当前位置:文档之家› 蜂巢结构的应用与研究

蜂巢结构的应用与研究

蜂巢结构的应用与研究
蜂巢结构的应用与研究

J I A N G S U U N I V E R S I T Y

蜂巢结构仿生研究与应用

学院名称:京江学院

专业班级: J高分子1101 学生姓名:胡文文

学号: 16

指导老师:吴平

2005年 12月

Estimation of human-hemoglobin using honeycomb structure:An application of photonic crystal

abstract

This paper proposes a method to estimate the hemoglobin concentration in human blood using 2D honeycomb photonic crystal structure. Though a few works deal with similar kind of investigation, presentresearch delivers an accurate estimation of hemoglobin as compared to previous works. The principleof investigation is based on linear variation of both photonic band gap and absorbance’s with respect to different concentration of hemoglobin in human blood. Aside these variations, energy transmittedthrough honeycomb photonic crystal structure is also varied linearly with respect to same this work, photonic band gap of honeycomb structure is found using plane wave expansion method,whereas absorbance of same structure is computed by employing Maxwell Curl equation. Finally, simulation result revealed that transmitted energy through two dimensional honeycomb photonic crystalstructure containing blood is nicely fitted with linear trend line (R2 = 1) which lead to an accurate investigation of hemoglobin in human blood. At last, this paper proposes an experimental set up to measurethe said concentrations with the help of an Arduino developmentboard(Uno)containingAtmega320microcontroller.

Keywords:Honeycomb photonic crystal structurePhotonic band

gapTransmitted energ

1.Introduction

Photonics crystals are made, artificially created materials inwhich refractive index is periodically modulated in a scale comparable to the scale of the wavelength. Though the concept ofphotonic crystal has originated in the year 1857 by Lord Rayleigh,the research work in the field of photonic crystals is realized afteralmost 100 years, when Yablonovitch and John published twomilestone papers on photonic crystals in 1987 [1–3], since then,photonics have been progressing hastily and showing a remarkableresearch in the field of science and technology. As far as, application of photonic-devices are concerned, photonic crystal play animportant role to envisage various application in modern technology [4–6]. Though photonic crystal is used for different application,sensing application is one of the major relevance in photonics. As faras literature surveys on sensing application using photonic crystalstructure is concerned, recently few papers deal with similar typeof research [7–13]. Considering a brief remark on above references,it is seen that reference [7] presents a novel method to find out theconcentration of sugar, salt, and alcohol in their aqueous this case, the author used 2D photonic crystal structure with11 ×

11 air using same technique, concentration of PAMhydrogel and

strength of Cygel is investigated in Refs. [8,9], respectively. Also in Refs. [10,11], the concentration of potassium chloridein their aqueous and intrallipid in human blood is estimated usingphotonic crystal fiber. Apart from these, measurement of glycerolin B–H–G solution and concentration of hemoglobin in humanblood is investigated using 3D photonic crystal structure in Refs.[12,13],

respectively. Though Ref. [13] measures the concentrationof hemoglobin in human blood using 3D photonic crystal structure,it is hard to fabricate 3D owing to photonic crystal structure. We inthis paper investigate the concentration of hemoglobin in humanblood using 2D honeycomb photonic crystal structure. The reasonfor choosing such structure is that it can be easily fabricated; secondly, these structures predict accurate result as compared to 3Dphotonic crystal structure, which is carried out in Ref. [13].

Hemoglobin is a main component of the blood, which isimportant for transportation of oxygen in blood, which leadsto circulation of blood in vein. This circulation of human bloodsystem has default functions, such as supply of oxygen to tissues, supply of nutrients such as glucose, amino acids, and fattyacids, removal of waste such as carbon dioxide, urea, lactic acid,immunological functions, including circulation of white cells, anddetection of foreign materials by antibodies, coagulation, messenger functions, regulation of body PH, regulation oh core bodytemperature hydraulic function etc. for normal human body. Adeficiency of hemoglobin in human blood creates serious problemsuch as downstream tissue dysfunction, Leukemia, iron deficiency,anemia, multiple myeloma, etc. [14–17]. Keeping the importanceof hemoglobin in human blood, this paper estimates the concentration of hemoglobin in both oxygenated and paper is organized as follows: Section 2 presents the structure of the honeycomb photonic crystal structure including theprinciple of measurement. Simulation result and interpretation ismade in Section 3. Section 4 proposes an experimental set up andfinally conclusions are drawn in Section 5.

2.Honeycomb structure and principle of measurement

As far as measurement of hemoglobin in human blood is concerned, we use 2D honeycomb photonic crystal structure for thesame, which is shown in Fig. . 1 represents honeycomb photonic crystal structure having gallium Arsenide as background material containing air holes,where bloods with different percentage (g/L) of hemoglobin areinfiltrated. The proposed structure consists of 9 numbers of air holessuch that diameter of air holes is 420 nm and lattice spacing of thestructure is 1 m. The principle of measurement is based on linear variation of reflected energy and absorbance with respect toconcentration of hemoglobin in human blood. When light havingwavelength of 589 nm incident on honeycomb structure containingblood with different percentage of hemoglobin then, some amountof light will get reflect and some amount of light will be absorbed bythe structure. The rest amount of light will be transmitted throughthe structure. Since the principle is based on linear variation of

both reflected and absorbance, intensity transmitted through honeycomb structure also varies linearly with respect to hemoglobinconcentration in the blood which is a key factor (linear variation)to realize accurate investigation of hemoglobin in human use simple mathematical equation to find out the reflectedenergy, absorbance and transmitted energy for investigation ofhemoglobin. As far as, energy reflected from honeycomb structure is concerned, it is obtained from dispersion diagram, whichis carried out by employing plane wave expansion method [18] In this case, we computed normalized frequency (a/) fromdispersion diagram, then the values of reflected energy (ER) is calculated using following simple equation:

ER=hc/R,where R is reflected wavelength, which is found from dispersion , wavelength 589 nm is used to investigate hemoglobinconcentration; the

energy of incident light (EI) corresponding tothis wavelength is found using following (2)where is the incident wavelength (589 nm)Using (1) and (2), the energy transmitted through the structureis written asET = E0 ?ER (3)Eq. (3) represents as transmitted energy without considerationof absorption loss. However, from literature it is found that GaAsstructure and blood with different concentration of hemoglobinabsorb some light of wavelength, 589 nm. So, absorption loss shouldbe cogitated during this investigation. Using Ref. [19] and employing Maxwell curl equation, Eq. (3) is modified asET (4)From the above equation, it is seen that absorption loss takesplace due to two factors, such as absorption loss due to backgroundmaterialand absorption loss due to blood .Where is called the absorption coefficient of gallium arsenidematerial and ‘t’ is the thickness of background or substrate.ˇ is called the absorption coefficient of blood at wavelength589 nm, which is expressed where is called the extinction coefficient of blood at wavelength589 nm and ‘C’ is the concentration of hemoglobin in human bloodand ‘d’ is the diameter of air holes, where blood samples are the above equation, output energy through 2D honeycomb photonic crystal structure is obtained corresponding to eachconcentration of hemoglobin in human blood sample.

3.Result and interpretation

From previous section, it is seen that output energy through thephotonic crystal structure corresponding to each concentration is a function of both reflected energy from the structure and energyabsorbed by the structure. As both reflection energy and absorption loss are important to obtain transmitted energy, we divide thissection into three sub-sections such that first sub-section discussesreflected energy,

second sub-section analyses absorption loss and then transmitted energy is given in third subsection.

. Reflected energy

We use dispersion diagram to compute the energy reflectedfrom honeycomb photonic crystal structure. Dispersion diagram isa graph between normalized frequency (a/) with wave vector (k),which gives an idea about the photonic band gap or reflected energyfrom same structure. So before going to compute reflected energy,we focus on dispersion diagram of 2D photonic honeycomb structure containing human blood sample with different percentageof hemoglobin. The dispersion relation (relation between normalized frequency and wave vector) depends on structure parameterssuch diameter of holes, lattice spacing, refractive indices of bothbackground and blood sample including the configuration of thestructure

In this case, we consider honeycomb structure whose latticespacing is 1 m and diameter of air holes is 420 nm. Using theabove parameters and employing plane wave expansion method,simulation is made to obtain the dispersion graph of 2D honeycomb photonic crystal structure. Though, we have made simulation

for all concentration of hemoglobin from 0 g/L to 120/g/L of oxygenated and deoxygenated, simulation result for 0 g/L and 120 g/Lof oxygenated blood is shown in Fig. 2(a) and (b), . 2(a) and (b) represent the dispersion diagram of 2D honeycomb photonic crystal structure containing human blood withhemoglobin concentration of 0 g/L and 120 g/L respectively. In thesefigures, normalized frequency (a/) is taken along vertical axisand wave vector (k) in m??1 is taken along horizontal axis. Fromthese graphs, it is realized that electromagnetic wave at certainwavelength range cannot be propagated

through the said photonic crystal structure, which refers as forbidden gap. It is alsoseen that red color band is represented as complete forbidden this graph, normalized frequency corresponding to ‘0’ and‘120’ concentration of human blood is found, and then photonicbandgap corresponding to each normalized frequency is simulation result for 0 g/L and 120 g/L concentrations areshown here, simulation for other concentration of oxygenated anddeoxygenated blood are done but are not shown here. The photonic band gap corresponding to each normalized frequency ofoxygenated and de-oxygenated blood is investigated. The photonic band gap of said photonic crystal structure is nothing but thereflected energy (ER) from 2D honeycomb photonic crystal structure containing both oxygenated and de-oxygenated solution withdifferent concentration of hemoglobin. After computing reflectedenergy corresponding to each concentration of hemoglobin, wemoved to calculate absorption loss by said structure which is discussed in the next subsection.

. Absorption loss

From Section 2, it is clear that absorption depends on bothstructure (background) of photonic crystal structure and humanblood with different concentration of hemoglobin. Since, the background material is fixed for measurement of all concentrationof hemoglobin, absorption due to background material (e??t) issame for all concentration. However, absorbance due to blood isdiffered for different concentration of hemoglobin because theabsorbance coefficient (ˇ = εc) depends on th e concentration (c),so that absorbance due to hemoglobin concentration will be eThen the resultant absorbance is e The value of and ˇis obtained from the literature [20]. By putting the value of and d in Eq. (5), we compute the resultant absorbance with respectto concentration of hemoglobin of oxygenated

and de-oxygenatedhuman blood. After computing both reflectance and absorbance,we compute the transmitted energy through the photonic crystal structure, which is discussed in the next session.

. Transmitted energy

Before going to discuss transmitted energy emerging from thephotonic crystal structure, we propose an experimental setup bywhich one can measure the energy emerging from honeycombphotonic crystal structure. The setup is shown in Fig. 3.

Fig. 3 represents a proposed experimental setup to estimatethe concentration of hemoglobin in both oxygenated and deoxygenated blood. From this figure, it is seen that light havingwavelength of 589 nm incidents on 2D honeycomb photonic crystal structure, then some amount of light will be reflected and somegets absorbed by it and rest mount of light reaches at photo detectorand finally potential corresponding to such output light is collected at an Arduino development board (UNO) with an LCD , Arduino UNO is a development board containing Atmega 320with an LCD interfaced which is used to display both potentialcoming from photo detector corresponding to the concentrationof hemoglobin in human blood. Since, reflected energy as well asabsorbance is different for different concentration of hemoglobin,transmitted energy as well as potential corresponding to transmitted energy is differed from different concentration. Since, thispaper emphasizes on simulation work, the transmitted energy iscomputed using Eq. (4). After calculating the transmitted energy,a graph is plotted between transmitted energy with respect to different percentages of hemoglobin which is shown in Fig. percentages of hemoglobin which is shown in Fig. . 4 provides the information regarding the variation of transmitting energy emerging from 2D

honeycomb photonic crystalstructure with respect to concentration of hemoglobin in oxygenated and de-oxygenated blood. From Fig. 4, it is seen thatthe concentration of hemoglobin (g/L) is taken along primaryx-axis, where transmitting energy in eV for oxygenated and deoxygenated blood sample is taken along primary and secondary y-axisrespectively. From above graph, it is observed that the transmittedenergy decreases linearly with respect to hemoglobin concentration, which varies from 0 g/L to 120 g/L for both oxygenated andde-oxygenated blood. For example, transmitted energy decreases from eV to eV for oxygenated and eV for de-oxygenated blood with respect to hemoglobinestimation of hemoglobin. The simulation for reflected energy ismade by employing the plane wave expansion method, whereabsorption loss is computed using Maxwell equation. An experimental setup is also proposed to obtain hemoglobin in human bloodsample. Simulation result revealed that transmitted energy varieslinearly and also these variationsare an excellently fitted withlinear shift, which gives an accurate investigation of hemoglobin inboth oxygenated and de-oxygenated human blood sample.

Finally,Ardunio UNO divulged the concentration of human hemoglobinwith potential emerging from photonic crystal structure.

4.Conclusion

Estimation of hemoglobin in oxygenated and de-oxygenatedhuman blood sample is thoroughly investigated in this absorption and reflection losses are cogitated during theestimation of hemoglobin. The simulation for reflected energy is

made by employing the plane wave expansion method, whereabsorption loss is computed using Maxwell equation. An experimental setup is also proposed

to obtain hemoglobin in human bloodsample. Simulation result revealed that transmitted energy varieslinearly and also these variationsare an excellently fitted withlinear shift, which gives an accurate investigation of hemoglobin inboth oxygenated and de-oxygenated human blood sample. Finally,Ardunio UNO divulged the concentration of human hemoglobinwith potential emerging from photonic crystal structure.

References

[1] Rayleigh, On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes, Philos. Mag. 26 (1988) 256–265.

[2] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and

electronics, Phys. Rev. Lett. 58 (1987) 2059–2062.

[3] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (1987) 2486–2489.

[4] . Turner, M. Sa ba, Q. Zhang, . Cumming, . Schr?der-Turk, M. Gu, Miniature chiral beamsplitter based on gyroid photonic crystals, Nat. Photonics 7

(2013) 801.

[5] . Joannopoulos, . Johnson, . Winn, . Meade, Photonic Crystals: Molding the Flow of Light, second ed., Princeton University Press, Princeton, NJ, 2008.

[6] . Pravdin, . Popov, Photonic crystal with negative index material layers,Nanosyst.: Phys. Chem. Math. 5 (2014) 626–643.

[7] G. Palai, . Tripathy, A novel method for measurement of concentration using two dimensional photonic crystal structures, Opt. Commun. 285 (2012) 2765–2768.

[8] G. Palai, . Tripathy, T. Sahu, A novel technique to measure the sucrose concentration in hydrogel sucrose solution using two dimensional photonic

crystalstructures, Optik 125 (2014) 349–352.

[9] G. Palai, . Tripathy, N. Muduli, . Patnaik, D. Patnaik, A novel method tomeasure the strength of CygelTM by using two dimensional photonic crystal

structures, AIP Conf. Proc. (2012) 383–386.

[10] G. Palai, N. Muduli, . Sahoo, . Tripathy, . Patnaik, Realization of potassium chloride sensor using photonic crystal fiber, Soft Nanosci. Lett. 3 (2013)16–19.

[11] G. Palai, . Dalai, A. Kumar, A. Satpathy, . Kushwaha, A. Jha, A. Panda, Optimization of microstructure optical fiber using PWE method forinvestigation ofglucose in intralipid, J. Laser Opt. Photonics 2 (2015) 117–120, Engineering.

[12] G. Palai, . Tripathy, Measurement of glycerol concentration inB–H–G solution using 3D photonic crystal structure, Optik 125 (2014)2875–2879.

[13] G. Palai, . Dhir, Theoretical model to measure the concentration ofhemoglobin in human blood using 3D photonic crystal structure, Optik 126(2015) 478–482.

[14] . Hoff, Importance of hemoglobin concentration and its modification for

the outcome of head and neck cancer patients treated with radiotherapy, ActaOncol. 51 (2012) 419–432.

[15] School of Chemistry—Bristol University, Hemoglobin, School of Q5Chemistry—Bristol University, UK, 2009, Web. 12 Oct.

[16] School of Chemistry—Bristol University, Hemoglobin, School of Chemistry—Bristol University, UK, 2009, Web. 12 Oct.

[17] D. Voet, Fundamentals of Biochemistry, Fig. 07 06, third ed., John Wiley & Sons, Q62008.

[18] . Sukhoivanov, . Guryev, Physics and Practical Modeling: Photonic

Crystals,Springer, Heidelberg, 2009.

[19] M. Vijaya, G. Rangarajan, Materials Science, Tata McGraw-Hill Education, NewDelhi, 2003.

[20] . Gratzer, Med. Res. Council Labs, Holly Hill, London, N. Kollias, Wellman Laboratories, Harvard Medical School.

蜂巢式建筑

蜂巢式建筑是模拟蜂巢的构造来建设的建筑物。它采用基本受力结构是正六边体的模块固定连接构成建筑物整体。其正六边形面与建筑的基础面相互平行,使正六棱体模块框架受力结构的受力方向同正六棱轴心的方向以及重力方向一致;正六棱体框架模块上下六个边以及六角的六根立柱均为刚性材料,通过高强度螺丝固定连接构成多层刚性正六棱框架结构。这种蜂巢式建筑物能提高有效使用面积,它结构稳定、施工期短、工效高。 马克思曾说过:“蜜蜂建筑蜂房的本领使人间的许多建筑师感到惭愧……。” 蜜蜂栖息繁殖的场所叫做蜂巢,蜂巢是由许多六角形的小巢构成,这种小巢就是蜂房。小巢排列非常整齐,有人曾进行过仔细的测量,发现这种六角形的巢,每个角都是规则的锐角,体积几乎都是0.25立方厘米。按照工程建筑原理来看,蜂巢的设计非常合理,如占面积最小,结构精巧、牢固,所用材料最经济等。这是蜜蜂在自然条件长期影响下,逐渐形成的筑巢的特殊本领。 蜂巢的结构很早就引起人们的注意并加以研究。已模仿它建成各种精巧牢固的设备或建筑物。目前还被广泛用于飞机、火箭等有关的设计上去。 新西兰国会大厦是一座宏伟的四层全木结构建筑,外型酷似蜂巢,内部采取了有效的防强地震设计,以适应新西兰这样的多地震国家。 大厦由三大建筑组成,包括哥特式的图书馆,英国文艺复兴式议政厅和圆形的办公大楼。迥然不同的建筑风格使国会大厦成为一个奇妙的组合,既各具神彩,又相辅相依,融为一体。 "蜂巢"这个风格独特的建筑是Basil Spence爵士设计的,现在,它已经成为新西兰的标志性建筑之一。 新西兰国会成立于1854年。随着国家的发展和议会人数的增加,国会也几度易址。"蜂巢"是在1977年开始作为国会大厦使用的。 这里有图片,"蜂巢"旁边的是新西兰国家图书馆,建于1816年,是一座古老的欧式建筑,从外部看,同欧洲的许多建筑物相似,但它位于国会大厦旁边,同圆塔形的国会大厦形成了一种“传统”与“现代”的强烈对比,因而更显出它的沧桑和历史韵味。 8 |评论

蜂窝夹层结构复合材料应用研究进展

收稿日期:2013-02-05 基金项目:航空自然科学基金资助(2010ZF56025) 作者简介:刘杰,1985年出生,硕士,助理工程师,主要从事芳纶纸蜂窝的生产与研制,E -mail:dnaliujie@https://www.doczj.com/doc/e69123044.html, 蜂窝夹层结构复合材料应用研究进展 刘一杰1一一郝一巍1一一孟江燕2 (1一北京航空材料研究院,北京一100095) (2一南昌航空大学材料科学与工程学院,南昌一330063) 文一摘一综述了有关铝蜂窝芯二芳纶纸蜂窝芯及其复合材料在制造工艺上的研究成果;蜂窝夹层结构复合材料在隔音二隔热二耐老化二冲击性能等方面的最新研究进展,并对蜂窝夹层结构复合材料的研究方向提出了几点建议三 关键词一铝蜂窝,芳纶纸蜂窝,复合材料,力学性能 Progress in Applied Research of Honeycomb Sandwich Composites Liu Jie 1一一Hao Wei 1一一Meng Jiangyan 2 (1一Beijing Institute of Aeronautical Materials ,Beijing一100095) (2一School of Material Science and Engineering ,Nanchang Hangkong University ,Nanchang一330063) Abstract 一In this paper ,the manufacturing processof the aluminum honeycomb core ,Nomex honeycomb core and composite materials have been reviewed.Furthermore ,the latest research progress of the honeycomb sandwich composites sound insulation ,heat insulation ,anti-aging ,impact properties and other aspects has been overviewed.And some suggestions of research directions of honeycomb sandwich composites are presented.Key words 一Aluminum honeycomb ,Nomex honeycomb ,Composites ,Mechanical property 0一引言 蜂窝夹层结构复合材料因其具有比强度高二抗冲 击性能好二减振二透微波二可设计性强[1-2]等优点,目前已经被广泛应用,特别是航空航天领域,蜂窝夹层结构以其优越的性能成为该领域不可缺少的结构材料之一三早期的蜂窝夹层结构复合材料芯材大多数为金属芯材,随后出现了纸蜂窝夹层结构复合材料以及纤维增强树脂蜂窝等蜂窝芯材三 目前的蜂窝夹层结构复合材料主要分为铝蜂窝夹层结构复合材料二Nomex 纸蜂窝夹层结构复合材料二玻璃钢夹层结构复合材料二棉布蜂窝夹层结构复合材料等[3],其中玻璃钢夹层结构复合材料已得到广泛的研究和应用,研究人员对于玻璃钢夹层结构复合材料的力学二隔音二隔热二抗冲击性能的研究都比较深入[4-6]三蜂窝夹层结构复合材料的性能主要由蒙皮和蜂窝芯材料的性能所决定[7],这些性能主要包括蒙皮的厚度与材质,蜂窝芯材的高度二材质二密度二 孔格大小以及形状等[8]三近些年,研究人员围绕蜂窝夹层结构复合材料做了大量研究并取得了一定成 果,本文对此作以简介三 1一铝蜂窝夹层结构 铝蜂窝芯材主要由铝箔以不同的胶接方式胶接,通过拉伸而制成不同规格的蜂窝,芯材的性能主要通过铝箔的厚度和孔格大小来控制,再将铝蜂窝芯材和不同的蒙皮材料复合,形成铝蜂窝夹层结构复合材料三铝蜂窝夹层结构复合材料具有较高的力学性能,其芯材铝蜂窝的制造成本也相对较低三但铝蜂窝夹层结构复合材料在某些环境中使用时易腐蚀,在受到冲击后,铝蜂窝芯材会发生永久变形,使蜂窝芯材与蒙皮发生分离[9-10],导致材料的性能降低三 部分研究者从胶接工艺对铝蜂窝夹层结构复合 材料进行了研究三张京等[11]从胶黏剂筛选二表面处理方法和固化工艺三个方面对铝蜂窝夹层结构的胶接工艺进行了研究三选择了流动性较好的J -47胶膜;在对表面处理方式的研究中采用磷酸阳极化处理;通过对剪切强度的对比确定了夹层结构的最佳固化工艺三铝蜂窝夹层结构的大面积粘接成型一直是夹层结构批量生产的难题,为此,韦生文[12]对铝蜂窝

蜂巢式建筑

马克思曾说过:“蜜蜂建筑蜂房的本领使人间的许多建筑师感到惭愧……。” 蜜蜂栖息繁殖的场所叫做蜂巢,蜂巢是由许多六角形的小巢构成,这种小巢就是蜂房。小巢排列非常整齐,有人曾进行过仔细的测量,发现这种六角形的巢,每个角都是规则的锐角,体积几乎都是0.25立方厘米。按照工程建筑原理来看,蜂巢的设计非常合理,如占面积最小,结构精巧、牢固,所用材料最经济等。这是蜜蜂在自然条件长期影响下,逐渐形成的筑巢的特殊本领。 蜂巢的结构很早就引起人们的注意并加以研究。已模仿它建成各种精巧牢固的设备或建筑物。目前还被广泛用于飞机、火箭等有关的设计上去。 新西兰国会大厦是一座宏伟的四层全木结构建筑,外型酷似蜂巢,内部采取了有效的防强地震设计,以适应新西兰这样的多地震国家。 大厦由三大建筑组成,包括哥特式的图书馆,英国文艺复兴式议政厅和圆形的办公大楼。迥然不同的建筑风格使国会大厦成为一个奇妙的组合,既各具神彩,又相辅相依,融为一体。 "蜂巢"这个风格独特的建筑是Basil Spence爵士设计的,现在,它已经成为新西兰的标志性建筑之一。 新西兰国会成立于1854年。随着国家的发展和议会人数的增加,国会也几度易址。"蜂巢"是在1977年开始作为国会大厦使用的。 这里有图片,"蜂巢"旁边的是新西兰国家图书馆,建于1816年,是一座古老的欧式建筑,从外部看,同欧洲的许多建筑物相似,但它位于国会大厦旁边,同圆塔形的国会大厦形成了一种“传统”与“现代”的强烈对比,因而更显出它的沧桑和历史韵味。 8 |评论 蜂巢的底部不是平的,而是三块菱形拼成的。菱形的钝角为109°28',锐角为70°32′,这样做是为了用最少的蜜腊构筑最宽敞的蜂房。 见下图,图中蜂巢口部向下、底部向上,底部由三个菱形拼合而成。

蜂巢结构

蜂巢结构 蜂巢的基本结构,是由一个个正六角形单房、房口全朝下或朝向一边、背对背对称排列组合而成的建筑物。蜂巢的基本结构,是由一个个正六角形单房、房口全朝下或朝向一边、背对背对称排列组合而成的建筑物。每一房室大小统一、上下左右距离相等;蜂房直径约0.5公分,房房紧密相连,整齐有序,彷佛经过精心设计。每一房室大小统一、上下左右距离相等;蜂房直径约0.5公分,房房紧密相连,整齐有序,仿佛经过精心设计。 当气候炎热、蜂巢内温度高升时,工蜂会在蜂巢入口的地方,鼓动翅膀搧风,使巢内的空气流通,因而变为凉爽。当气候炎热、蜂巢内温度高升时,工蜂会在蜂巢入口的地方,鼓动翅膀扇风,使巢内的空气流通,因而变为凉爽。 由於蜂蜡色白、质地柔软;因此,建造成的蜂巢,是呈半透明乳白色;经风乾后,逐渐变黄变硬。由于蜂蜡色白、质地柔软;因此,建造成的蜂巢,是呈半透明乳白色;经风干后,逐渐变黄变硬。 据估计,工蜂分泌1公斤的蜂蜡,需要消耗16公斤的花蜜;而采集1公斤的花蜜,蜜蜂们必须飞行32万公里才得以完成;相当於绕行地球8圈的距离。据估计,工蜂分泌1公斤的蜂蜡,需要消耗16公斤的花蜜;而采集1公斤的花蜜,蜜蜂们必须飞行32万公里才得以完成;相当于绕行地球8圈的距离。因此,蜂蜡对蜜蜂而言,是宝贝珍贵的。因此,蜂蜡对蜜蜂而言,是宝贝珍贵的。 科学家们研究发现,正六角形的建筑结构,密合度最高、所需材料最简、可使用空间最大。科学家们研究发现,正六角形的建筑结构,密合度最高、所需材料最简、可使用空间最大。因此,可容纳数量高达上万只的蜜蜂居住。因此,可容纳数量高达上万只的蜜蜂居住。 这种正六角形的蜂巢结构,展现出惊人的数学才华,令许多建筑师们自叹不如、佩服有加!这种正六角形的蜂巢结构,展现出惊人的数学才华,令许多建筑师们自叹不如、佩服有加! 神奇数学家神奇数学家 蜜蜂是宇宙间最令人敬佩的建筑专家。蜜蜂是宇宙间最令人敬佩的建筑专家。它们凭著上帝所赐的天赋本能,采用「经济原理」——用最少材料( 蜂蜡),建造最大的空间(蜂房)——来造蜜蜂的家。它们凭着上帝所赐的天赋本能,采用「经济原理」——用最少材料( 蜂蜡),建造最大的空间(蜂房)——来造蜜蜂的家。

蜂巢的结构

蜂巢的结构 蜂巢的结构 蜂巢是蜜蜂家园必要的“家具”和“食品室”。养蜂家会拆掉整个蜂巢去获取蜂蜜。蜂蜜的提取可以透过打开蜂巢取出巢板,然后把它放进分离蜂蜜的离心机里旋转。另外,有时候新的蜂巢会以不加人工的蜂巢蜂蜜形式售卖,尤其是用来涂面包的蜂蜜,而非烹调或加入茶调味的蜂蜜。 孵化蜜蜂幼虫的蜂巢经过一段时间后,会渐渐变得昏暗,因为茧会嵌进巢室,并留下很多足迹,当看见这些在蜂巢蜂蜜框上,养蜂家称为“活动污迹”(TravelStain)。“巢板”(HoneySuper)上的蜂巢因为不能用来孵化蜜蜂幼虫,所以便会保持光亮颜色。 编辑本段结构介绍这次向大家介绍蜜蜂筑巢的不可思议之处。在我公司举办的“蜜蜂教室”等活动中,一问到“蜜蜂的巢是什么样的形状?”,孩子们都异口同声地大声回答说:“是六角形”。又问:“那为什么呈六角形呢?”,孩子们都歪下了头,有的孩子很有趣地回答说:“因为蜜蜂有六条腿”。有些人认为实际上蜜蜂是想作一个圆柱形的巢。没有人知道蜜蜂到底是怎么想的,但无疑是使用最少的材料制作尽可能宽敞的空间。由此可见,如果蜂巢呈圆形或八角形,会出现空隙,如果是三角形或四角形,则面积会减小,所以在这些形状中六角形是效率最好的。 这种六角形所排列而成的结构叫做蜂窝结构。因这种结构非常坚固,故被应用于飞机的羽翼以及人造卫星的机壁。蜂巢内外面的巢穴(叫做巢房)刚好一半相互错开,相互组合六角形的边交叉的点是内侧六角形的中心。这是为了提高强度,防止巢房底破裂。另外,从剖面图可知,两面的巢房方向都是朝上的。 蜂巢(11张)蜂巢是严格的六角柱形体。它的一端是六角形开口,另一端则是封闭的六角棱锥体的底,由三个相同的菱形组成。18世纪初,法国学者马拉尔奇曾经专门测量过大量蜂巢的尺寸,令他感到十分惊讶的是,这些蜂巢组成底盘的菱形的所有钝角都是109°28′,所有的锐角都是70°32′。后来经过法国数学家克尼格和苏格兰数学家马克洛林从理论上的计算,如果要消耗最少的材料,制成最大的菱形容器正是这个角度。从这个意义上说,蜜蜂称得上是“天才的数学家兼设计师”。 编辑本段神奇结构工蜂在巢房中哺育幼虫,贮藏蜂蜜和花粉,蜂巢形成9~14度左右的角度,以防止蜂蜜流出。蜜蜂的生态和蜂巢 蜂巢的结构真是让人吃惊,可以说是自然界的鬼斧神工。可见,先不说仍不为人熟知的蜜蜂世界,仅从蜂巢来看,就可知在自然创造性方面人类智慧是远不及它们的。蜜蜂作为具有优良社会 性的昆虫,从比人类历史更悠久的过去 一直生存至今、繁衍生息,并为我们带来了蜂蜜、蜂王浆、蜂胶、花粉以及蜂蜡

蜂巢结构的应用与研究

J I A N G S U U N I V E R S I T Y 蜂巢结构仿生研究与应用 学院名称:京江学院 专业班级:J高分子1101 学生姓名:胡文文 学号:41211260 16 指导老师:吴平 2005年12月

Estimation of human-hemoglobin using honeycomb structure:An application of photonic crystal abstract This paper proposes a method to estimate the hemoglobin concentration in human blood using 2D honeycomb photonic crystal structure. Though a few works deal with similar kind of investigation, presentresearch delivers an accurate estimation of hemoglobin as compared to previous works. The principleof investigation is based on linear variation of both photonic band gap and absorbance’s with respectto different concentration of hemoglobin in human blood. Aside these variations, energy transmittedthrough honeycomb photonic crystal structure is also varied linearly with respect to same concentration.In this work, photonic band gap of honeycomb structure is found using plane wave expansion method,whereas absorbance of same structure is computed by employing Maxwell Curl equation. Finally, simulation result revealed that transmitted energy through two dimensional honeycomb photonic crystalstructure containing blood is nicely fitted with linear trend line (R2 = 1) which lead to an accurate investigation of hemoglobin in human blood. At last, this paper proposes an experimental set up to measurethe said concentrations with the help of an Arduino developmentboard(Uno)containingAtmega320microcontroller. Keywords:Honeycomb photonic crystal structurePhotonic band gapTransmitted energ 1.Introduction Photonics crystals are made, artificially created materials inwhich refractive index is periodically modulated in a scale comparable to the scale of the wavelength. Though the concept ofphotonic crystal has originated in the year 1857 by Lord Rayleigh,the research work in the field of photonic crystals is realized afteralmost 100 years, when Yablonovitch and John published twomilestone papers on photonic crystals in 1987 [1–3], since then,photonics have been progressing hastily and showing a remarkableresearch in the field of science and

复合材料蜂窝夹层结构在飞机中的应用

复合材料蜂窝夹层结构在飞机中的应用 摘要:蜂窝夹层结构复合材料的应用越来越广泛,特别是在一些特殊领域,尤 其是在飞机制造中,蜂窝夹层结构复合材料已逐渐覆盖了飞机的整个机身结构, 事实证明,蜂窝夹层结构对飞机的使用有着非常明显的帮助。本文介绍了蜂窝夹 层结构的典型蜂窝几何结构、面板、蜂窝芯材类型和性能,阐述了蜂窝夹层结构 在国外、国内飞机上的应用,并结合蜂窝夹层结构应用的一些细节论述了相应的 设计方法。 关键词:复合材料;蜂窝夹层结构;飞机 飞机结构设计的基本原则是在满足强度要求的前提下,使结构尽可能轻,这 一要求将不可避免地导致需使用稳定的薄蒙皮来承受拉伸、压缩载荷,以及剪切、扭转、弯曲载荷的耦合作用。在传统的飞机结构设计中,采用纵向加强件、增稳 桁条、翼肋、隔框等结构对蒙皮进行加固,不可避免地导致结构增重问题。夹层 结构是提高结构比刚度的有效结构形式之一,复合材料夹层结构具有重量轻、强 度刚度好、耐热、吸声隔音、抗冲击、抗疲劳等特点,广泛应用于航空航天、汽车、通信、轨道车辆、造船、医疗器械、体育器材、土木工程等领域。 一、复合材料蜂窝夹层结构 复合材料夹层结构由两个薄面板和中间夹芯层组成,芯层和面板一般用胶粘 接在一起,或用熔焊或焊接成一个整体。 夹层结构的荷载传递方式与工字梁相似,上下面板主要承受由弯矩引起的面 内拉压应力及面内剪应力,而芯材主要承受横向力产生的剪应力,上下面板间的 距离增加了截面的惯性矩,提高了结构的抗弯刚度和材料的有效利用率与结构效率。 复合材料蜂窝夹层结构的强度与蜂窝几何形状及蜂窝芯材有关。根据蜂窝的 几何形状,蜂窝芯层分为标准六角形芯、矩形过膨胀芯、强化波纹芯、方格芯、 特殊夹芯等。其中增强正六边形的强度最高,其次是正六边形蜂窝,因其制作简单,材料消耗低,强度高,因而应用最广。 复合夹层结构的面板材料包括铝合金、钛合金、不锈钢、玻璃钢等复合材料,目前在航空结构中应用较多的是碳纤维单向带或织物增强复合材料。芯材有金属 或非金属蜂窝、泡沫塑料等。金属蜂窝芯层主要为铝蜂窝,非金属蜂窝芯层主要 有诺梅克斯纸蜂窝、玻璃布蜂窝、碳纤维蜂窝等,其中,铝蜂窝或诺梅克斯纸蜂 窝具有压缩模量高、质量轻的优点,成为飞机结构中广泛应用的夹芯材料。 铝蜂窝夹芯结构一般在大剪切载荷下使用,面板通常由金属板材制成。由于 铝蜂窝与碳纤维面板一起使用,铝蜂窝与复合材料面板胶接时难以配合,此外, 由于两种材料的热膨胀系数相差较大而引起的固化变形也很明显,若对两种材料 间的电绝缘处理不当,易发生电化学腐蚀。 诺梅克斯纸蜂窝强度略低于铝蜂窝,但其具有良好的韧性及抗损伤性,质量轻、抗压强度高、抗剪强度和疲劳强度好,具有各向异性特点,抗弯刚度/质量比及抗弯强度/质量比大;吸声、隔声、隔热性能好,易于协调复合材料黏接及组装,无腐蚀问题,还能满足FST(烟雾毒性)等要求,具有比铝蜂窝更少的局部不稳定问题。诺梅克斯纸蜂窝夹芯通常与碳/玻璃纤维预浸料一起使用,由于其丰富的应用经验和适中的成本,在航空领域得到了广泛的应用。 二、蜂窝夹层结构复合材料的基本特性 1、质量轻,比强度高,尤其是抗弯刚度高,同等质量的蜂窝夹层结构复合材

蜂巢结构

蜂巢結構 蜂巢的一個蜂室就像這個樣子,外形是正六稜柱 (regular hexagonal prism)正六邊形PQRSTU 是蜂室的正面,"屋頂"是三個全等的菱形 (用蠟封住),並與稜柱成等角。 右圖中,ABCDEF-PQRSTU 是正六角柱,假設底面正六邊形PQRSTU 的邊長=1 今截取 MQ=NS=UL=x,並往上翻到V,使得 PMRV,RNTV,PLTV 是菱形, (則底面變成三個全等的菱形)ABCDEF-PRT-V 的體積與原來的六角柱不變,欲使ABCDEF-PRT-V 的表面積有最小值,x=? 假設邊長PQ=1,QM=x 則21x PM +=,PMV Δ的高=2 321= 2244 3)1(2x x MV +=? +=,2341212×+=Δx PMC ,以一個柱面PABQ 而言,減少表面積PMQ,增加了表面積PMV Δ,所以增加了表面積f(x)=x x 2 141432?+,則x=?時f(x)有最小值呢? 高三的同學可用微積分簡單處理.高二的同學看後記(5),至於其他方法請看參考書目(1) 解得x=221,假設θ=∠MPV ,則由餘弦定理知318 9892238989cos =×?+=θ 查表,θ =70032' 所以 後記: '281090=∠MPV 1. 希臘時代的Pappus 就提出等周長問題(isoperimetric problem): 在平面上,等周長的區域,以圓形面積最大。 他認為,蜜蜂把牠們的蜂巢作成正六邊形,顯示了某種程度的數學知能 (mathematical understanding) 2. 法國物理學家Monsieur de Reaumur 認為,蜂巢的形狀是為了使材料最節省(容積固定,表面積最小)。因此向巴黎科學院院士Koenig 請教。得到肯定的答案。材料最節省時,蜂室底部三個菱形,確實MPV=109028' 與自然界實際的蜂巢相符,也就是說,蜜蜂確實以最省材料的方式建造牠們的蜂巢。

相关主题
文本预览
相关文档 最新文档