当前位置:文档之家› 浸出过程动力学

浸出过程动力学

浸出过程动力学
浸出过程动力学

浸出过程动力学

研究浸出过程的速度和机理的科学。为冶金过程动力学的一个分支。研究浸出过程动力学的目的在于查明影响浸出速度的因素和浸出过程的控制步骤,为强化浸出过程、提高浸出技术经济指标指明方向。

浸出过程的动力学模型浸出过程属复杂的多相反应过程,有固相和液相参加的多相反应过程及有气相、固相、液相参加的多相反应过程。独居石的碱分解

REPO4 (s) +3NaOH (aq)

RE (OH)3 (s) +Na3PO4 (aq)

属前者; 闪锌矿加压氧化ZnS (s) +2H++1/2O2=Zn2++H2O+S°(s) 浸出属后者。液固反应的浸出过程可用核收缩模型表示(见图)。从图可知,浸出过程需经历的步骤有:(1)浸出剂通过边界层向矿粒表面扩散(外扩散);(2)浸出剂进一步扩散通过固膜到未反应核表面(内扩散);(3)浸出剂与未反应的矿物进行反应;(4)生成的不溶性产物使固膜加厚,可溶性产物扩散通过固膜到矿粒表面(内扩散);(5)可溶性产物扩散通过边界层进入溶液本体(外扩散)。

矿粒浸出过程的模型示意图1—液固相边界层;2—固膜(浸出的固态生成物及残留物)3—未反应核;δ1—浸出剂扩散层厚度;δ2—固膜厚度;δ′1—可溶性浸出产物的扩散层厚度;C0、C1、C2—分别为浸出剂在溶液相、矿粒表面和未反应核表面的浓度;C0′、C′1、C′2—分别为可溶性浸出产物在溶液相,矿粒表面和未反应核表面的浓度

这些步骤的速度可分别用下式表示:

v1=D1 (C0-C1) /δ1 (1)

v2=D2 (C1-C2) /δ2 (2

) v3=k(C2-C′2/K)(设浸出反应为一级反应)(3)

式中k为反应的速度常数,K为反应的平衡常数,D1、D2分别为浸出剂在边界层和固膜的扩散系数,D′1、D′2分别为反应可溶性产物在边界层和固膜的扩散系数,β为化学反应比例系数。

在稳定状态下,各步骤速度相等,且等于浸出过程的总速度v0。当浸出反应的平衡常数K很大时,根据反应(1) ~(5)式可得出浸出过程的总速度

分母中一、二、三项分别反映着外扩散、内扩散和化学反应步骤对浸出过程的阻力。当δ1/D1项的数值大大超过其他项时,说明在各步骤中外扩散的速度最慢,整个过程的速度决定于外扩散速度,或者说过程属外扩散控制。同理,当δ2/D2或1/k项的数值大大超过其他项时,过程便属内扩散或化学反应控制。当两个步骤都很慢且速度大体相等时,过程便为这两步骤混合控制。

过程的控制步骤不同,用以表示浸出过程的浸出率与浸出时间及其他参数关系的动力学方程式也不一样;且浸出反应的表观活化能亦不同。例如,过程属化学反应控制时,表观活化能一般大于42kJ/mol; 内扩散或外扩散控制时,表观活化能小于42kJ/mol。根据实测的动力学方程或浸出反应的表观活化能便可判断过程的控制步骤。

浸出过程的动力学方程有化学反应控制的动力学方程和固膜扩散(内扩散)控制的动力学方程。

化学反应控制的动力学方程对化学反应控制的不可逆反应(设为一级反应),浸出过程的单位时间内被浸出的物质量为

式中W、S、C分别为浸出时间t时未反应矿的质量、表面积及浸出剂浓度。

设矿粒为均匀球形,根据质量W与矿粒半径r的关系及浸出量与浸出分数的关系,且设浸出过程中浸出剂过量很大,C基本不变,即C=C0,解微分方程(7) 可得属化学反应控制的动力学方程式:

式中η为浸出分数,ρ为矿粒密度,r0为开始浸出时矿粒的半径,k′为常数。

式(8)适用于浸出物料为均匀球形颗粒的情况,其他形状的均匀颗粒的动力学方程为:

式中F p为颗粒的形状系数。对扁平状的Fp取1,长度大大地大于直径的柱状颗粒的Fp取2。

固膜扩散(内扩散)控制的动力学方程当浸出过程为固膜扩散控制时,浸出速度决定于固膜扩散的速度。根据菲克定律并考虑到单位时间内扩散的量与反应量成正比,便可推导出固膜控制的动力学方程:

式中M为矿物的摩尔质量,D2为浸出剂或生成物在固膜内的扩散系数,α为比例系数。

浸出过程的强化首先要找出浸出过程的控制步骤,针对控制步骤采取有效措施。例如,当控制步骤为固膜扩散时,根据式(9),强化过程的主要措施应当是减少矿粒的粒度(r0),加大浸出剂浓度(C0),提高温度以增大扩散系数D2。

研究表明,在一些有氧化-还原反应的浸出过程中,某些物质能起加快浸出速度的催化作用。例如硝酸能起加快硫化矿氧浸出过程的催化作用,Fe3+能起加快含VO2矿碱浸过程的催化作用。

20世纪60年代以来,许多学者证明,采用各种方法将矿物活化能有效地强化浸出过程。主要活化方式有机械活化、超声波活化、热活化,这些活化有的已用于工业生产。

机械活化当矿物受到机械力作用,例如在磨矿过程中受到撞击时,其晶格产生歪斜和缺陷,晶格的有序化程度降低,矿物处于相应高能位的活性状态,与浸出剂反应的速度大为加快。

超声波活化在浸出过程中对浸出系统加以超声波振荡能使矿粒产生裂纹,加速矿粒表面生成物的剥离,加快颗粒与溶液间的传质作用,能大大加快浸出过程的速度。

热活化将欲浸出的矿物原料加热到高温,然后迅速冷却,矿物原料受热应力作用,在晶格中产生缺陷或在颗粒中产生裂纹;同时,某些矿物经加热到高温后能保持高温相结构,这种结构在低温下不稳定。热活化的这些作用都能提高矿物原料的活性,从而加快浸出速度。

浸出的理论基础---浸出过程的动力学

书山有路勤为径,学海无涯苦作舟 浸出的理论基础---浸出过程的动力学 浸出是在固液界面进行的多相化学反应过程,与在固气界面进行的焙烧过程相似,大致包括扩散→吸附→化学反应→解吸→扩散等五个步骤。由于固液多相反应动力学涉及的面相当广泛,在讨论非催化的一般多相反应动力学时,由于相界面的吸附速度相当快,反应速度主要决定于扩散和化学反应两个反应步骤。固体与液体接触时,固体表面上紧附着一层液体,称为能斯特附面层,层内的传质过程仅靠扩散来进行,此时浸出剂由溶液本体向矿粒表面的扩散速度可用菲克定律表示: 式中VD———单位时间溶剂向矿粒表面迁移而引起的浓度降低,称为扩 散速度,mol/s; c———溶液中浸出剂的浓度,mol/mL; cs———矿粒表面上浸出剂 的浓度,mol/mL; A———溶液与矿粒接触的相界面积,cm2; δ———扩散层厚度,cm; D———扩散系数,cm2/s; KD———扩散速度常数, 矿粒表面进行的化学 反应速度,按质量作用定律可表示为: 式中VK———单位时间内由于在矿粒表面发生化学反应而引起的试剂浓 度降低,称为化学反应速度,mol/s; KK———化学反应速度常数,cm/s; n——— 反应级数,一般n=1; A、cs———分别为相界面积和矿粒表面的试剂浓度。浸出一定时间后达平衡,在稳定态下两种速度相等: 从上式可知(1)当KK<<KD 时,V=KKAc,浸出过程受化学反应控制,过程在动力学区进行;(2)当KK>>KD 时,υ=KDAc,浸出过程扩散控制,过程在扩散区进行; (3)当KK≈KD时,上式不能简化,过程在混合区或过渡区进行.[next] 按活

大学无机及分析化学第三章 化学动力学 题附答案

第三章 化学动力学基础 一 判断题 1.溶 液 中, 反 应 物 A 在 t 1 时 的 浓 度 为 c 1 ,t 2 时 的 浓 度 为 c 2, 则 可 以 由 (c 1 - c 2 ) / (t 1 - t 2 ) 计 算 反 应 速 率, 当△t → 0 时, 则 为 平 均 速 率。......................................................................( ) 2.反 应 速 率 系 数 k 的 量 纲 为 1 。..........................( ) 3.反 应 2A + 2B → C , 其 速 率 方 程 式 v = kc (A)[c (B)]2, 则 反 应 级 数 为 3。................( ) 4.任 何 情 况 下, 化 学 反 应 的 反 应 速 率 在 数 值 上 等 于 反 应 速 率 系 数。..........( ) 5.化 学 反 应 3A(aq) + B(aq) → 2C(aq) , 当 其 速 率 方 程 式 中 各 物 质 浓 度 均 为 1.0 mol·L -1 时, 其 反 应 速 率 系 数 在 数 值 上 等 于 其 反 应 速 率。......................................................................( ) 6.反 应 速 率 系 数 k 越 大, 反 应 速 率 必 定 越 大。......( ) 7.对 零 级 反 应 来 说, 反 应 速 率 与 反 应 物 浓 度 无 关。...........................................( ) 8.所 有 反 应 的 速 率 都 随 时 间 而 改 变。........................( ) 9.反 应 a A(aq) + b B(aq) → g G(aq) 的 反 应 速 率 方 程 式 为 v = k [c (A)]a [ c (B)]b , 则 此 反 应 一 定 是 一 步 完 成 的 简 单 反 应。........................( ) 10.可 根 据 反 应 速 率 系 数 的 单 位 来 确 定 反 应 级 数。 若 k 的 单 位 是 mol 1-n ·L n -1·s -1, 则 反 应 级 数 为 n 。...............................( ) 11.反 应 物 浓 度 增 大, 反 应 速 率 必 定 增 大。...............( ) 12.对 不 同 化 学 反 应 来 说, 活 化 能 越 大 者, 活 化 分 子 分 数 越 多。...................( ) 13.某 反 应 O 3 + NO O 2 + NO 2, 正 反 应 的 活 化 能 为 10.7 kJ·mol -1, △ r H = -193.8 kJ·mol -1, 则 逆 反 应 的 活 化 能 为 204.5 kJ·mol -1。..............................................................................( ) 14.已 知 反 应 A→ B 的△r H = 67 kJ·mol -1,E a = 90 kJ·mol -1, 则 反 应 B→ A 的 E a = - 23 kJ·mol -1。............................................................( ) 15.通 常 升 高 同 样 温 度,E a 较 大 的 反 应 速 率 增 大 倍 数 较 多。..............................( )

热力学答案

一、名词解释 1过程:热力系从一个状态变化到另一个状态时所经历的全部状态的集合。 2循环:热力系统(工质)经过一系列变化回到初态,这一系列变化过程称为热力循环,简称循环。 3稳定状态:状态参数不随时间变化的状态称为稳定状态。 4热力学第零定律:如果两个系统分别与第三个系统处于热平衡,则这两个系统彼此必然处于热平衡。5内能:指组成热力系的大量微观粒子本身所具有的能量,用u表示。 6开口系统:与外界有物质交换的系统称为开口系。 7平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。 8可逆过程:系统经历某一过程后,如令过程逆行而能使系统与外界同时恢复到初始状态,而不留下任何痕迹,则此过程为可逆过程。 9卡诺定律:在两个不同温度的恒温热源之间工作的所有热机中,以可逆热机的效率为最高。 (1)在相同的高温热源和低温热源之间工作的一切可逆机,热效率相等,与其工质无关。 (2)在相同的高温热源和低温热源之间工作的一切不可逆机,其热效率低于可逆机的热效率。 10基本状态参数:描述系统所处状态的一些宏观物理量称为状态参数;热工学中状态参数有六种,即压力、比容、温度、内能、熵、焓,其中压力、比容、和温度是三个可以直接测量而且又常用的状态参数,称为基本状态参数。 11理想气体:凡遵循克拉贝隆状态方程的气体(分子之间无作用力,分子本身不占容积)称为理想气体。12稳定温度场:换热系统中空间各点温度场分布不随时间变化的场。 *13制冷:用人为的方法将物体或空间冷却,并使之低于环境温度,并维持这个低温的过程。 *14传热过程:热量从间壁一侧的热流体通过间壁传给另一侧的冷流体,这种热量传递的过程称为传热过程。 二、判断判断命题是否正确并简要说明理由 1.稳定流动热力系必为平衡热力系 (×) 平衡热力系各状态参数值是确定的,且不随时间变化。稳定不一定平衡,系统可能有内外势差存在。 2.两种相对湿度相同的湿空气,温度高者其吸收水分能力强。 (×) 湿空气吸收水蒸气的能力只与相对湿度有关,而与温度无关 3.两个不同的恒温热源之间工作所有热机以卡诺机的热效率为最高。 (×) 在两个不同温度的恒温热源之间工作的一切热机中,卡诺循环的效率最高。 4.可逆过程就是系统可以逆向进行回复原态的过程。 (×) 可逆过程不是能自发的逆向进行,而是说若当过程逆向进行时,逆过程在外界留下的痕迹能将原来正过程的痕迹完全消除(必须指出可以自发进行的)。 5.工质以初态1变化到另一状态2,不论中间经历什么过程,其内能的变化量均相等。 (√) 内能是指组成热力系的大量微观粒子本身所具有的能量,是一个状态量。内能的变化量?u=u2-u1=Q-W,变化量的大小是由从初状态1到另一状态2过程中工质做功和吸热(或放热)大小所确定,与中间经历的过程无关. 6.任何状态都可以用坐标图上的点表示。 (×) 热力系不平衡状态,是无法表示在坐标系中的,因为热力系各部分状态参数不一致。 7.可逆过程一定是准静态过程。 (√) 可逆过程=准静态过程+无耗散效应,所以可逆一定是准静态过程,而准静态过程不是可逆过程。可逆过程能重复正过程的每一状态,而不引起其他变化。 8.一杯沸水比一杯同体积的凉水具有更多的热量。 (×) 热量是过程量,不是状态量。而单纯说热水和冷水,不存在热量传递过程。可以这么说,一杯沸水比一杯同体积的凉水具有更多的热力学能量。 9.循环效率越高,则循环向外输出的功也越多。 (×) 效率高,只能说明在同样循环吸收热量的条件下,循环向外输出的功越多。 10.工质经历了一个不可逆循环后其熵变为零。

实验二浸出过程动力学实验

锌焙砂浸出过程动力学实验 一实验目的 锌焙砂浸出就是使ZnO尽量溶解,并希望其它组分不溶解或溶解后又再沉淀进入渣中,达到锌与这些杂质组分有效分离的目的。 本实验通过锌焙砂的浸出,了解锌焙砂的粒度、浸出温度、浸出时间、酸度对浸出率的影响,绘制浸出率-时间(η-t)关系曲线图,根据数据判断该浸出过程属于哪个速度控制阶段控制,加深对浸出过程动力学理论知识的理解,同时熟悉分析锌的基本方法。 二实验原理 氧化物料的浸出反应,属于液-固两相反应,对于本实验采用硫酸溶液浸出锌,化学反应式为: MeO+H2SO4=MeSO4+H2O 对于液固反应体系,一般分五个步骤进行,即扩散-吸附-化学反应-解吸-扩散.在这五个步骤中最慢的那个环节就是决定反应速度快慢的关键,我们称之为控制性步骤.本实验中,主要是化学反应与扩散. 影响浸出速度的因素有:浸出液温度、颗粒大小、搅拌、溶剂浓度等在一定范围,适当提高反应体系温度、减小颗粒尺寸、加强搅拌、提高溶剂浓度可以起到提高反应速度的效果。 锌焙砂的浸出是颗粒体积不断缩小的过程,根据数学推导可以得出该“缩核模型”的速度表达式为: 1-(1-α)1/3=(1/3)KS0τ α-浸出率; τ-反应时间; K-单位面积的浸出速度; S0-颗粒起始面积。 通过分析化验得出锌的浸出率,代入上述公式,检验数据是否使等式两边相等。如果符合,证明锌焙砂的浸出在该条件下属于化学反应控制。 三实验仪器与试剂 ①仪器等 变频电动搅拌器、滴定台、滴定管、移液管、洗耳球、锥型瓶、电炉、坩埚钳、玻璃漏斗、滤纸、吹气瓶 ②试剂药品 1.硫酸 2.锌焙砂 3.醋酸 4.醋酸钠 5.乙二胺四乙酸二钠 6.锌标准液(1mg/ml) 7.氨水8.乙醇9.二甲酚橙 1.0甲基橙11.KF 12 H2O2 13维生素C 14硫脲15盐酸16氯化铵 四实验步骤 1 用电子天平准确称取某一粒度范围的锌焙砂 4.85g,放入温度恒定(室温 ~80℃)、盛有400ml浓度为100g/L的硫酸溶液的烧杯中; 2 开动电动搅拌器,控制转速在200-350r/min,使之匀速搅拌; 3 每隔一段时间(5-10min),用移液管准确取样2-4ml,分析溶液中锌的含量; 4 待实验进行到所需时间或氧化锌溶解完毕,既停止实验,关闭所有设备电源;

第三章化学动力学基础课后习题参考答案

1 第三章化学动力学基础课后习题参考答案 2解:(1)设速率方程为 代入数据后得: 2.8×10-5=k ×(0.002)a (0.001)b ① 1.1×10-4=k ×(0.004)a (0.001)b ② 5.6×10-5=k ×(0.002)a (0.002)b ③ 由②÷①得: 2a =4 a=2 由③÷①得: 2b =2 b=1 (2)k=7.0×103(mol/L)-2·s -1 速率方程为 (3)r=7×103×(0.0030)2×0.0015=9.45×10-5(mol ·L -1·s -1) 3解:设速率方程为 代入数据后得: 7.5×10-7=k ×(1.00×10-4)a (1.00×10-4)b ① 3.0×10-6=k ×(2.00×10-4)a (2.00×10-4)b ② 6.0×10-6=k ×(2.00×10-4)a (4.00×10-4)b ③ 由③÷②得 2=2b b=1 ②÷①得 22=2a ×21 a=1 k=75(mol -1·L ·s -1) r=75×5.00×10-5×2.00×10-5=7.5×10-8(mol ·L -1·s -1) 5解:由 得 ∴△Ea=113.78(kJ/mol ) 由RT E a e k k -=0得:9592314.81078.11301046.5498.03?=?==??e ke k RT E a 9解:由阿累尼乌斯公式:RT E k k a 101ln ln -=和RT E k k a 202ln ln -=相比得: ∴ 即加催化剂后,反应速率提高了3.4×1017倍 因△r H θm =Ea(正) -Ea(逆) Ea(逆)=Ea(正)-△r H θm =140+164.1=304.1(kJ/mol) 10解:由)11(ln 2 112T T R Ea k k -=得: )16001(314.8102621010.61000.1ln 2 384T -?=??-- T 2=698(K ) 由反应速率系数k 的单位s-1可推出,反应的总级数为1,则其速率方程为 r=kc(C 4H 8) 对于一级反应,在600K 下的)(1014.110 10.6693.0693.0781s k t ?=?== - ) ()(2O c NO kc r b a =)()(107223O c NO c r ?=) ()(355I CH c N H C kc r b a =)11(ln 2112T T R E k k a -=)627 15921(314.8498.081.1ln -=a E ) /(75.41046.5656314.81078.113903s mol L e e k k RT E a ?=??==??--36.40298314.810)140240(ln 32112=??-=-=RT E E k k a a 1712104.3ln ?=k k

实验三 浸出过程动力学

实验三浸出过程动力学 表3 浸出过程动力学实验数据 铁球质量:0.326g 反应时间/min 测试值/(mg·L-1) 实际值(mg·L-1) 铁理论值(mg·L-1) R浸出率/% 1-(1-R)1/3 0 0 0 815 0 0 10 0.802 160.4 815 19.68 0.070 20 1.452 290.4 815 35.63 0.137 30 1.995 399 815 48.96 0.201 40 2.438 487.6 815 59.83 0.262 50 2.789 557.8 815 68.44 0.319 图4 浸出率与浸出时间的关系

图5 1-(1-R ) 1/3 与浸出时间的关系 五、结果与讨论 1、实验中对浸出速率的影响有:温度、Fe 的粒度、搅拌速度以及酸度。由于δ与r 成正比,故该反应属于外扩散控制步骤。 2、随着反应的进行浸出率随反应的进行一直增加,但随着反应粒度的减小增加速率越来越低。 3、根据实验中图5,1-(1-R )1/3与时间成线性关系。 可以写成1-(1-R )1/3=k 't 满足固相反应动力学基本方程1-(1-R )1/3=t r k 0 n 0ρC ,ρ0n 0r k C = k ' n 0k C 、、ρ、0r 为常数。根据实验结果可以验证固相反应动力学方程。 六、实验误差分析 1、误差来源以及避免方法 ○1每隔十分钟取样一次,操作时间存在误差。尽量保证取样时间一致。 ○2采用移液管取样0.5ml ,取样存在误差。尽量保证取样准确。 姓名:廖赏举 学号:0505120123 组员:汪梅、雷同兴、刘亮强

第三章-化学动力学

第三章 化学动力学 3-1.在1 100 K 时,3NH (g)在金属钨丝上发生分解。实验测定,在不同的3NH (g)的初始压力0p 下所对应的半衰期12t ,获得下列数据 0/Pa p 3.5×104 1.7×104 0.75×104 1/min t 7.6 3.7 1.7 试用计算的方法,计算该反应的级数和速率系数。 解: 根据实验数据,反应物3NH (g)的初始压力不断下降,相应的半衰期也不断下降,说明半衰期与反应物的起始浓度(或压力)成正比,这是零级反应的特征,所以基本可以确定是零级反应。用半衰期法来求反应的级数,根据半衰期法的计算公式 12 12 1 ,1 21,2 n t a t a -??= ??? 即 ()12,112,221ln /1ln(/) t t n a a =+ 把实验数据分别代入,计算得 ()() 12,112,244 0,20,1ln /ln 7.6/3.7110ln(/) ln(1.710/3.510) t t n p p --=+ =+ ≈?? 同理,用后面两个实验数据计算,得 () ln 3.7/1.710ln(0.75/1.7) n =+ ≈ 所以,该反应为零级反应。利用零级反应的积分式,计算速率系数。正规的计算方法应该是分别用3组实验数据,计算得3个速率系数,然后取平均值。这里只列出用第一组实验数据计算的结果,即 0100 22p a t k k = = 431001 3.510Pa 2.310 Pa min 227.6 min p k t -?===??? 3-2.某人工放射性元素,能放出α粒子,其半衰期为15 min 。若该试样有80%被分解,计算所需的时间?

浸出强化

微生物浸出效率的强化概述 矿物加工01 汪巍 0901030121 摘要:微生物浸出能浸出很多传统方法不能处理的难浸矿石,并且由于其具有投资低、无污染、操作简单、运行成本低等一系列的优点,故其发展很迅猛。 但是,微生物浸出有一个致命的缺点,即反应适度慢,周期长,从而受到很大 的限制。本文,在这里主要介绍提高微生物浸出效率的方法。 关键字:微生物浸出浸出效率强化 正文 强化微生物浸出效率的主要方法不外乎从三个方面着手。第一,浸出反应,即从浸出过程中的固、液、气三相和浸出细菌强化考虑;第二,生物浸出涉及 学科领域,即从各个学科专业知识进行研究;第三,生物技术领域,主要是从 浸出细菌的变异和改性上探究。第二点由于过于繁多因此不进行更多的讨论, 本文主要从第一、三点进行深究。 1.从浸出反应强化浸出效率: 1.1强化固相: 固相考虑,主要是研究从矿物的粒度和矿物与细菌接触难易程度来探究, 运用特殊方法从而使固相得到强化。 就粒度而言,由浸出动力学可知,被浸出矿物粒度越小,表面积就越大, 细菌与矿物接触的机会就越多,从而增加了细菌活性和繁殖速度,也加快了细 菌分解浸出矿物的速度,因此,对于难浸矿物来说,细磨是一种重要的方式。 就矿物与细菌接触来说,利用表面活性剂是一种好方法。表面活性剂分子 由亲水基和疏水基组成,它能使矿物相界面发生改变,主要是通过改善矿石的 亲水性和渗透性,从而利于细菌和矿物接触,加快浸出,浸出率也相应提高, 从而促进细胞生长,提高细菌活性。因此,添加适量的表面活性剂可以大大缩 短浸出时间。 1,2强化液相: 液相强化,主要是通过强化浸出过程中的溶剂在浸出时的作用、调节浸出 中的营养物质的浓度和降低有毒物质来强化液相的。

第八章热力学答案 (2014、04)

一.选择题 1. 【基础训练4】[ A ]一定量理想气体从体积 V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程: (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【参考答案】根据热力学过程的功即过程曲线下的面积,知AD AC AB A A A >>; 再由热力学第一定律气体吸热E A Q ?+= AD 过程0=Q ;AC 过程AC A Q =;AB 过程AB AB E A Q ?+=,且0>?A B E 2 【基础训练6】 [ B ]如图所示,一绝热密闭的容器,用隔板分成相等的两部分, 左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去, 气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ 【参考答案】该过程是绝热的自由膨胀过程,所以0=Q 0=A 由热力学第一定律 0=?E ∴0=?T 2 20 / 0/p P V V = ?=由 3【基础训练10】 [D ]一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增 量为S ?,则应有: (A) 0...... 0=???=?S E 【参考答案】由上题分析知:0=?E ;而绝热自由膨胀过程是不可逆的,故熵增加。 4. 【自测提高3】 [ A ]一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为绝热线).判断这两种过程是吸热还是放热. (A) abc 过程吸热,def 过程放热. (B) abc 过程放热,def 过程吸热. (C) abc 过程和def 过程都吸热. (D) abc 过程和def 过程都放热. 【参考答案】内能是状态量,与过程无关。所以图(1)中:abc 过程和ac 过程的内能增量相同,并由ac 为等温线可知 0=?E 。而功是过程曲线下的面积,显然abc 过程的功0>A 。 由热力学第一定律:abc 过程:0.>=?+=A E A Q 所以abc 过程是吸热过程。 同理,在图(2)中:def 过程和df 过程的内能增量相同,并由绝热df 过程知 A E -=? 根据过程曲线下的面积:def 过程的功/ .A 小于df 过程的功.A 所以def 过程0)(/ / / <-+=?+=A A E A Q 所以def 过程是放热过程 5. 【自测提高4】 [ B ]用下列两种方法:(1) 使高温热源的温度T 1升高ΔT ;(2) 使低温热源的温度T 2降低同样的值ΔT ,分别可使卡诺循环的效率升高Δη1和Δη2,两者相比, (A) Δη1>Δη2. (B) Δη1<Δη2. (C) Δη1=Δη2. (D) 无法确定哪个大. V

第八章热力学答案

第八章2014) 一. 选择题 1. 【基础训练4】[ A ]一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【参考答案】根据热力学过程的功即过程曲线下的面积,知AD AC AB A A A >>; 再由热力学第一定律气体吸热E A Q ?+= AD 过程0=Q ; AC 过程AC A Q =; AB 过程AB AB E A Q ?+=,且0>?AB E 2 【基础训练6】 [ B ]如图所示,一绝热密闭的容器,用隔板分成相等的两部分, 左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去, 气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ . 【参考答案】该过程是绝热的自由膨胀过程,所以0=Q 0=A 由热力学第一定律 0=?E ∴0=?T 2 20 /0/p P V V = ?=由 3【基础训练10】 [D ]一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则 应有 (A) 0......0=???=?S E 【参考答案】由上题分析知:0=?E ;而绝热自由膨胀过程是不可逆的,故熵增加。 4. 【自测提高3】 [ A ]一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为 绝热 线).判断这两种过程是吸热还是放热. (A) abc 过程吸热,def 过程放热. (B) abc 过程放热,def 过程吸热. (C) abc 过程和def 过程都吸热. (D) abc 过程和def 过程都放热. 【参考答案】内能是状态量,与过程无关。所以图(1)中:abc 过程和ac 过程的内能增量相同,并由ac 为等温线可知 0=?E 。而功是过程曲线下的面积,显然abc 过程的功0>A 。 由热力学第一定律:abc 过程:0.>=?+=A E A Q 所以abc 过程是吸热过程。 同理,在图(2)中:def 过程和df 过程的内能增量相同,并由绝热df 过程知 A E -=? 根据过程曲线下的面积:def 过程的功/ .A 小于df 过程的功.A 所以def 过程0)(/ //<-+=?+=A A E A Q 所以def 过程是放热过程 5. 【自测提高4】 [ B ]用下列两种方法 (1) 使高温热源的温度T 1升高ΔT ; (2) 使低温热源的温度T 2降低同样的值ΔT , V

工程热力学复习题

《工程热力学》复习题型 一、简答题 1.状态量(参数)与过程量有什么不同?常用的状态参数哪些是可以直接测 定的?哪些是不可直接测定的? 内能、熵、焓是状态量,状态量是对应每一状态的(状态量是描述物质系统状态的物理量)。功和热量是过程量,过程量是在一个物理或化学过程中对应量。(过程量是描述物质系统状态变化过程的物理量)温度是可以直接测定的,压强和体积是不可以直接测定的。 2.写出状态参数中的一个直接测量量和一个不可测量量;写出与热力学第二 定律有关的一个状态参数。 3.对于简单可压缩系统,系统与外界交换哪一种形式的功?可逆时这种功如 何计算。 交换的功为体积变化功。可逆时 4.定压、定温、绝热和定容四种典型的热力过程,其多变指数的值分别是多 少? 0、1、k、n 5.试述膨胀功、技术功和流动功的意义及关系,并将可逆过程的膨胀功和技 术功表示在p v 图上。 膨胀功是系统由于体积变化对外所作的功;轴功是指工质流经热力设备(开口系统)时,热力设备与外界交换的机械功(由于这个机械工通常是通过转动的轴输入、输出,所以工程上习惯成为轴功);流动功是推动工质进行宏观位移所做的功。 膨胀功=技术功+流动功 6.热力学第一定律和第二定律的实质分别是什么?写出各自的数学表达式。热力学第一定律的实质就是能量守恒与转换定律在热力学上的应用。(他的文字表达形式有多种,例如:1、在孤立系统中,能的形式可以转换,但能的总量不变;2、第一类永动机是不可能制成的。)数学表达式: 进入系统的能量-离开系统的能量=系统储存能量的增量 热力学第二定律的实质是自发过程是不可逆的;要使非自发过程得以实现,必须伴随一个适当的自发过程作为补充条件。数学表达式可用克劳修斯不等式表示: ∮(δQ T )≤0 7.对于简单可压缩系,系统只与外界交换哪一种形式的功?可逆时这种功如 何计算(写出表达式)? 简单可压缩系统与外界只有准静容积变化功(膨胀功或压缩功)的交换。可逆时公

湿法炼锌中浸出过程的基础理论

湿法炼锌中浸出过程的基础理论 浸取 浸取是湿法炼锌中的主要过程。在此过程中一方面要将原料中的锌及锡等有价金属尽可能地完全溶解,使其进入溶液,以求得高的金属回收率。另一方面要在浸出终了阶段,使一些有害杂质(例如Fe,As,Sb,Si等)从锌浸液中分离留在浸出渣中。同时还力求获得沉降速度快,过滤性能好、易于液固分离的浸出矿浆。 湿法炼锌中,使用浸出的原料主要包括:硫化锌精矿经过焙烧所得到的焙烧料(焙砂及烟尘)、氧化锌精矿,硫化锌精矿以及冶炼厂在生产过程中,产出的粗氧化锌粉及氧化锌烟尘等。 在浸出中,虽然有用盐酸溶液浸出的报道,但主要是用硫酸溶液浸出。由于浸出原料的性质差异浸出方法也有不同。根据原料的组成及性质不同,因而有:(1)焙烧料常规浸出工艺;(2)焙烧料热酸浸出工艺;(3)硫化锌精矿氧压浸出工艺;(4)氧化矿酸浸工艺;(5)粗氧化锌及铅锌烟尘的酸浸工艺。但在上述几种浸出工艺中,焙烧料的酸浸工艺目前居主要地位。 浸出过程的基础理论 焙烧料的浸出热力学 A 电位E-pH图和金属离子在水溶液中的稳定性 各种金属离子在水溶液中的稳定性与溶液中金属离子的电位,pH值、离子活度、温度和压力等有关,湿法冶金广泛使用电位E-pH图来分析浸出过程的热力学条件,电位E-pH图是将水溶液中基本反应的电位与pH值的变化关系表示在图上。从图上不仅可以看出各种反应的平衡条件和各组分的稳定范围,还可判断条件变化时平衡移动的方向和限度。下面简要说明在常温(25℃)下,浸出时固液相间多相反应的吉布斯自由能变化和平衡式,及电位E-pH 图的绘制与应用。 浸出过程的有关化学反应可用下列通式表示。

aA+nH++ze ==== bB+cH20 根据反应的特点,可将反应分为(a) (b)、(c)三类,第(a)类反应中仅有电子迁移,H+或OH-没有变化,即电位E与pH值无关的氧化还原反应,其反应的吉布斯自由能变化为 这时吉布斯自由能的变化转变为对外所作最大有用功,因氢标为零,式中可用φ电动势E,即 —△G?= zFE?

电极过程动力学

电极过程动力学 一、实验目的 通过对铜电极的阳极极化曲线和阴极极化曲线的测定,绘制出极化曲线图,从而进一步加深对电极极化原理以及有关极公曲线理论知识的理解。通过本实验,熟悉用恒电流法测定极化曲线。 二、实验原理 当电池中由某金属和其金属离子组成的电极处于平衡状态时,金属原子失去电子变成离子获得电子变成原子的速度是相等的,在这种情况下的电极称为平衡电极电位。 电解时,由于外电源的作用,电极上有电流通过,电极电位偏高了平衡位,反应以一定的速度进行,以铜电极Cu|Cu2+为例,它的标准平衡电极电位是+0.337V,若电位比这个数值更负一些,就会使Cu2+获得电子的速度速度增加,Cu失去电子的速度减小,平衡被破坏,电极上总的反应是Cu2+析出; 反之,若电位比这个数值更正一些,就会使Cu失去电子的速度增加,Cu2+获得电子的速度减小,电极上总的反应是Cu溶解。这种由于电极上有电流通过而导致电极离开其平衡状态,电极电位偏离其平衡的现象称为极化,如果电位比平衡值更负,因而电极进行还原反应,这种极化称为阴极极化,反之,若电位比平衡值更正,因而电极进行氧化反应,这种极化称为阳极极化。 对于电极过程,常用电流密度来表示反应速度,电流密度愈大,反应速度愈快。电流密度的单位常用安培/厘米2,安培/米2。 由于电极电位是影响影响电流密度的主要因素,故通常用测定极化曲线的方法来研究电极的极化与电流密度的关系。 一、实验方法及装置 本实验电解液为CuSO4溶液(溶液中CuSO4.5H2O浓度为165g/l,H2SO4 180g/l);电极用φ=0.5mm铜丝作为工作电极,铂片电极作为辅助电极。为了测得不同电流密度下的电极电位,以一个甘汞电极与被测电极组成电池,甘汞电极通过盐桥与被测电极相通,用CHI660B电化学工作站测得不同电流密度下对应的阴极或阳极极化曲线。

热力学基础选择题

《热力学基础》选择题 1.关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 (A) (1)、(2)、(3). (B) (1)、(2)、(4). (C)(2)、(4). (D)(1)、(4).[ D ] 2.在下列各种说法 (1) 平衡过程就是无摩擦力作用的过程. (2) 平衡过程一定是可逆过程. (3) 平衡过程是无限多个连续变化的平衡态的连接. (4) 平衡过程在p-V图上可用一连续曲线表示. 中,哪些是正确的? (A) (1)、(2).(B) (3)、(4). (C) (2)、(3)、(4).(D) (1)、(2)、(3)、(4).[ B ] 3.设有下列过程: (1) 用活塞缓慢地压缩绝热容器中的理想气体.(设活塞与器壁无摩擦) (2) 用缓慢地旋转的叶片使绝热容器中的水温上升. (3) 一滴墨水在水杯中缓慢弥散开. (4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动. 其中是可逆过程的为 (A) (1)、(2)、(4). (B) (1)、(2)、(3). (C) (1)、(3)、(4). (D) (1)、(4).[ D ]4在下列说法 (1) 可逆过程一定是平衡过程. (2) 平衡过程一定是可逆的. (3) 不可逆过程一定是非平衡过程. (4) 非平衡过程一定是不可逆的. 中,哪些是正确的? (A) (1)、(4). (B) (2)、(3). (C) (1)、(2)、(3)、(4). (D) (1)、(3).[ A ].5. 气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程 (A) 一定都是平衡过程. (B) 不一定是平衡过程. (C) 前者是平衡过程,后者不是平衡过程.

第三章流体动力学基础

第三章 流体动力学基础 习 题 一、单选题 1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是 ( ) A .加速运动 B .减速运动 C .匀速运动 D .不能确定 2、血管中血液流动的流量受血管内径影响很大。如果血管内径减少一半,其血液的流量将变为原来的( )倍。 A .21 B .41 C .81 D .161 3、人在静息状态时,整个心动周期内主动脉血流平均速度为0.2 m/s ,其内径d =2×10-2m ,已知血液的粘度η =×10-3 Pa·S ,密度ρ=×103 kg/m 3,则此时主动脉中血液的流动形态处于( )状态。 A .层流 B .湍流 C .层流或湍流 D .无法确定 4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为( )m/s 。 A .30 B .40 C .45 D .60 5、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为( )。 A .1m/s B .2m/s C .3 m/s D .4 m/s 6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为( )。 A .1×10-3 m 3/s B .2×10-3 m 3/s C .1×10-4 m 3/s D .2×10-4 m 3/s 7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为( )mm 。 A .4 B .3 C .2 D .1 8、正常情况下,人的血液密度为×103kg/m 3 ,血液在内径为6mm 的小动脉中流动的平均速度为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,此处内径为4mm ,则小动脉宽处与窄处压强之差( )Pa 。 二、判断题 1、有水在同一水平管道中作稳定流动,管道横截面积越大,流速越小,压强就越小。( ) 2、由直径为15cm 的水平光滑的管子,把20℃的水抽运到空气中去。如果抽水保持水的流速为30cm/s ,已知20℃水的粘度η=×10-3 Pa/S ,则水在管子中的流动形态属于湍流。( ) 3、烟囱越高,通风效能越好,即把烟从炉中排出来的本领就越大。( ) 4、在深海中下落的一个铝球,整个过程始终是加速运动的。( ) 5、飞机机翼的升力来自机翼上下表面压强之差,这个压强之差主要由于机翼上表面流速大于下表面流速所致。( ) 6、流体的内摩擦力与固体间接触表面的摩擦力共同的特点都是阻碍相对运动,但流体的内摩擦力不存在最大的静摩擦力。( ) 三、填空题 1、流管的作用相当于管道,流体只能从流管一端____,从另一端______。 2、液体的粘度与液体的______、温度、_______因素有关,且随着温度的升高而_______。 3、理想流体是指 的流体,是一理想的模型,它是实际流体的近似。 4、稳定流动是实际流体流动的一种特殊情况, ,称为稳定流动。 5、为形象地描绘流速场的分布情况,可在其中描绘一些曲线,使

浸出过程动力学

浸出过程动力学 研究浸出过程的速度和机理的科学。为冶金过程动力学的一个分支。研究浸出过程动力学的目的在于查明影响浸出速度的因素和浸出过程的控制步骤,为强化浸出过程、提高浸出技术经济指标指明方向。 浸出过程的动力学模型浸出过程属复杂的多相反应过程,有固相和液相参加的多相反应过程及有气相、固相、液相参加的多相反应过程。独居石的碱分解 REPO4 (s) +3NaOH (aq) RE (OH)3 (s) +Na3PO4 (aq) 属前者; 闪锌矿加压氧化ZnS (s) +2H++1/2O2=Zn2++H2O+S°(s) 浸出属后者。液固反应的浸出过程可用核收缩模型表示(见图)。从图可知,浸出过程需经历的步骤有:(1)浸出剂通过边界层向矿粒表面扩散(外扩散);(2)浸出剂进一步扩散通过固膜到未反应核表面(内扩散);(3)浸出剂与未反应的矿物进行反应;(4)生成的不溶性产物使固膜加厚,可溶性产物扩散通过固膜到矿粒表面(内扩散);(5)可溶性产物扩散通过边界层进入溶液本体(外扩散)。 矿粒浸出过程的模型示意图1—液固相边界层;2—固膜(浸出的固态生成物及残留物)3—未反应核;δ1—浸出剂扩散层厚度;δ2—固膜厚度;δ′1—可溶性浸出产物的扩散层厚度;C0、C1、C2—分别为浸出剂在溶液相、矿粒表面和未反应核表面的浓度;C0′、C′1、C′2—分别为可溶性浸出产物在溶液相,矿粒表面和未反应核表面的浓度 这些步骤的速度可分别用下式表示: v1=D1 (C0-C1) /δ1 (1) v2=D2 (C1-C2) /δ2 (2 ) v3=k(C2-C′2/K)(设浸出反应为一级反应)(3)

第五章电极过程和电极过程动力学讲解学习

第五章电极过程和电极过程动力学

5.电极过程和电极过程动力学 5.1电化学装置的可逆性:化学反应可逆性;热力学上可逆性 5.2电极的极化 5.3电极过程的控制步骤:电极反应的特点;电极反应的控制步骤5.4电荷转移动力学方程 5.5交换电流密度与电极反应速度常数 5.6稳态极化时的电极动力学方程 5.7浓差极化及其电机动力学方程 5.8化学极化 分解电压E分:在可逆情况下使电解质有效组元分解的最低电压,称为理论分解电压(V e)。理论分解电压是阳极平衡电极电位(εe(A))与阴极平衡电极电位(εe(K))之差。 Ve=εe(A)- εe(K)(10 - 5) 当电流通过电解槽,电极反应以明显的速度进行时,电极反应将会明显偏离平衡状态,而成为一种不可逆状态,这时的电极电位就是不平衡电位,阳极电位偏正,阴极电位偏负。这时,能使电解质熔体连续不断地发生电解反应所必需的最小电压叫作电解质的实际分解电压。显然,实际分解电压比理论分解电压大,有时甚至大很多。

实际分解电压简称分解电压(V),是阳极实际析出电位(ε(A))和阴极析出电位(ε(K))之差。 V=ε(A)- ε(K)(10 - 6) 当得知阴、阳极在实际电解时的偏离值(称为超电位)就可以算出某一电解质的实际分解电压。 分解电压符合能斯特方程,可以表示为如下形式: 式中 E i,E0分别表示实际和标准状态下组元i的分解电压; a i__组元的活度; n i __组元在熔盐中的化合价; F __ 法拉弟常数; 可以看出,温度和电解质组成均会影响分解电压 电极极化

电解时的实际分解电压比理论分解电压要大很多,这是由于电流通过电解槽时,电极反应偏离了平衡状态。通常将这种偏离平衡电极电位的现象称为极化现象。电解过程实际分解电压和理论分解电压之差称为超电压。 ?电解电极反应一般包含1: ?(1)反应离子由熔体向双电层移动并继续经双电层向 电极表面靠近。这一阶段在很大程度上靠扩散实现,扩 散则是由于导电离子在熔体和双电层外界的浓度差别引 起的。 ?(2)反应离子在电极表面进行电极反应前的转化过 程,如表面吸附等; ?(3)在电极上的电子传递 - - 电化学氧化或电化学还 原反应; ?(4)反应产物在电极表面进行反应后的转化过程,例 如自电极表面的脱附,反应产物的复合、分解和其它化 学反应; ?(5)反应产物形成新相,或反应产物自电极表面向电 解质熔体的传递。

第三章化学动力学

第三章 化学动力学 3-1.在1 100 K 时,3NH (g)在金属钨丝上发生分解。实验测定,在不同的3NH (g)的初始压力0p 下所对应的半衰期12t ,获得下列数据 0/Pa p 3.5×104 1.7×104 0.75×104 1/min t 7.6 3.7 1.7 试用计算的方法,计算该反应的级数和速率系数。 解: 根据实验数据,反应物3NH (g)的初始压力不断下降,相应的半衰期也不断下降,说明半衰期与反应物的起始浓度(或压力)成正比,这是零级反应的特征,所以基本可以确定是零级反应。用半衰期法来求反应的级数,根据半衰期法的计算公式 12 12 1 ,1 21,2 n t a t a -??= ??? 即 ()12,112,221ln /1ln(/) t t n a a =+ 把实验数据分别代入,计算得 ()() 12,112,244 0,20,1ln /ln 7.6/3.7110ln(/) ln(1.710/3.510) t t n p p --=+ =+ ≈?? 同理,用后面两个实验数据计算,得 () ln 3.7/1.710ln(0.75/1.7) n =+ ≈ 所以,该反应为零级反应。利用零级反应的积分式,计算速率系数。正规的计算方法应该是分别用3组实验数据,计算得3个速率系数,然后取平均值。这里只列出用第一组实验数据计算的结果,即 0100 22p a t k k = = 431001 3.510Pa 2.310 Pa min 227.6 min p k t -?===??? 3-2.某人工放射性元素,能放出α粒子,其半衰期为15 min 。若该试样有80%被分解,计算所需的时间?

第三章 酶催化反应动力学

第3章酶催化反应动力学 (2学时) 主要内容: 3.1 酶催化反应速度 3.2 底物浓度对酶促反应速度的影响 3.3 抑制剂对酶促反应速度的影响 3.4 其它因素对酶促反应速度的影响 ?酶催化反应动力学也称酶促反应动力学(kinetics of enzyme-catalyzed reactions),是研究酶促反应速度以及影响此速度的各种因素的科学。在研究酶的结构与功能的关系以及酶的作用机制时,需要酶促反应动力学提供相关的实验证据;为了找到最有利的反应条件从而提高酶催化反应的效率以及了解酶在代谢过程中的作用和某些药物的作用机制等,也需要我们掌握酶促反应动力学的相关规律。因此,对于酶促反应动力学的研究既有重要的理论意义又具有相当的实践价值。 酶的动力学研究包括哪些内容? ?酶促反应动力学以化学动力学为基础,通过对酶促反应速度的测定来讨论诸如底物浓度、抑制剂、温度、pH和激活剂等因素对酶促反应速度的影响。 ?温度、pH及激活剂都会对酶促反应速度产生十分重要的影响,酶促反应不但需要最适温度和最适pH,还要选择合适的激活剂。而且在研究酶促反应速度以及测定酶的活力时,都应选择相关酶的最适反应条件。 3.1酶催化反应速度 ?如果我们以产物生成量(或底物减少量)来对反应时间作图,便可以得到如图3-1所示的曲线图。 该曲线的斜率表示单位时间内产物生成量的变化,因此曲线上任何一点的斜率就是相应横坐标上时间点的反应速度。从图中的曲线可以看出在反应开始的一段时间内斜率几乎不变,然而随着反应时间的延长,曲线逐渐变平坦,相应的斜率也渐渐减小,反应速度逐渐降低,显然这时测得的反应速度不能代表真实的酶活力。 ?引起酶促反应速度随反应时间延长而降低的原因很多,如底物浓度的降低、产物浓度增加从而加速了逆反应的进行、产物对酶的抑制或激活作用以及随着反应时间的延长引起酶本身部分分子失活等等。因此在测定酶活力时,应测定酶促反应的初速度,从而避免上述各种复杂因素对反应速度的影响。由于反应初速度与酶量呈线性关系,因此可以用测定反应初速度的方法来测

相关主题
文本预览
相关文档 最新文档