的结果,那么这样做。 只要有可能就依照静态等效载荷模拟瞬时动态加载。 考虑对模型的线性部分建立子结构以降低中间载荷或时间增量及平衡迭代所需要的计算时间。 采用足够的网格密度 考虑到经受塑性变形的区域要求一个合理的积分点密度。每个低阶单元将提供和高阶单元所能提供的一样

ansys材料定义

混凝土 $ *MAT_ELASTIC_PLASTIC_HYDRO $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4,0.126,2.5E-4,,-5.E-5,0.4 ,,3. *EOS_GRUNEISEN 2,0.2500,1.0,0.,0.,1.9,0.0 0.,1. $ $国际单位 *MAT_ELASTIC_PLASTIC_HYDRO_SPALL $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4E+03,0.126E+11,2.5E+7,,-5.E+6,0.4E+11 ,,3. *EOS_GRUNEISEN 2,0.2500E+4,1.0,0.,0.,1.9,0.0 0.,1. $ 混凝土参数 密度 2.4g/cm剪切模量 12.6Cpa屈服应力 25Mpa抗拉强度 5Mpa失效应变 0.4 GRUNEISEN状态方程参数 C=2500m/s S1=1.0 S2=0 S3=0 ω=1.9 A=0 E0=0 V0=1 sdyyds混凝土随动硬化模型 *mat_plastic_kinematic 3 2100 3.00e+10 0.18 2.0e+07 0 0 0.002 *mat_plastic_kinematic 2 2600 4.75e+10 0.18 6.0e+07 4.75e+09 0 99.3 1.94 0.004

取自龚自明防护工程混凝土靶体尺寸及边界约束对侵彻深度影响的数值模拟*MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.123,0.79,1.60,0.007,0.61,2.4E-4 2.7e-5,1.0e-6,0.01,7.0,8.0e-5,5.6e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自龚自明防护工程 BLU-109B侵彻厚混凝土靶体的计算与分析 *MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.132,0.79,1.60,0.007,0.61,3.22E-4 3.15e-5,1.0e-6,0.01,7.0,1.08e-4,7.18e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自蔡清裕国防科技大学学报模拟刚性动能弹丸侵彻混凝土的FE-SPH方法*MAT_JOHNSON_HOLMQUIST_CONCRETE mid RO G A B C N FC 1, 2.2,0.164,0.75,1.65,0.007,0.61,4.4e-4 T EPS0 EFMIN SFMAX PC UC PL UL 2.4e-5,1.0e-6,0.01,11.7,1.36e-4,5.8e-4,1.05e-2,0.1 D1 D2 K1 K2 K3 FS 0.03,1.0,0.174,0.388,0.298 取自凤国爆炸与冲击《大应变。高应变率及高压下混凝土的计算模型〉 *MAT_JOHNSON_HOLMQUIST_CONCRETE 2,2.44,0.1486,0.79,1.60,0.007,0.61,4.8E-4 4.0e-5,1.0e-6,0.01,7.0,1.6E-4,0.001,8.0E-3,0.1 0.04,1.0,0.85,-1.71,2.08 取自宋顺成爆炸与冲击弹丸侵彻混凝土的SPH算法 *MAT_JOHNSON_HOLMQUIST_CONCRETE 1,2.4,0.1486,0.79,1.60,0.007,0.61,1.4e-4 4.0e-5,1.0e-6,0.01,7.0,1.6e-4,0.001,8.0E-3,0.1 0.04,1.0,0.174,0.388,0.298 *Mat_johnson_holmquist_concrete

_ANSYS桥梁工程应用实例分析

本章介绍桥梁结构的模拟分析。桥梁是一种重要的工程结构,精确分析桥梁结构在各种受力方式下的响应有较大的工程价值。模拟不同类型的桥梁需要不同的建模方法,分析内容包括静力分析、动荷载响应分析、施工过程分析等等。在本章中着重介绍桁架桥、刚架桥和斜拉桥三种类型桥梁。 内容 提要 第6章 ANSYS 在桥梁工程应用实例分析 本章重点 结构分析具体步骤 结构静力分析 桁架结构建模方法 结构模态分析 本章典型效果图

6.1 引言 ANSYS通用有限元软件在土木工程应用分析中可发挥巨大的作用。我们用它来分析桥梁工程结构,可以很好的模拟各种类型桥梁的受力、施工工况、动荷载的耦合等。 ANSYS程序有丰富的单元库和材料库,几乎可以仿真模拟出任何形式的桥梁。静力分析中,可以较精确的反应出结构的变形、应力分布、内力情况等;动力分析中,也可精确的表达结构的自振频率、振型、荷载耦合、时程响应等特性。利用有限元软件对桥梁结构进行全桥模拟分析,可以得出较准确的分析结果。 本章介绍桥梁结构的模拟分析。作为一种重要的工程结构,桥梁的精确分析具有较大的工程价值。桥梁的种类繁多,如梁桥、拱桥、钢构桥、悬索桥、斜拉桥等等,不同类型的桥梁可以采用不同的建模方法。桥梁的分析内容又包括静力分析、施工过程模拟、动荷载响应分析等。可以看出桥梁的整体分析过程比较复杂。总体上来说,主要的模拟分析过程如下:(1)根据计算数据,选择合适的单元和材料,建立准确的桥梁有限元模型。 (2)施加静力或者动力荷载,选择适当的边界条件。 (3)根据分析问题的不同,选择合适的求解器进行求解。 (4)在后处理器中观察计算结果。 (5)如有需要,调整模型或者荷载条件,重新分析计算。 桥梁的种类和分析内容众多,不同类型桥梁的的分析过程有所不同,分析侧重点也不一样。在这里仅仅给出大致的分析过程,具体内容还要看具体实例的情况。 6.2 典型桥梁分析模拟过程 6.2.1 创建物理环境 建立桥梁模型之前必须对工作环境进行一系列的设置。进入ANSYS前处理器,按照以下6个步骤来建立物理环境: 1、设置GUT菜单过滤 2、定义分析标题(/TITLE) 3、说明单元类型及其选项(KEYOPT选项) 4、设置实常数和单位制 5、定义材料属性

ANSYS结构分析-材料模型

ANSYS 结构分析材料模型 1 材料模型的分类 a. ANSYS 结构分析材料属性: 线性(Linear)、非线性(Nolinear)、密度(Density)、热膨胀(Thermal Expansion)、阻尼(Damping)、摩擦系数( Friction Coefficient)、特殊材料(Specialized Materials) 等七种,可通过材料属性菜单分别定义。 b. 材料模型: 线性、非线性及特殊材料三类,每类材料中又可分为多种材料类型,而每种材料类型则有不同的属性。 2 材料模型的定义及特点 材料模型及其属性均可通过GUI 方式输入。线弹性材料可通过MP 命

令输入,而非线性及特殊材料则通过TB 命令定义,其属性则通过TBDATA 表输入。 表中前几项是常用的塑性材料模型,其后部分的材料模型有专用材料模型和可与前几项组合使用的材料模型。 表中屈服准则列中的Mises/Hill,指针对不同的单元分别采用Mises 屈服准则或Hill屈服准则,凡是可以考虑塑性的所有单元均可采用二者。 常用的单元 杆单元:LINK8、LINK10、LINK180 梁单元:BEAM3、BEAM4、BEAM188、BEAM189 管单元:PIPE16、PIPE20 2D 实体单元:PLANE82、PLANE183 3D 实体单元:SOLID65、SOLID92/95、SOLID191 壳单元:SHELL63、SHELL93、SHELL181 弹簧单元:COMBIN14、COMBIN39 质量单元:MASS21 矩阵单元:MATRIX27 表面效应单元:SURF154

ANSYS几何非线性概述

ANSYS几何非线性概述 一、什么是非线性 什么是非线性(non-linear)?按照百度百科的解释,非线性是指变量之间的数学关系不是直线而是曲线、曲面或不确定的属性。而对于工程结构而言,非线性或者说非线性行为,是指外部荷载引起工程结构刚度显著改变的一种行为。如果绘制一个非线性结构的荷载-位移曲线,则力与位移的曲线为非线性函数。 ANSYS非线性主要分为以下三大类: 1、几何非线性 大应变、大位移、大旋转 2、材料非线性 塑性、超弹性、粘弹性、蠕变 3、状态改变非线性 接触、单元生死 其中几何非线性和材料非线性是土木工程结构计算中最为常见的两种类型。 二、结构几何非线性概念理解 如果一个结构在受荷的过程经历了大变形,则变化后的几何形状能引起非线性行为。

例如,上述例子, 杆梢在轻微横向作用下是柔软的, 当外部横向荷载加大时,杆的几何形状发生改变 ,力矩臂减小,引起杆的刚化响应。 几何非线性主要分为如下三种现象: 1.单元的形状改变(面积、厚度),其单独的单元刚度也将改变 2.单元的取向发生转动,其局部刚度在转化为全局分量时将会发生变化。 3.单元应变产生较大的平面内应力状态引起平面法向刚度的改变。 随着垂直挠度UY 的增加,较大的膜应力SX 将会导致刚化效应。上述三种情况的关系如下: 应力刚化

三、ANSYS 几何非线性注意事项 1、建模注意事项 (a )单元选择注意事项 在定义单元类型时,应明白如果分析的过程中有几何非线性,应确保所选单元类型支持相应的几何非线性效应。例如shell63单元支持应力刚化和大挠度,但不支持大应变;而shell181则支持所有的三类几何非线性,可在单元描述的特殊特征列表中找到类似信息。特别是在选择接触单元的时候应慎重,有的接触单元是没有任何非线性能力,例如CONTAC52. 同时应注意剪切锁定以及体积锁定等不可压缩性所带来的收敛困难。 (b )预见网格扭曲 ANSYS 在第一迭代之前,会检查网格的质量;在大应变分析中,迭代计算过后的网格或许会变得严重扭曲,为防止出现不良形状,可以预见网格扭曲从而修改原始网格。 (c )足够的网格密度 为防止网格离散化错误,必须有足够的网格密度,否则就很容易造成等值线图不连续,同时如果要捕捉弯曲响应,壳和梁单元的网格密度应足够多,计算中不应有角度超过30度的单元。 一分为二,作为 三角形,形状保 持较好。

ansys非线性收敛总结(转载)

ansys非线性收敛总结 智创仿真 2016年8月6日1750 文章来源于网络,讲解很系统,可以经典收藏,由于无法查证出处,无意冒犯,如有不 妥,请联系我 ansys非线性收敛总结 ansys计算非线性时会绘出收敛图,其中横坐标是cumulative iteration number 纵坐标是absolute convergence norm。他们分别是累积迭代次数和绝对收敛范数,用来判断非线性分析是否收敛。 ansys在每荷载步的迭代中计算非线性的收敛判别准则和计算残差。其中计算残差是所有单元内力的范数,只有当残差小于准则时,非线性叠代才算收敛。 ansys的收敛是基于力的收敛的,以力为基础的收敛提供了收敛量的绝对值,而以位移为基础的收敛仅提供表现收敛的相对量度。一般不单独使用位移收敛准则,否则会产生一定偏差,有些情况会造成假收敛.(ansys非线性分析指南--基本过程Page.6) 。因此ansys官方建议用户尽量以力为基础(或力矩)的收敛误差,如果需要也可以增加以位移为基础的收敛检查。 ANSYS缺省是用L2范数控制收敛。其它还有L1范数和L0范数,可用CNVTOL命令设置。在计算中L2值不断变化,若L2

最新ANSYS材料模型汇总

A N S Y S材料模型

第七章材料模型 ANSYS/LS-DYNA包括40多种材料模型,它们可以表示广泛的材料特性,可用材料如下所示。本章后面将详细叙述材料模型和使用步骤。对于每种材料模型的详细信息,请参看Appendix B,Material Model Examples或《LS/DYNA Theoretical Manual》的第十六章(括号内将列出与每种模型相对应的LS-DYNA材料号)。 线弹性模型 ·各向同性(#1) ·正交各向异性(#2) ·各向异性(#2) ·弹性流体(#1) 非线弹性模型 ·Blatz-ko Rubber(#7) ·Mooney-Rivlin Rubber(#27) ·粘弹性(#6) 非线性无弹性模型 ·双线性各向同性(#3) ·与温度有关的双线性各向同性(#4) ·横向各向异性弹塑性(#37) ·横向各向异性FLD(#39) ·随动双线性(#3) ·随动塑性(#3) ·3参数Barlat(#36) ·Barlat各向异性塑性(#33)

·与应变率相关的幂函数塑性(#64) ·应变率相关塑性(#19) ·复合材料破坏(#22) ·混凝土破坏(#72) ·分段线性塑性(#24) ·幂函数塑性(#18) 压力相关塑性模型 ·弹-塑性流体动力学(#10) ·地质帽盖材料模型(#25) 泡沫模型 ·闭合多孔泡沫(#53) ·粘性泡沫(#62) ·低密度泡沫(#57) ·可压缩泡沫(#63) ·Honeycomb(#26) 需要状态方程的模型 ·Bamman塑性(#51)·Johnson-Cook塑性(#15)·空材料(#9) ·Zerilli-Armstrong(#65) ·Steinberg(#11) 离散单元模型 ·线弹性弹簧

ANSYS非线性分析:1-非线性分析概述

第一章钢筋混凝土结构非线性分析概述 1.1 钢筋混凝土结构的特性 1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就 处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况; 2.混凝土的拉、压应力-应变关系具有较强的非线性特征; 3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对 滑移,用弹性理论分析的结果不能反映实际情况; 4.混凝土的变形与时间有关:徐变、收缩; 5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段; 6.产生裂缝以后成为各向异形体。 混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。 1

1.2 混凝土结构分析的目的和主要内容 《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。 一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变 根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。 二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和 尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。根据荷载工况,对结构进行整体或局部特殊部位分析,以保证结构安全。 三、混凝土结构分析的方法和手段: 2

相关主题
文本预览
相关文档 最新文档