当前位置:文档之家› 铸铁基础知识与灰铸铁

铸铁基础知识与灰铸铁

铸铁基础知识与灰铸铁
铸铁基础知识与灰铸铁

含碳量在2%以上的铁碳合金。工业用铸铁一般含碳量为2%~4%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。碳、硅是影响铸铁显微组织和性能的主要元素。

8.1.1 铸铁的分类

1.根据铸铁石墨化程度分

(1)灰口铸铁:即在结晶过程中充分墨化的铸铁,其断口为暗灰色,游离碳全部以石墨状态存在。

(2)白口铸铁:没有石墨化,完全按Fe-Fe3C相图进行结晶而得到的铸铁。

(3)麻口铸铁:石墨化未充分进行,工业上应用少(脆、硬)。

2.根据铸铁中石墨形态分

(1)灰口铸铁:石墨以片状存在于铸铁中;

(2)可锻铸铁:石墨以团絮状存在于铸铁中;

(3)球墨铸铁:石墨以球状存在于铸铁中;

(4)蠕墨铸铁:石墨以蠕虫状存在于铸铁中。

8.1.2 铸铁的石墨化

铸铁中碳原子析出并形成石墨的过程称为石墨化。

1. 石墨化的途径

石墨既可以从液体和奥氏体中析出,也可以通过渗碳体分解来获得.灰口铸铁和球墨铸铁中的石墨主要是从液体中析出;可锻铸铁中的石墨则完全由白口铸铁经长时间退火,由渗碳体分解而得到。

2.影响石墨化的因素

化学成分:随C、Si↑→G核↑,有利于 G 析出;S↑→阻碍 G ,促进白口化,所以严格控制。

冷却速度:V↑→原子来不急扩散,G难以进行;易白口。V小——易得到灰

口。所以设计时:合理选择铸件壁厚。

8.1.3 铸铁的组织与性能的关系

铸铁的力学性能主要取决于基体的组织和石墨的形态、数量、大小以及分布状态。其中基体的组织一般可通过不同的热处理加以改变。力学性能:由于石墨对基体有严重割裂,所以铸铁的抗拉强度和塑性都很低。

(1)优良的铸造性能;

(2)良好的切削加性;

(3)优良的耐磨性与减震性;

(4)较低的机械性;

(5)缺口敏感性较低。

8.1.4 灰铸铁的成分与组织

灰铸铁是指具有片状石墨的铸铁,主要成分是铁、碳、硅、锰、硫、磷,是应用最广的铸铁,其产量占铸铁总产量80%以上。价格便宜,应用广泛,占铸铁总量的80% 。影响灰口铸铁组织和性能的因素:化学成分的影响(主要是控制C、Si含量),冷却速度的影响(冷速越快,越易形成白口铁)。灰铸铁碳量较高(为2.7%~4.0%),可看成是碳钢的基体加片状石墨。按基体组织的不同灰铸铁分为三类:铁素体基体灰铸铁;珠光体一铁素体基体灰铸铁;珠光体基体灰铸铁。

(1)铁素体灰铸铁:在铁素体的基体上分布着多而粗大的石墨片,其强度、硬度差,很少应用。

(2)珠光体灰铸铁:在珠光体的基体上分布着均匀、细小的石墨片,其强度、硬度相对较高,常用于制造床身、机体等重要件。

(3)珠光体—铁素体灰铸铁:在珠光体和铁素体混合的基体上,分布着较为粗大的石墨片,此种铸铁的强度、硬度尽管比前者低,但仍可满足一般机体要求,其铸造性、减震性均佳,且便于熔炼,是应用最广的灰铸铁。

灰铸铁显微组织的不同,实质上是碳在铸铁中存在形式的不同。灰铸铁中的碳有化合碳(Fe3C)和石墨碳所组成。化合碳为0.8%时,属珠光体灰铸铁;化合碳小于0.8%时,属珠光体—铁素体灰铸铁;全部碳都以石墨状态存在时,则为铁素体灰铸铁

8.1.5 灰铸铁的力学性能

灰铸铁的力学性能与基体的组织和石墨的形态有关。灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。故工业上较多使用的是珠光体基体的灰铸铁

8.1.6 灰铸铁的性能和孕育处理

经过孕育处理后的灰铸铁叫做孕育铸铁。孕育剂为硅类合金和碳类合金。其目地是形成非自发晶核,细化石墨,细化组织,提高强度;避免铸件边缘及薄断面出现白口组织,提高组织的均匀性。

8.1.7 灰铸铁的牌号与用途

灰铸铁的牌号由“灰铁”汉语拼音字母字头“HT”及后面的一组数字组成,数字表示最低抗拉强度。

如:HT200:

用于制造承受较大负荷的零件,如机床的床身、立柱、汽车缸体、缸盖、轮毂、联轴器等。

灰铸铁与球墨铸铁对比

1 灰铸铁 球墨铸铁 成分 石墨形状 片状或曲片状 大部分或全部呈球状 按基体组织分类 铁素体灰铸铁,铁素体+珠光体灰铸铁,珠光体灰铸铁 铁素体球墨铸铁,铁素体+珠光体球墨铸铁, 珠光体球墨铸铁 性能 虽然铸铁的机械性能不如钢,但由于石墨的存在,却赋予铸铁许多为钢所不及的特殊性能: ① 石墨造成脆性切削,铸铁的切削加工性能优异。 ② 铸铁的铸造性能良好,铸件凝固时形成石墨产生的膨胀,减少铸件体积的收缩,降低铸件中的内应力。 ③ 石墨有良好的润滑作用,并能储存润滑油,使铸件有很好的耐磨性能。 ④ 石墨对振动的传递起削弱作用,使铸铁有很好的抗振性能。 ⑤ 大量石墨的割裂作用,使铸铁对缺口不敏感。 灰铸铁的抗拉强度、塑性和韧性都低于碳素铸钢,特别是塑性、韧性几乎为零。铁素体基体灰铸铁强度低;而由于石墨片割裂金属基体,致使伸长率和冲击韧性均很低。珠光体具有高的强度、硬度和耐磨性,故珠光体基体灰铸铁的强度、硬度和耐磨性均优于铁素体基体灰铸铁,而塑性、韧性相差无几,所以珠光体基体灰铸铁获得了广泛的使用。在实际生产中,获得百分之百珠光体基体组织的灰铸铁是比较困难的。故通常灰铸铁铸态的基体组织都是珠光体+铁素体组织。 与灰口铸铁相比,球墨铸铁具有较高的抗拉强度和弯曲疲劳极限,也具有相当良好的塑性及韧性。这是由于球形石墨对金属基体截面削弱作用较小,使得基体比较连续,基体强度利用率可达70%~90%,且在拉伸时引起应力集中的效应明显减弱,从而使基体的作用可以从灰铸铁的30%~50%提高到70%~90%。另外,球铁的刚性也比灰铸铁好,但球铁的消振能力比灰铸铁低很多。 热处理 灰铸铁热处理的目的主要用来消除铸件内应力、改善切削加工性能和 球墨铸铁的组织可以看作是钢的组织加球状石墨所组成,钢在热处理

球墨铸铁化学成分

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。? 1、碳及碳当量的选择原则:? 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在~%之间,碳当量在~%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。? 2、硅的选择原则:? 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在—%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。? 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则:? 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过~%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。? 4、磷的选择原则:? 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于%时,固溶于基体中,对力学性能几乎没有影响。当含量大于%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加%,韧脆性转变温度提高4~℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于%。对于比较重要的铸件,磷含量应低于%。????球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。? ?5、硫的选择原则:? 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于%。

灰铸铁和球墨铸铁的区别及用途

铸铁与球墨铸铁的区别 灰铸铁组织里的石墨是以片状存在,球墨铸铁组织里的石墨是以球状存在的. 组织上的差别导致它们的性能也有巨大差异:灰铸铁强度\塑性低(片状石墨割裂基体,引起应力集中),脆性大,消振性能好.主要用来生产一些强度要求不高,主要承受压应力的各种箱体\底座等.球墨铸铁:球形石墨对基体的割裂作用降到最低,应力集中作用最小,故其强度很高, 可以和中碳钢蓖美,可以充分发挥基体的性能,且有一定的塑性和良好的韧性.常用来制作一些强韧性要求高且形状复杂(铸造性能比钢好,)的工件,比如内燃机曲轴\连杆等之类的零件.球墨铸铁一般还可以经 过热处理来进行强化,而灰铸铁一般不能经过热处理来提高强度(片状石墨的影响). 与铸铁相比,球墨铸铁在强度方面具有绝对的优势。球墨铸铁的抗拉强度是60k,而铸铁的抗拉强度只有31k。球墨铸铁的屈服强度是40k,而铸铁并没有显示出屈服强度,并且最终出现断裂。球墨铸铁的强度比远远优于铸铁。球墨铸铁在耐腐蚀性方面与铸铁相同。 球墨铸铁的强度和铸钢的强度是可比的。球墨铸铁具有更高的屈服强度,其屈服强度最低为40k,而铸钢的屈服强度只有36k。在大部分市政应用领域,如:水、盐水、蒸汽等,球墨铸铁的耐腐蚀性和抗氧化性都超过铸钢。由于球墨铸铁的球状石墨微观结构,在减弱振动能力方面,球墨铸铁优于铸钢,因此更加有利于降低应力。选择球墨铸铁的一个重要的原因在于球墨铸铁的优异性能。球墨铸铁的优异

性能使得这种材料更加受欢迎,铸造效率更高,也较少了球墨铸铁的机加工成本,有时,球墨铸铁被称为“两个世界里最好的”金属,意思是球墨铸铁具有铸钢的强度,也有铸铁优异的抗腐蚀性。 铸铁与球墨铸铁铸件的成本差价在3000-4000元之间。

灰铸铁的热处理

灰铸铁的热处理 退火 1.去应力退火为了消除铸件的残余应力,稳定其几何尺寸,减少或消除切削加工后产生的畸变,需要对铸件进行去应力退火。 去应力退火温度的确定,必须考虑铸铁的化学成分。普通灰铸铁当温度起过550℃时,即可能发生部分渗碳体的石墨化和粒化,使强度和硬度降低。当含有合金元素时,渗碳体开始分解的温度可提高到650℃左右。 通常,普通灰铸铁去应力退火温度以550℃为宜,低合金灰铸铁为600℃,高合金灰铸铁是可提高到650℃,加热速度一般选用60~120℃/h.保温时间决定于加热温度、铸件的大小和结构复杂程度以及对消除应力程度的要求。铸件去应力退火的冷却速度必须缓慢,以免产生二次残余内应力,冷却速度一般控制在20~40℃/h,冷却到200~150℃以下,可出炉空冷。 一些灰铸铁件的去应力退火规范示于表1. 2.石墨化退火灰铸铁件进行石墨化退火是为了降低硬度,改善加工性能,提高铸铁的塑性和韧性。 若铸件中不存在共晶渗碳体或其数量不多时,可进行低温石墨化退火;当铸件中共晶渗碳体数量较多时,须进行高温石墨化退火。 (1)低温石墨化退火,铸铁低温退火时会出现共析渗碳体石墨化与粒化,从而使铸件硬度降低,塑性增加。 灰铸铁低温石墨化退火工艺是将铸件加热到稍低于Ac1下限温度,保温一段时间使共析渗碳体分解,然后随炉冷却。

(2)高温石墨化退火,高温石墨化退火工艺是将铸件加热至高于Ac1上限以上的温度,使铸铁中的自由渗碳体分解为奥氏体和石墨,保温一段时间后根据所要求的基体组织按不同的方式进行冷却。 正火 灰铸铁正火的目的是提高铸件的强度、硬度和耐磨性,或作为表面淬火的预备热处理,改善基体组织。一般的正火是将铸件加热到Ac上限+30~50℃,使原始组织转变为奥氏体,保温一段时间后出炉空冷。形状复杂的或较重要的铸件正火处理后需再进行消除内应力的退火。如铸铁原始组织中存在过量的自由渗碳体,则必须先加热到Ac1上限+50~100℃的温度,先进行高温石墨化以消除自由渗碳体在正火温度范围内,温度愈高,硬度也愈高。因此,要求正火后的铸铁具有较高硬度和耐磨性时,可选择加热温度的上限。 正火后冷却速度影响铁素体的析出量,从而对硬度产生影响。冷速愈大,析出的铁素体数量愈少,硬度愈高。因此可采用控制冷却速度的方法)(空冷、风冷、雾冷),达到调整铸铁硬度的目的。 淬火与回火 1.淬火铸铁淬火工艺是将铸件加热到Ac1上限+30~50℃的温度,一般取850~900℃,使组织转变成奥氏体,并在此温度下保温,以增加碳在奥氏体中的溶解度,然后进行淬火,通常采用油淬。 对于形状复杂或大型铸件应缓慢加热,必要时可在500~650℃预热,以避免不均匀加热而造成开裂。 随奥氏体化温度升高,淬火后的硬度越高,但过高的奥氏体化温度,不但增加铸铁变形和开裂的危险,并产生较多的残留奥氏体,使硬度下降。 灰铸铁的淬透性与石墨大小、形状、分布、化学成分以及奥氏体晶粒度有关。

铸铁材料的分类

铸铁材料的分类、石墨的结构和特点二 第二节灰铸铁 一、灰铸铁的成分、组织与性能特点 1.灰铸铁的化学成分 铸铁中碳、硅、锰是调节组织的元素,磷是控制使用的元素,硫是应限制的元素目前生产中,灰铸铁的化学成分范围一般为:wC=2.7%~3.6%,wSi=1.0%~2.5%,wMn=0.5%~1.3%,wP≤0.3%,wS≤0.15% 2.灰铸铁的组织 灰铸铁是第一阶段和第二阶段石墨化过程都能充分进行时形成的铸铁 它的显微组织特征是片状石墨分布在各种基体组织上 由于第三阶段石墨化程度的不同,可以获得三种不同基体组织的灰铸铁 a)铁索体灰铸铁b)珠光体灰铸铁 c)铁索体珠光体灰铸铁 图7.4 灰铸铁的显微组织 3.灰铸铁的性能特点 (1)力学性能:灰铸铁的抗拉强度、塑性、韧性和弹性模量远比相应基体的钢低石墨片的数量愈多,尺寸愈粗大 分布愈不均匀,对基体的割裂作用和应力集中现象愈严重,则铸铁的强度、塑性与韧性就愈低 由于灰铸铁的抗压强度σbc、硬度与耐磨性主要取决于基体,石墨的存在对其影响不大,故灰铸铁的抗压强度一般是其抗拉强度的3~4倍同时,珠光体基体比其它两种基体的灰铸铁具有较高的强度、硬度与耐磨性 (2)其它性能石墨虽然会降低铸铁的抗拉强度、塑性和韧性,但也正是由于石墨的存在,使铸铁具有一系列其它优良性能 ①铸造性能良好由于灰铸铁的碳当量接近共晶成分,故与钢相比,不仅熔点低,流动性好,而且铸铁在凝固过程中要析出比容较大的石墨,部分地补偿了基体的收缩,从而减小了灰铸铁的收缩率,所以灰铸铁能浇铸形状复杂与壁薄的铸件 ②减摩性好减摩性是指减少对偶件被磨损的性能灰铸铁中石墨本身具有润滑作用,而且当它从铸铁表面掉落后,所遗留下的孔隙具有吸附和储存润滑油的能力,使摩擦面上的油膜易于保持而具有良好的减摩性所以承受摩擦的机床导轨、汽缸体等零件可用灰铸铁制造 ③减振性强铸铁在受震动时 石墨能阻止震动的传播 起缓冲作用,并把震动能量转变为热能,灰铸铁减振能力约比钢大10倍,故常用作承受压力和震动的机床底座、机架、机床床身和箱体等零件, ④切削加工性良好由于石墨割裂了基体的连续性 使铸铁切削时容易断屑和排屑 且石墨对刀具具有一定润滑作用,故可使刀具磨损减少 ⑤缺口敏感性小钢常因表面有缺口(如油孔、键槽、刀痕等)造成应力集中,使力学性能显著降低,故钢的缺口敏感性大灰铸铁中石墨本身已使金属基体形成了大量缺口,致使外加缺口的作用相对减弱,所以灰铸铁具有小的缺口敏感性 由于灰铸铁具有以上一系列的优良性能,而且价廉 易于获得,故在目前工业生产中,它仍然是应用最广泛的金属材料之一 二、灰铸铁的孕育处理 灰铸铁组织中石墨片比较粗大,因而它的力学性能较低为了提高灰铸铁的力学性能

球墨铸铁化学成分完整版

球墨铸铁化学成分集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。 1、碳及碳当量的选择原则: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。 2、硅的选择原则: 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在1.4—3.0%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则: 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加0.1%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过0.4~0.6%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。 4、磷的选择原则: 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于0.05%时,固溶于基体中,对力学性能几乎没有影响。当含量大于0.05%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加0.01%,韧脆性转变温度提高4~4.5℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于0.08%。对于比较重要的铸件,磷含量应低于0.05%。球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 5、硫的选择原则: 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。

常用球墨铸铁的性能和特点

常用球墨铸铁的性能和特点 ①灰口铸铁。灰口铸铁的组织由石墨和基体两部分组成。基体可以是铁素体、珠光体或铁素体加珠光体,相当于钢的组织。因此铸铁的组织可以看成是钢基体上分布着石墨。 灰口铸铁包括普通灰FI铸铁和孕育铸铁两种。灰口铸铁价格便宜、应用最广泛,在各类铸铁的总产量中,灰口铸铁占 80.o%以上。影响灰口铸铁组织和性能的因素主要是化学成分和冷却速度。灰口铸铁中的碳、硅含量一般控制在碳 2.5%~ 4.0%,硅 1.0%~ 3.0%。 ②球墨铸铁管。球墨铸铁是20世纪50年代发展起来的一种高强度铸铁材料,其综合机械洼能接近于钢,因铸造性能很好、成本低廉、生产方便,在工业中得到了广泛的应用。 球墨铸铁的成分要求比较严格,与灰口铸铁相比,它的含碳量较高,通常在 4.5%~ 4.7%范围内变动,以利于石墨球化。 球墨铸铁的抗拉强度远远超过灰口铸铁,而与钢相当。因此对于承受静载的零件,使用球墨铸铁比铸钢还节省材料,而且重量更轻。不同基体的球墨铸铁,性能差别很大,球墨铸铁具有较好的疲劳强度,实验表明,球墨铸铁的扭转疲劳强度甚至超过459钢。

在实际应用中,大多数承受动载的零件是带孔或带台肩的,囡此用邀墨铸铁来岱益钢制造某些重要零件,如曲轴、连杆和凸轮轴等。 ③焉基铸铁。蠕墨铸铁是近十几年来发展起来的一种新型高强铸铁材料。它的强度接近于球墨铸铁,并具有一定的韧性和较高的耐磨性;同时又有灰口铸铁良好的铸造性能和导热性。蠕墨铸铁是在一定成分的铁水中加入适量的蠕化剂经处理而炼成的。蠕化剂目前主要采用镁钛合金、稀土镁钛合金或稀土镁钙合金等。蠕墨铸铁在生产中主要用于生产汽缸盖、汽缸套、钢锭模和液压阀等铸件。 ④可锻铸铁。可锻铸铁是由白口铸铁通过退火处理得到的一种高强铸铁。它有较高的强度、塑性和冲击韧性,可以部分代替碳钢。按退火方法不同,这种铸铁有黑心和自心两种类型。黑心可锻铸铁依靠石墨化退火来获得;白心可锻铸铁利用氧化脱碳退火来制取。 可锻铸铁常用来制造形状复杂、承受冲击和振动荷载的零件,如管接头和低压阀门等。这些零件用铸钢生产时,因铸造性能不好,工艺上困难较大,而用灰口铸铁时,又存在性能不能满足要求的问题。与球墨铸铁相比,可锻铸铁具有成本低、质量稳定、工 艺处理简单等优点。尤其对于薄壁件,球墨铸铁还容易生成白口,需要进行高温退火,这时采用可锻铸铁更为适宜。 ⑤耐磨铸铁。在铸铁中加入某些合金元素而得到。耐磨铸铁是在磨粒磨损条件下工作的铸铁,应具有高而均匀的硬度。白口铸铁就属这类耐磨铸铁。但白口铸铁脆性较大,不能承受冲击荷载,因此在生产上常采用激冷的办法来获得耐磨铸铁。 ⑥耐热铸铁。耐热铸铁是在高温下工作的铸件,如炉底板、换热器、坩埚、热处理炉内的运输链条等。在灰口铸铁中加入铝、硅和镉等元素,一方面在铸件表面形成致密的氧化膜,阻碍继续氧化;另一方面提高铸铁的临界温度,使基体变为单相铁素体,不发生石墨化过程,因此铸铁的耐热性得到改善。

铸铁牌号对照表及性能

铸铁 牌 号 (白心)可锻铸铁性能及相关数据 '); //--> 材料名称:(白心)可锻铸铁 牌号:KTB450-07

标准:GB 9440-88 ●特性及适用范围: 坯料在氧化性介质中进行脱碳退火,焊接性较好,只适宜铸造壁厚在15mm以下的铸件。国内应用较少,国外有用作水暖管件的 ●化学成份:wC=2.2%~2.8%,wSi=1.0%~1.8%,wMn=0.3%~0.8%,wS≤0.2%,wP≤0.1%. ●力学性能: (1)抗拉强度σb (MPa) 当试棒直径:d=9mm时,≥400;d=12mm时,≥450;d=15mm时,≥480 (2)条件屈服强度σ0.2 (MPa) 当试棒直径:d=9mm时,≥230;d=12mm时,≥260;d=15mm时,≥280 (3)伸长率δ (%) 当试棒直径:d=9mm时,≥10;d=12mm时,≥7;d=15mm时,≥4 (4)硬度:≤220HB (5)试样尺寸,试棒直径:d=9mm;d=12mm;d=15mm ●热处理规范及金相组织: 热处理规范:(由供方定) 金相组织:小断面尺寸:铁素体。大断面尺寸:表面区域--铁素体;中间区域--珠光体+铁素体+退火碳;心部区域--珠光体+退火碳 中日美部分不锈钢化学成分对比表 '); //-->

球墨铸铁性能及相关数据 '); //--> 材料名称:球墨铸铁 牌号:QT600-3 标准:GB 1348-88 ●特性及适用范围: 为珠光体型球墨铸铁,具有中高等强度、中等韧性和塑性,综合性能较高,耐磨性和减振性良好,铸造工艺性能良好等特点。能通过各种热处理改变其性能。主要用于各种动力机械曲轴、凸轮轴、连接轴、连杆、齿轮、离合器片、液压缸体等零部件 ●化学成份: 碳 C :3.56~3.85 硅 Si:1.83~2.56 锰 Mn:0.49~0.70 硫 S :0.016~0.045 磷 P :0.035~0.058 镁 Mg:0.041~0.067 注:RxOy:0.033~0.049 ●力学性能: 抗拉强度σb (MPa):≥600 条件屈服强度σ0.2 (MPa):≥370 伸长率δ (%):≥3 硬度:190~270HB ●热处理规范及金相组织: 热处理规范:(由供方定,以下为某试样的热处理规范,供参考) 930℃,2h正火空冷, 600℃,2h,回火空冷 金相组织:珠光体+铁素体

铸铁(灰铸铁、球墨铸铁、可锻铸铁)金相组织观察与绘制

铸铁(灰铸铁、球墨铸铁、可锻铸铁)金相组织观察与绘制 (验证性实验) 一、实验目的及要求 1.了解和认识灰铸铁中石磨和金属基体的金相特点, 2.了解和认识球墨铸铁以及可锻铸铁、蠕墨铸铁中石磨和金属基体的组织特点。 3.学习有关灰铸铁的金相检验方法。 4.学习有关球墨铸铁的金相检验方法。 5.了解铸铁金相试样的制作方法。 二、实验内容 1.观察和绘制以下灰铸铁的金相组织: (1)具有A型分布石磨的灰铸铁(试片未侵蚀)。 (2)具有B型分布石磨的灰铸铁(试片未侵蚀)。 (3)具有C型分布石磨的灰铸铁(试片未侵蚀)。 (4)具有D型分布石磨的灰铸铁(试片未侵蚀)。 (5)具有E型分布石磨的灰铸铁(试片未侵蚀)。 (6)具有F型分布石磨的灰铸铁(试片未侵蚀)。 并对A型石墨进行石墨长度检验,确定石墨长度分级。 (7)选1~2片灰铸铁试样,侵蚀后进行基体组织的分析检验;确定灰铸铁基体的类别,珠光体数量,珠光体分散度,磷共晶数量和分类,碳化物数量等。 (8)具有二元磷共晶体的灰铸铁(试片侵蚀)观察磷共晶体结构。 2.观察和绘制以下球墨铸铁和可锻铸铁的金相组织 (1)球墨铸铁的铸态组织(包括具有自由渗碳体的铸态组织), (2)球墨铸铁的退火金相组织(铁素体组织), (3)球墨铸铁的正火或部分奥氏体正火金相组织, (4)球墨铸铁的淬火或调质的金相组织, (5)球墨铸铁的等温淬火金相组织, (6)选1~2块铸态或经热处理的球墨铸铁试样进行球化率和金属基体的鉴定。

(7)可锻铸铁的金相组织(铁素体), (8)蠕墨铸铁的金相组织, 三、实验仪器设备 1.配放大100倍和400倍镜头的金相显微镜。 2.试片侵蚀剂:3~5%硝酸酒精溶液。 3.按实验要求选取灰铸铁、球墨铸铁、可锻铸铁试块。 四、实验方案实施与数据 实验报告的书写要求 1.实验目的及要求 2.实验仪器设备 3.实验内容 4.实验方案实施与数据 (1)在实验报告纸上画Φ50的圆圈,在圆圈下画五条横线,例: 试样名称—————————— 试样状态—————————— 浸蚀方法—————————— 放大倍数—————————— 金相组织—————————— (2)共画16个圆圈以被实验时使用。 (3)在每个画好的金相组织图上,用指引线指出该金相组织的类别。 5.实验总结 (1)回答实验报告上的思考题 (2)参加本次试验的体会和有哪些提高。

灰铸铁中各元素作用

灰铸铁中各元素作用 1、碳、硅 碳、硅都是强烈地促进石墨化的元素,可用碳当量来说明他们对灰铸铁金相组织和力学性能的影响。提高碳当量促使石墨片变粗、数量增加,强度硬度下降。相反降低碳当量可减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而提高灰铸铁的力学性能。 但是降低碳当量会导致铸造性能下降。 2、锰:锰本身是稳定碳化物、阻碍石墨化的元素,在灰铸铁中具有 稳定和细化珠光体作用,在 Mn=0.5%~1%范围内,增加锰量,有利于强度、硬度的提高。 3、磷:铸铁中含磷量超过0.02%,就有可能出现晶间磷共晶。磷在奥 氏体中的溶解度很小,铸铁凝固时,磷基本上都留在液体中。共晶凝固接近完成时,共晶团之间剩余的液相成分接近三元共晶成(Fe-2%、C-7%、P)。此液相约在955℃凝固。 铸铁凝固时,钼、铬、钨和钒都偏析于富磷的液相中,使磷共晶的量增多。铸铁中含磷量高时,除磷共晶本身的有害作用外,还会使金属基体中所含的合金元素减少,从而减弱合金元素的作用。 磷共晶液体在凝固长大的共晶团周围呈糊状,凝固收缩很难得到补给,铸件出现缩松的倾向较大。 4、硫:降低铁液流动性,增加铸件热裂倾向,是铸件中的有害元素。 很多人认为硫含量越低越好,实则不然,当硫含量≤0.05%时,此种铸铁对我们使用的普通孕育剂来说不起作用,原因是孕育衰

退的很快,常常在铸件中产生白口。 5、铜:铜是生产灰铸铁最常加入的合金元素,主要原因是由于铜熔 点低(1083℃),易熔解,合金化效果好,铜的石墨化能力约为硅的1/5,因此能降低铸铁的白口倾向,同时铜也能降低奥氏体转变的临界温度,因此铜能促进珠光体的形成,增加珠光体的含量,同时能细化珠光体和强化珠光体及其中的铁素体,因而增加铸铁的硬度及强度。但是并非铜量越高越好,铜的适宜加入量为0.2%~0.4%当大量地加铜时,同时又加入锡和铬的做法对切削性能是有害的,它会促使基体组织中产生大量的索氏体组织。 6、铬:铬的合金化效果是非常强烈的,主要是因为加铬使铁水白口 倾向增大,铸件易收缩,产生废品。所以,应对铬量加以控制。 一方面希望铁水中含有一定量的铬,以提高铸件的强度和硬度; 另一方面又将铬严格控制在下限,以防止铸件收缩而造成废品率增加。传统的经验认为,原铁水铬量超过0.35%时,将对铸件产生致命的影响。 7、钼:钼是典型的化合物形成元素,是很强的珠光体稳定元素,它 能细化石墨,在ωMo<0.8%时,钼能细化珠光体,同时能强化珠光体中的铁素体,从而能有效地提高铸铁的强度和硬度。

球墨铸铁管与普通铸铁管的区别

球墨铸铁管与普通铸铁管的区别: 球墨铸铁管具有铁的本质,钢的性能。 【球墨铸铁管比普通铸铁管强度高】 球墨铸铁和普通铸铁里都含有石墨单体,就是说铸铁是铁和石墨的混合体。普通铸铁中的石墨是片状存在的,石墨的强度很低,所以相当于铸铁中存在许多片状的空隙,所以普通铸铁强度比较低,较脆。石墨铸铁中的石墨是呈球状的,相当于铸铁中存在许多球状的空隙。球状空隙对铸铁强度的影响远比片状空隙小,所以球墨铸铁强度比普通铸铁强度高许多。强度高的球墨铸铁管当然比较受欢迎啦! 球墨铸铁的性能接近于中碳钢。价格便宜得多了。 蠕墨铸铁最好,但是贵。 灰口铸铁差一些。白口铸铁最差。 前两个是以所含石墨的形状来命名。后两个石墨都是片状,割裂了铁素体,产生应力集中,所以强度低。 关于标准壁厚的内容: 3.1 分类 球铁管均采用柔性接口。按接口型式分为机械式、滑入

式两类。机械接口型式又分为N1型、X型和S型三种,滑入式接口型式为T型。根据需方要求、亦可采用其他接口型式。接口型式应在合同中注明。 3.2 分级 球墨铸铁直管的标准壁厚T按公称口径Dg的一次函数式计算,即: T=K(0.5+0.001Dg) 式中:T——标准壁厚,mm; Dg——公称口径,mm; K——系统,取8、9、10、12。 球墨铸铁直管按系统取值的不同,其标准壁厚分别为K8级、K9级、K10级和K12级。壁厚级别应在合同中注明,凡合同中不注明的均按K9级共货。 对于公称口径100~200mm的直管采用下列附加公式: T=5.8+0.003Dg 最小壁厚为6mm。 铸铁排水管与铸铁给水管道的区别: 铸铁管是由生铁制成。按其制造方法不同可分为:砂型离心承插直管、连续铸铁直管及砂型铁管。按其所用的材质不同可分为:灰口铁管、球墨铸铁管及高硅铁管。铸铁管多用于给水、排水和煤气等管道工程。

各国铸铁牌号对照

具有優異機械與物理性能的各類型米漢納金屬材料自從六十多年前由美國 米漢納總公司開發以來,由於嚴格的配料與爐前管制,可鑄出各類型高品質 的強韌鑄鐵件。其中以一般工程用(G型灰口鑄鐵與S型球墨鑄鐵) 廣受工業 界青睞,尤其是外銷國際市場的工具機業、齒輪業、閥體業與多數產業機械 的業者,均指定具有『M』標誌的米漢納灰口與球墨鑄鐵為其組裝的中大型 重要部品鑄件,品質值得信賴與肯定。 國家代表 \ 規格記號灰口鑄鐵(片狀石墨鑄鐵) 主要規格GM400GA350GC275GE200GF150米漢納金屬 參考規格GM400GA350GB300GC275GD250GE225GE200GF150中華民國CNS G3038─FC 350FC 300─FC 250─FC 200FC 150中國大陸GB 9439─HT 350HT 300─HT 250─HT 200HT 150日本JIS G5501─FC 350FC 300─FC 250─FC 200FC 150 ASTM A4860級55/50級45級40級35級30級25級20級美國 SAE J431B───G4000G3500G3000G2500G1800英國BS 1452─350300─250220200/180150德國DIN 1691GG40GG35GG30─GG25─GG20GG15法國NFA32-101FGL400FGL350FGL300─FGL250─FGL200FGL150澳大利亞AS 1830T400T350T300─T250─T200T150 ISO R185─350300─250─200150

國家代表\規格記號球墨鑄鐵(球狀石墨鑄鐵) 主要規格SFF350SF400SP600SH700SH800米漢納金屬 參考規格SFF350SFF400SF400SF420SFP500SPF600SP700SH800 中華民國CNS G2118FCD 350─FCD 400FCD 450FCD 500FCD 600FCD 700FCD 800中國大陸GB 1348─QT400-18 QT400-15QT450-10QT500-7QT600-3QT700-2QT800-2日本JIS G5502FCD350-22FCD400-18FCD400-15FCD450-10FCD500-7FCD600-3FCD700-2FCD800-2 ASTM A536─60-40-18─60-45-1280-55-06─100-70-2120-90-2美國 SAE J434B─D4018─D4512─D5506D7703DQ&T 英國BS 2789350-22400-18─420-12 /450-10 500-7600-3700-2Gr800-2 德國DIN 1693GGG35.3GGG40.3GGG40─GGG50GGG60GGG70GGG80法國NFA32-201─370-17400-12─500-7600-3700-2800-2澳大利亞AS1831─370-230-17─400-250-12500-320-7600-370-3700-420-2800-480-2 ISO1083─370-17400-12─500-7600-3700-2800-2 國家代表\ 規格記號沃斯回火球墨鑄鐵( ADI ) 米漢納金屬主要規格K295(K9007)K325(K10005)K405(K12003)── 日本JIS G5503 FCAD 900-4 /FCAD 900-8FCAD 1000-5FCAD 1200-2FCAD 1400-1 ─ 美國ASTM A897850/550/101050/700/71200/850/41400/1100/11600/1300/-

玻璃钢夹砂管道与球墨铸铁管比较

3、纤维缠绕夹砂玻璃钢管的优点 与其他材质的管道比较,玻璃钢管道具有以下一些显著的优点:1)耐腐蚀性好,对水质无影响: 玻璃钢管道能抵抗酸、碱、盐、海水、未经处理的污水、腐蚀性土壤或地下水及众多化学流体的侵蚀。比传统管材的使用寿命长,其设计使用寿命一般为50年以上。 对夹砂玻璃钢管道而言,更多的是在市政、城市输配管网方面的应用,由于其具有无毒、无锈、无味、对水质无二次污染、无需防腐、使用寿命大大延长、安装简便等优点,因此,受到了给排水行业的欢迎。 2)防污抗蛀: 不饱和聚酯树脂的表面洁净光滑,不会被海洋或污水中的甲贝、菌类等微生物玷污蛀附,以致增大糙率,减少过水断面,增加维护费用。玻璃钢管道无这些污染,长期使用洁净如初。 3)耐热性、抗冻性好: 在-30℃状态下,仍具有良好的韧性和极高的强度,可在-50℃-80℃的范围内长期使用,采用特殊配方的树脂还可在110℃以上的温度工作。 4)自重轻、强度高,运输安装方便: 采用纤维缠绕生产的夹砂玻璃钢管道,其比重在1.65-2.0,只有钢的1/4,但玻璃钢管的环向拉伸强度为180-300MPa,轴向拉伸强度为60-150MPa,近似合金钢。因此,其比强度(强

度/比重)是合金钢的2-3倍,这样它就可以按用户的不同要求,设计成满足各类承受内、外压力要求的管道。对于相同管径的单重,FRP管只有碳素钢管(钢板卷管)的1/2.5,铸铁管的1/3.5,预应力钢筋水泥管的1/8左右,因此运输安装十分方便。玻璃钢管道每节长度12米,比混凝土管可减少三分之二的接头。它的承插连接方式,安装快捷简便,同时降低了吊装费用,提高了安装速度。5)摩擦阻力小,输送能力高: 玻璃钢管内壁非常光滑,糙率和摩阻力很小。糙率系数为0.0084,而混凝土管的n值为0.014,铸铁管为0.013,因此,玻璃钢管能显著减少沿程的流体压力损失,提高输送能力。因此,可带来显著的经济效益: ①在输送能力相同时,工程可选用内径较小的玻璃钢管道,从而 降低一次性的工程投入; ②采用同等内径的管道,玻璃钢管道可比其他材质管道减少压头 损失,节省泵送费用。 ③可缩短泵送时间,减少长期运行费用。 6)电、热绝缘性好: 玻璃钢是非导体,管道的电绝缘性特优,绝缘电阻在1012-1015Ω.cm,最适应使用于输电、电信线路密集区和多雷区;玻璃钢的传热系数很小,只有0.23,是钢的5‰,管道的保温性能优异。 7)耐磨性好: 把含有大量泥浆、沙石的水,装入管子中进行旋转磨损影响对比

常用国内外金属材料--铸铁牌号对照[1]

常用国内外金属材料--铸铁牌号对照 灰口铸铁牌号对照 中国美国德国日本法国英国国际 GB/T 9439-1988 ASTM A48 DIN1691 JIS G5501 NFA32-101 BS1452 ISO/R185 HT150 Class 20B GG15 FC15 Ft.15D Cr.150 Cr.15 HT200 Class 25B GG20 FC20 Ft.20D Cr.180 Cr.20 HT250 Class 35B GG25 FC25 Ft.25D ——Cr.25 HT300 Class 45B/50B GG30 FC30 Ft.30D Cr.300 Cr.30 HT350 Class 55B GG35 FC35 Ft.35D Cr.350 Cr.35 ——Class 60B GG40 ——Ft.40D Cr.400 Cr.40 球墨铸铁牌号对照 中国美国德国日本法国英国国际 GB 1348-1988 ASTM A536 DIN1693 JIS G5502 NFA32-201 BS 2789 ISO/R1083 QT400-18 60-40-18 GGG40 FCD40 FGS370-17 Cr.370-17 Cr.370-17 QT450-10 65-45-12 ————FGS400-12 Cr.420-12 Cr.420-12 QT500-7 80-55-06 GGG50 FCD45/50 FGS500-7 Cr.500-7 Cr.500-7

QT600-3 GGG60 FCD60 FGS600-3 Cr.600-3 Cr.600-3 QT700-2 100-70-03 GGG70 FCD70 FGS700-2 Cr.700-2 Cr.700-2 QT800-2 120-90-02 GGG80 ——FGS800-2 Cr.800-2 Cr.800-2 注:本对照表为抗拉强度近似对照。 常用碳素铸钢成份表 化学成分(%) 牌号 C Mn Si P≤S≤Cr Ni Mo Cu≤残余元素总和≯DT3(电工纯铁)≤0.04≤0.30≤0.200.020 0.020 ≤0.10≤0.20≤0.20Al≤0.50 ZG200-400(ZG15)0.12~0.20 0.50~0.80 0.20~0.45 0.040 0.040 ≤0.35≤0.30≤0.200.30 1.00 ZG230-450(ZG25)0.22~0.30 0.50~0.80 0.20~0.45 0.040 0.040 ≤0.35≤0.30≤0.200.30 1.00 ZG270-500(ZG35)0.32~0.40 0.50~0.80 0.20~0.45 0.040 0.040 ≤0.35≤0.30≤0.200.30 1.00 ZG310-570(ZG45)0.42~0.50 0.50~0.80 0.20~0.45 0.040 0.040 ≤0.35≤0.30≤0.200.30 1.00 常用不锈钢成份表 化学成分(%) 牌号 C Mn Si P≤S≤Cr Ni Mo Cu Ti ZG1Cr17Mn9Ni4Mo3Cu2N(Ni-N) ≤0.128.00~10.0 ≤1.500.060 0.035 16.0~19.0 3.00~5.00 2.90~3.50 2.00~2.50 N 0.16~0.26 ZG0Cr18Ni9Ti(304) ≤0.080.80~2.00 ≤1.50 0.040 0.030 17.0~20.0 8.00~11.00 5(c-0.02)~0.70 ZG0Cr18Ni12Mo2Ti(316) ≤0.080.80~2.00 ≤1.500.040 0.030 16.0~19.0 11.0~13.00 2.00~3.00 5(c-0.02)~0.70 ZG0Cr19Ni10Mo2(1.4408) ≤0.08≤2.00≤1.500.040 0.040 18.0~21.0 9.0~12.00 2.00~3.00 ZG0Cr13Ni6Mo ≤0.08≤0.80≤0.700.030 0.030 12.0~14.0 5.50~6.50 0.40~1.00 ZG2Cr13 0.16~0.24 ≤0.60≤1.000.040 0.030 12.0~14.0 ≤0.60 ZG0Cr25Ni5Mo2(1.4460) ≤0.08 1.0~1.5 0.5~0.8 0.040 0.035 24.0~26.0 4.0~6.0 1.5~2.0 N:0.02~0.10 常用耐磨钢成份表 牌号化学成份 %

灰铸铁的化学成分与抗拉强度的关系

灰铸铁的化学成分与抗拉强度的关系 灰铸铁抡学成分与抗拉强度存在着一定的关系,大致满足如下公式: (1000806)b G C R S σ=- (1) /(4.230.3120.275)C S C Si P =-- (2) 式中G R ——相对强度,是衡量灰铸铁质量的指标,与铸铁的化学成分、浇铸工艺和浇铸环境等因素有关,正常的生产条件下,一个时期内这些因素大致是不变的。 C S ——共晶度,表示灰铸铁的化学成分接近共晶点的程度,C S 越高,石墨化 程度就越强。 具体应用如下: (1) 求出一个时期的共晶度和相对强度的平均值C S 和G R 值。 G R 值计算公式由(1)导出 /(1000806)G C b R S σ=-实测 (3) 1 1i n C ci i S S n ===∑ (4) 1 1i n G G i R R n ===∑ (5) 时期的长短可视具体情况而定,根据铸件生产的稳定情况而定。求平均值时应剔除最大值和最小值,因为最大值和最小值往往包含有偶然因素造成的异常点。应使求得的平均值接近真实情况。 (2) 根据每天铸件的化学成分,用公式(1)、(2)、(3)求得当日铸件的C S 值、 G R 值和b σ值,如果b σ值不符合要求,说明该化学成分不合格,应予以及时调整。 表:铸件化学成分、性能、C S 值及G R 值关系表

(3) 共晶度C S 值和相对强度G R 值控制: 目前国家对灰铸铁的化学成分无统一标准,各工厂大都根据经验确定。一般共晶度C S 以值0.8~1.0,相对强度G R 取值1.0~1.3。共晶成分的灰铸铁具有良好的流动性,具有较强的石墨化能力,这对铸件的质量是有益的。如果共晶度C S >1时,铸件结晶时由于产生了初晶的C 型块状石墨而导致铸件强度下降,使相对强度值也下降。 当相对强度值G R <1时,说明铸铁的孕育不够完善。国外一些工厂认为, G R 1.15~1.20时,铸铁的性能最理想。 由 4.230.3120.275C C S Si P = -- (假设P=0.07%) C S 在所不惜0.8~1.0之间 则有3.3686-0.2496Si <C <4.21075-0.312Si C S 在0.92~0.97之间 则有3.87389-0.28704Si <C <4.0844275-0.3026Si 共晶度 4.260.3() C C S Si P = -+ 相对强度1020825b TS C R S σ= - 相对硬度538355HB C HB R S = - 质量比(正常度)TS Q HB R R R = 由公式(2)P 平均含量约0.06%得出以下两式: 由C S =C/(4.2135-0.312Si ) 取C S =0.93 得Si=13.505-C/0.29016 由HB=538-355 C S 取C S =0.93 得HB=208

球墨铸铁中外牌号对照表

球墨铸铁中外牌号对照表 国别铸铁牌号 中国QT400-18 QT450-10 QT500-7 QT600-3 QT700-2 日本 FCD400 FCD450 FCD500 FCD600 FCD700 美国60-40-18 65-45-12 70-50-05 80-60-03 100-70-03 德国GGG40 —— GGG50 GGG60 GGG70 意大利 GS370-17 GS400-12 GS500-7 GS600-2 GS700-2 法国FGS370-17 FGS400-12 FGS500-7 FGS600-2 FGS700-2 英国400/17 420/12 500/7 600/7 700/2 波兰ZS3817 ZS4012 ZS4505 5002 ZS6002 ZS7002 印度SG370/17 SG400/12 SG500/7 SG600/3 SG700/2 罗马尼亚———————— FGN70-3 西班牙 FGE38-17 FGE42-12 FGE50-7 FGE60-2 FGE70-2 比利时FNG38-17 FNG 42-12 FNG 50-7 FNG 60-2 FNG 70-2 澳大利亚300-17 400-12 500-7 600-3 700-2 瑞典0717-02 —— 0727-02 0732-03 0737-01 匈牙利GOV38 GOV40 GOV50 GOV60 GOV70 保加利亚380-17 400-12 450-5 500-2 600-2 700-2 国际标准(ISO) 400-18 450-10 500-7 600-3 700-2 泛美标准(COPANT) —— FMNP45007 FMNP55005 FMNP65003 FMNP70002 中国台湾 GRP400 —— GRP500 GRP600 GRP700 荷兰GN38 GN42 GN50 GN60 GN70 卢森堡FNG38-17 FNG42-12 FNG50-7 FNG60-2 FNG70-2 奥地利SG38 SG42 SG50 SG60 SG70 耐热铸铁的化学成分和机械性能 化学成分w/ % 耐热温度在室温下的 机械性能 耐热铸铁名称C Si Mn P S Cr ℃sb/MPa HB 含铬耐热铸铁 RTCr-0.8 2.8~3.6 1.5~2.5 <1.0 <0.3 180 207~285 含铬耐热铸铁 RTCr-1.5 2.8~3.6 1.7~2.7 <1.0 <0.3 150 207~285 高铬铸铁0.5~1.0 0.5~1.3 0.5~0.8 ≤1.0 ≤0.08 26~30 1000~1100 380~410 220~207 高硅耐热铸铁 RTSi-5.5 2.2~3.0 5.0~6.0 <1.0 <0.2 100 140~255 高硅耐热 球墨铸铁 RTSi-5.5 2.4~3.0 5.0-6.0 220 228~321

相关主题
文本预览
相关文档 最新文档