当前位置:文档之家› 各种灰铸铁的化学成分

各种灰铸铁的化学成分

各种灰铸铁的化学成分
各种灰铸铁的化学成分

牌号铸件壁厚/mm C Si Mn

P≤S≤

HT100 - ~ ~ ~

HT150 <30 ~ ~ ~

30~50 ~ ~ ~

>50 ~ ~ ~ HT200 <30 ~ ~ ~

30~50 ~ ~ ~

>50 ~ ~ ~

HT250 <30 ~ ~ ~

30~50 ~ ~ ~

>50 ~ ~ ~ HT300 <30 ~ ~ ~

30~50 ~ ~ ~

>50 ~ ~ ~

国内外常用金属材料牌号对照表

1 国内外常用金属材料牌号对照表 美国 中国 日本 USA CHINA JAPAN AST GB1220 JIS ANSI AST M 法国 英国 德国 FRANCE UK GERMANY NFA35-572 BS970 D IN17440 NFA35-576-5 BS144 DIN17224 82 9 NFA35-584 1Cr17Mn6 SUS201 201-1 S2010 1Cr18Mn8Ni5N SUS202 202 S2020 284S1 0 6 X12CrNi177 SZ12CN17.07 1Cr17Ni7 SUS301 301 S3010 301S2 0 1 X12CrNi188 Z10CN18.09 1Cr18Ni9 SUS302 302 S3020 302S2 0 5 X5CrNi189 Z6CN180.9 1Cr18Ni9Si3 SUS302B 302B S3021 5 OCr18Ni9 SUS304 304 S3030 304S1 0 5 X2CrNi189 Z2CN180.9 O OCr19Ni10 SUS304L 304 S3040 304S1 3 2 Z5CN18.09A 2 304N OCr19Ni9N SUSNI S3045 1 S3045 3 X2CrNiN181 0 Z2CN18.10N OOCr18Ni10N SUSLN 304L N X5CrNi1911 Z8CN18.12 1Cr18Ni12 SUS305 305 S3050 305S1 0 9 2Cr23Ni13 SUS309 309 S3090 Ocr23Ni13 SUS309S 309S S3090 8 Ocr25Ni20 SUS310S 310S S3100 8 X5CrNiMo18 12 Z6CND17.12 OCr17Ni12Mo2 SUS316 316 S3160 316S1 X2CrNiMo18 Z2CND17.12 1 2 3 4 5 6 7 8 9 1 2 1 0 1 3 1 1

中外常用钢材料牌号对照表

常用国内外钢材牌号对照表 中国 美国 日本 德国 英国 法国 前苏联 国际标准化组织 GB AST JIS DIN 、DINEN BS 、BSEN NF 、NFEN ΓOCT ISO 630 品 名 牌号 牌号 牌号 牌号 牌号 牌号 牌号 Q195 Cr.B Cr.C SS330 SPHC SPHD S185 040 A10 S185 S185 CT1K П CTlC П CTl ПC Q215A Cr.C Cr.58 SS 330 SPHC 040 A12 CT2K П—2 CT2C П—2 CT2ПC —2 Q235A Cr.D SS400 SM400A 080A15 CT3K П—2 CT3C П—2 CT3ПC —2 E235B Q235B Cr.D SS400 SM400A S235JR S235JRGl S235JRG2 S235JR S235JRGl S235JRG2 S235JR S235JRGl S235JRG2 CT3K П—3 CT3C П—3 CT3ПC —3 E235B Q255A SS400 SM400A CT4K П—2 CT4C П—2 CT4ПC —2 普 通 碳 素 结 构 钢 Q275 SS490 CT5C П—2 CT5ПC —2 E275A

中国 美国 日本 德国 英国 法国 前苏联 国际标准化组织 GB AST JIS DIN 、DINEN BS 、BSEN NF 、NFEN ΓOCT IS0 630 品 名 牌号 牌号 牌号 牌号 牌号 牌号 牌号 08F 1008 1010 SPHD SPHE 040A10 80K П 10 1010 S10C S12C CKl0 040A12 XCl0 10 C101 15 1015 S15C S17C CKl5 Fe360B 08M15 XCl2 Fe306B 15 C15E4 20 1020 S20C S22C C22 IC22 C22 20 25 1025 S25C S28C C25 IC25 C25 25 C25E4 40 1040 S40C S43C C40 IC40 080M40 C40 40 C40E4 45 1045 S45C S48C C45 IC45 080A47 C45 45 C45E4 50 1050 S50C S53C C50 IC50 080M50 C50 50 C50E4 优 质 碳 素 结 构 钢 15Mn 1019 080A15 15r

球墨铸铁化学成分

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。? 1、碳及碳当量的选择原则:? 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在~%之间,碳当量在~%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。? 2、硅的选择原则:? 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在—%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。? 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则:? 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过~%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。? 4、磷的选择原则:? 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于%时,固溶于基体中,对力学性能几乎没有影响。当含量大于%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加%,韧脆性转变温度提高4~℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于%。对于比较重要的铸件,磷含量应低于%。????球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。? ?5、硫的选择原则:? 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于%。

灰铸铁的热处理

灰铸铁的热处理 退火 1.去应力退火为了消除铸件的残余应力,稳定其几何尺寸,减少或消除切削加工后产生的畸变,需要对铸件进行去应力退火。 去应力退火温度的确定,必须考虑铸铁的化学成分。普通灰铸铁当温度起过550℃时,即可能发生部分渗碳体的石墨化和粒化,使强度和硬度降低。当含有合金元素时,渗碳体开始分解的温度可提高到650℃左右。 通常,普通灰铸铁去应力退火温度以550℃为宜,低合金灰铸铁为600℃,高合金灰铸铁是可提高到650℃,加热速度一般选用60~120℃/h.保温时间决定于加热温度、铸件的大小和结构复杂程度以及对消除应力程度的要求。铸件去应力退火的冷却速度必须缓慢,以免产生二次残余内应力,冷却速度一般控制在20~40℃/h,冷却到200~150℃以下,可出炉空冷。 一些灰铸铁件的去应力退火规范示于表1. 2.石墨化退火灰铸铁件进行石墨化退火是为了降低硬度,改善加工性能,提高铸铁的塑性和韧性。 若铸件中不存在共晶渗碳体或其数量不多时,可进行低温石墨化退火;当铸件中共晶渗碳体数量较多时,须进行高温石墨化退火。 (1)低温石墨化退火,铸铁低温退火时会出现共析渗碳体石墨化与粒化,从而使铸件硬度降低,塑性增加。 灰铸铁低温石墨化退火工艺是将铸件加热到稍低于Ac1下限温度,保温一段时间使共析渗碳体分解,然后随炉冷却。

(2)高温石墨化退火,高温石墨化退火工艺是将铸件加热至高于Ac1上限以上的温度,使铸铁中的自由渗碳体分解为奥氏体和石墨,保温一段时间后根据所要求的基体组织按不同的方式进行冷却。 正火 灰铸铁正火的目的是提高铸件的强度、硬度和耐磨性,或作为表面淬火的预备热处理,改善基体组织。一般的正火是将铸件加热到Ac上限+30~50℃,使原始组织转变为奥氏体,保温一段时间后出炉空冷。形状复杂的或较重要的铸件正火处理后需再进行消除内应力的退火。如铸铁原始组织中存在过量的自由渗碳体,则必须先加热到Ac1上限+50~100℃的温度,先进行高温石墨化以消除自由渗碳体在正火温度范围内,温度愈高,硬度也愈高。因此,要求正火后的铸铁具有较高硬度和耐磨性时,可选择加热温度的上限。 正火后冷却速度影响铁素体的析出量,从而对硬度产生影响。冷速愈大,析出的铁素体数量愈少,硬度愈高。因此可采用控制冷却速度的方法)(空冷、风冷、雾冷),达到调整铸铁硬度的目的。 淬火与回火 1.淬火铸铁淬火工艺是将铸件加热到Ac1上限+30~50℃的温度,一般取850~900℃,使组织转变成奥氏体,并在此温度下保温,以增加碳在奥氏体中的溶解度,然后进行淬火,通常采用油淬。 对于形状复杂或大型铸件应缓慢加热,必要时可在500~650℃预热,以避免不均匀加热而造成开裂。 随奥氏体化温度升高,淬火后的硬度越高,但过高的奥氏体化温度,不但增加铸铁变形和开裂的危险,并产生较多的残留奥氏体,使硬度下降。 灰铸铁的淬透性与石墨大小、形状、分布、化学成分以及奥氏体晶粒度有关。

常用钢铁牌号对照表

常用钢铁牌号对照表 钢铁材料的名称、用途、特性和工艺方法命名符号(GB/T221-1979)

①按照GB/T 717—1982《炼钢用生铁》的规定,统一采用汉语拼音字母“L”,(“L”为“炼”字汉语拼音第一个字母)为命名符号。 ②根据GB700--88修改。 ③根据GB699--88修改。 ④根据GBl298--86修改。 表1-9生铁牌号的表示方法 表1-10铁合金牌号的表示方法

表1-11铸铁牌号的表示方法 产品名称牌号举例 QT40017 表示方法说明 灰铸铁 球墨铸铁 黑心可锻铸铁白心可锻铸铁珠光体可锻铸铁耐磨铸铁 抗磨白口铸铁抗磨球墨铸铁 冷硬铸铁 耐蚀铸铁 耐蚀球墨铸铁耐热铸铁 耐热球墨铸铁 HTl00 QT400--17 KTH300—06 KTB350---04 KTZ450—06 MTCulPTi—150 KmTBMn5M02Cu KmTQMn6 LTCrMoRE STSil5M04Cu STQAl5Si5 RTCr2 RTQAl6 伸长率(%) 抗拉强度(MPa) 球墨铸铁代号 ST Si15Mo4Cu ————铜元素符号 —————钼的名义百分含量 —————钼元素符号 —————硅的名义百分含量 —————硅元素符号 —————耐蚀铸铁代号 MT Cu1P Ti —150 ———抗拉强度(MPa) ———钛元素符号 ———磷元素符号 ———铜的名义百分含量 ———铜元素符号 ———耐磨铸铁代号 注:表中成分含量皆指质量分数 表1-12铸钢牌号的表示方法 表1-13钢产品号的表示方法

注:1.平均合金含量∠1.5%者,在牌号中只标出元素符号,不注其含量。 2.平均合金含量为1.5%~2.49%、2.50%~ 3.49%、…、22.5%~23.49%、…时相应的注为2、3、…、23、…。 3.成份含量皆指质量指数。

铸铁材料的分类

铸铁材料的分类、石墨的结构和特点二 第二节灰铸铁 一、灰铸铁的成分、组织与性能特点 1.灰铸铁的化学成分 铸铁中碳、硅、锰是调节组织的元素,磷是控制使用的元素,硫是应限制的元素目前生产中,灰铸铁的化学成分范围一般为:wC=2.7%~3.6%,wSi=1.0%~2.5%,wMn=0.5%~1.3%,wP≤0.3%,wS≤0.15% 2.灰铸铁的组织 灰铸铁是第一阶段和第二阶段石墨化过程都能充分进行时形成的铸铁 它的显微组织特征是片状石墨分布在各种基体组织上 由于第三阶段石墨化程度的不同,可以获得三种不同基体组织的灰铸铁 a)铁索体灰铸铁b)珠光体灰铸铁 c)铁索体珠光体灰铸铁 图7.4 灰铸铁的显微组织 3.灰铸铁的性能特点 (1)力学性能:灰铸铁的抗拉强度、塑性、韧性和弹性模量远比相应基体的钢低石墨片的数量愈多,尺寸愈粗大 分布愈不均匀,对基体的割裂作用和应力集中现象愈严重,则铸铁的强度、塑性与韧性就愈低 由于灰铸铁的抗压强度σbc、硬度与耐磨性主要取决于基体,石墨的存在对其影响不大,故灰铸铁的抗压强度一般是其抗拉强度的3~4倍同时,珠光体基体比其它两种基体的灰铸铁具有较高的强度、硬度与耐磨性 (2)其它性能石墨虽然会降低铸铁的抗拉强度、塑性和韧性,但也正是由于石墨的存在,使铸铁具有一系列其它优良性能 ①铸造性能良好由于灰铸铁的碳当量接近共晶成分,故与钢相比,不仅熔点低,流动性好,而且铸铁在凝固过程中要析出比容较大的石墨,部分地补偿了基体的收缩,从而减小了灰铸铁的收缩率,所以灰铸铁能浇铸形状复杂与壁薄的铸件 ②减摩性好减摩性是指减少对偶件被磨损的性能灰铸铁中石墨本身具有润滑作用,而且当它从铸铁表面掉落后,所遗留下的孔隙具有吸附和储存润滑油的能力,使摩擦面上的油膜易于保持而具有良好的减摩性所以承受摩擦的机床导轨、汽缸体等零件可用灰铸铁制造 ③减振性强铸铁在受震动时 石墨能阻止震动的传播 起缓冲作用,并把震动能量转变为热能,灰铸铁减振能力约比钢大10倍,故常用作承受压力和震动的机床底座、机架、机床床身和箱体等零件, ④切削加工性良好由于石墨割裂了基体的连续性 使铸铁切削时容易断屑和排屑 且石墨对刀具具有一定润滑作用,故可使刀具磨损减少 ⑤缺口敏感性小钢常因表面有缺口(如油孔、键槽、刀痕等)造成应力集中,使力学性能显著降低,故钢的缺口敏感性大灰铸铁中石墨本身已使金属基体形成了大量缺口,致使外加缺口的作用相对减弱,所以灰铸铁具有小的缺口敏感性 由于灰铸铁具有以上一系列的优良性能,而且价廉 易于获得,故在目前工业生产中,它仍然是应用最广泛的金属材料之一 二、灰铸铁的孕育处理 灰铸铁组织中石墨片比较粗大,因而它的力学性能较低为了提高灰铸铁的力学性能

球墨铸铁化学成分完整版

球墨铸铁化学成分集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。 1、碳及碳当量的选择原则: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。 2、硅的选择原则: 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在1.4—3.0%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则: 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加0.1%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过0.4~0.6%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。 4、磷的选择原则: 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于0.05%时,固溶于基体中,对力学性能几乎没有影响。当含量大于0.05%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加0.01%,韧脆性转变温度提高4~4.5℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于0.08%。对于比较重要的铸件,磷含量应低于0.05%。球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 5、硫的选择原则: 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。

国内外常用钢材标准牌号对照表20200711165902.doc

国内外常用钢材标准牌号对照表 种中国日本美国英国德国法国前苏联类CB JIS AISI 、ASTM BS DIN NF ΓOCT Q235-A · F SS41 A36、A283C Ust37-2 Q235-A SS41A、B Rst37-2 CT2 20 S20C C1020 En2C C22 C20 20 碳35 S35C C1035 En8A C35 XC38 35 素钢 20g SB42 A285、Gr.B A414、Gr.B 1633Gr.B Ast41 A42C 20K 20(管道用)STPG38、42 A106 、A53 st35.4 16Mn S M50B SM22 1633.Gr.1 st52-3 16Γ 低A516 、 合16MnR SPV36 A515、Gr·60、19Mn5 金Gr·70 钢 15MnV HTP57VW A225 、Gr.A A225、Gr.B 40Mn C1036 En15B 40MnA 40Mn5 40Γ 40Cr SCr4 5140 E n18 S117 41Cr4 38C4 40X 12CrMo A335 、P2 A213、Gr.B 3064-660 1501-620 13CrMo44 12CD4 12XM STT42 15CrMo STC42 A387、Gr.B 1653 16CrMo44 15CD4 15XM STB42 35CrMo SCM3 E4132 E4135 En19B 34CD4 35CD4 35XM 高0Cr13 SUS410 410S S41000 X7Cr13 Z6C13 08X13 合金0Cr18Ni9 SUS304 304 S30400 304S15 X5CrNi189 ZCN18.09 08X18H10 钢 0Cr18Ni10Ti SUS321 321 S32100 321S12 321S20 X10CrNiTi189 Z6CNT18.10 08X18H10T 0Cr17Ni12Mo2 SUS316 316 S31600 316S16 X5CrNiMo1810 Z6CND17.13 08X17H13M2

铸铁牌号对照表及性能

铸铁 牌 号 (白心)可锻铸铁性能及相关数据 '); //--> 材料名称:(白心)可锻铸铁 牌号:KTB450-07

标准:GB 9440-88 ●特性及适用范围: 坯料在氧化性介质中进行脱碳退火,焊接性较好,只适宜铸造壁厚在15mm以下的铸件。国内应用较少,国外有用作水暖管件的 ●化学成份:wC=2.2%~2.8%,wSi=1.0%~1.8%,wMn=0.3%~0.8%,wS≤0.2%,wP≤0.1%. ●力学性能: (1)抗拉强度σb (MPa) 当试棒直径:d=9mm时,≥400;d=12mm时,≥450;d=15mm时,≥480 (2)条件屈服强度σ0.2 (MPa) 当试棒直径:d=9mm时,≥230;d=12mm时,≥260;d=15mm时,≥280 (3)伸长率δ (%) 当试棒直径:d=9mm时,≥10;d=12mm时,≥7;d=15mm时,≥4 (4)硬度:≤220HB (5)试样尺寸,试棒直径:d=9mm;d=12mm;d=15mm ●热处理规范及金相组织: 热处理规范:(由供方定) 金相组织:小断面尺寸:铁素体。大断面尺寸:表面区域--铁素体;中间区域--珠光体+铁素体+退火碳;心部区域--珠光体+退火碳 中日美部分不锈钢化学成分对比表 '); //-->

球墨铸铁性能及相关数据 '); //--> 材料名称:球墨铸铁 牌号:QT600-3 标准:GB 1348-88 ●特性及适用范围: 为珠光体型球墨铸铁,具有中高等强度、中等韧性和塑性,综合性能较高,耐磨性和减振性良好,铸造工艺性能良好等特点。能通过各种热处理改变其性能。主要用于各种动力机械曲轴、凸轮轴、连接轴、连杆、齿轮、离合器片、液压缸体等零部件 ●化学成份: 碳 C :3.56~3.85 硅 Si:1.83~2.56 锰 Mn:0.49~0.70 硫 S :0.016~0.045 磷 P :0.035~0.058 镁 Mg:0.041~0.067 注:RxOy:0.033~0.049 ●力学性能: 抗拉强度σb (MPa):≥600 条件屈服强度σ0.2 (MPa):≥370 伸长率δ (%):≥3 硬度:190~270HB ●热处理规范及金相组织: 热处理规范:(由供方定,以下为某试样的热处理规范,供参考) 930℃,2h正火空冷, 600℃,2h,回火空冷 金相组织:珠光体+铁素体

常用牌号对照表_灰铸件_球墨铸铁_碳素铸钢

常用材质中外牌号对照表:灰铸件,球墨铸铁,碳素铸钢,合金钢 常用材质中外牌号对照表 灰铸件 No. 中 国 GB 中国台湾CNS 日 本 JIS 韩 国 KS 美 国 国际化标准组织ISO 德国 法 国 NF 俄罗斯 гост 瑞 典 SS 英 国 BS AWS UNS DIN W-Nr. 1 HT100 FC100 FC100 GC100 No.20 F11401 100 GG10 0.6010 EN-GJL-100 гч10 0110-00 Grade 100 2 HT150 FC150 FC150 GC150 No.25 F1701 150 GG15 0.6015 EN-GJL-150 гч15 0115-00 Grade 150 3 HT200 FC200 FC200 GC200 No.30 F12101 200 GG20 0.6020 EN-GJL-200 гч18 гч20 гч21 0120-00 Grade 180 Grade 220 4 HT250 FC250 FC250 GC250 No.35 No.40 F12801 250 GG25 0.6025 EN-GJL-250 гч24 гч25 0125-00 Grade 260 5 HT300 FC300 FC300 GC300 No.45 F13101 300 GG30 0.6030 EN-GJL-300 гч30 0130-00 Grade 300 6 HT350 - FC350 GC350 No.50 F13501 350 GG35 0.6035 EN-GJL-350 гч35 0135-00 Grade 350 球墨铸铁 常用材质中外牌号对照表 灰铸件 No. 中 国 GB 中国台湾CNS 日 本 JIS 韩 国 KS 美 国 国际化标准组织ISO 德国 法 国 NF 俄罗斯 гост 瑞 典 SS 英 国 BS AWS UNS DIN W-Nr. 1 HT100 FC100 F C100 GC100 No.20 F11401 100 GG10 0.6010 E N-GJL-100 гч10 0110-00 Grade 100 2 HT150 FC150 F C150 GC150 No.25 F1701 150 GG15 0.6015 E N-GJL-150 гч15 0115-00 Grade 150

灰铸铁中各元素作用

灰铸铁中各元素作用 1、碳、硅 碳、硅都是强烈地促进石墨化的元素,可用碳当量来说明他们对灰铸铁金相组织和力学性能的影响。提高碳当量促使石墨片变粗、数量增加,强度硬度下降。相反降低碳当量可减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而提高灰铸铁的力学性能。 但是降低碳当量会导致铸造性能下降。 2、锰:锰本身是稳定碳化物、阻碍石墨化的元素,在灰铸铁中具有 稳定和细化珠光体作用,在 Mn=0.5%~1%范围内,增加锰量,有利于强度、硬度的提高。 3、磷:铸铁中含磷量超过0.02%,就有可能出现晶间磷共晶。磷在奥 氏体中的溶解度很小,铸铁凝固时,磷基本上都留在液体中。共晶凝固接近完成时,共晶团之间剩余的液相成分接近三元共晶成(Fe-2%、C-7%、P)。此液相约在955℃凝固。 铸铁凝固时,钼、铬、钨和钒都偏析于富磷的液相中,使磷共晶的量增多。铸铁中含磷量高时,除磷共晶本身的有害作用外,还会使金属基体中所含的合金元素减少,从而减弱合金元素的作用。 磷共晶液体在凝固长大的共晶团周围呈糊状,凝固收缩很难得到补给,铸件出现缩松的倾向较大。 4、硫:降低铁液流动性,增加铸件热裂倾向,是铸件中的有害元素。 很多人认为硫含量越低越好,实则不然,当硫含量≤0.05%时,此种铸铁对我们使用的普通孕育剂来说不起作用,原因是孕育衰

退的很快,常常在铸件中产生白口。 5、铜:铜是生产灰铸铁最常加入的合金元素,主要原因是由于铜熔 点低(1083℃),易熔解,合金化效果好,铜的石墨化能力约为硅的1/5,因此能降低铸铁的白口倾向,同时铜也能降低奥氏体转变的临界温度,因此铜能促进珠光体的形成,增加珠光体的含量,同时能细化珠光体和强化珠光体及其中的铁素体,因而增加铸铁的硬度及强度。但是并非铜量越高越好,铜的适宜加入量为0.2%~0.4%当大量地加铜时,同时又加入锡和铬的做法对切削性能是有害的,它会促使基体组织中产生大量的索氏体组织。 6、铬:铬的合金化效果是非常强烈的,主要是因为加铬使铁水白口 倾向增大,铸件易收缩,产生废品。所以,应对铬量加以控制。 一方面希望铁水中含有一定量的铬,以提高铸件的强度和硬度; 另一方面又将铬严格控制在下限,以防止铸件收缩而造成废品率增加。传统的经验认为,原铁水铬量超过0.35%时,将对铸件产生致命的影响。 7、钼:钼是典型的化合物形成元素,是很强的珠光体稳定元素,它 能细化石墨,在ωMo<0.8%时,钼能细化珠光体,同时能强化珠光体中的铁素体,从而能有效地提高铸铁的强度和硬度。

各国铸铁牌号对照

具有優異機械與物理性能的各類型米漢納金屬材料自從六十多年前由美國 米漢納總公司開發以來,由於嚴格的配料與爐前管制,可鑄出各類型高品質 的強韌鑄鐵件。其中以一般工程用(G型灰口鑄鐵與S型球墨鑄鐵) 廣受工業 界青睞,尤其是外銷國際市場的工具機業、齒輪業、閥體業與多數產業機械 的業者,均指定具有『M』標誌的米漢納灰口與球墨鑄鐵為其組裝的中大型 重要部品鑄件,品質值得信賴與肯定。 國家代表 \ 規格記號灰口鑄鐵(片狀石墨鑄鐵) 主要規格GM400GA350GC275GE200GF150米漢納金屬 參考規格GM400GA350GB300GC275GD250GE225GE200GF150中華民國CNS G3038─FC 350FC 300─FC 250─FC 200FC 150中國大陸GB 9439─HT 350HT 300─HT 250─HT 200HT 150日本JIS G5501─FC 350FC 300─FC 250─FC 200FC 150 ASTM A4860級55/50級45級40級35級30級25級20級美國 SAE J431B───G4000G3500G3000G2500G1800英國BS 1452─350300─250220200/180150德國DIN 1691GG40GG35GG30─GG25─GG20GG15法國NFA32-101FGL400FGL350FGL300─FGL250─FGL200FGL150澳大利亞AS 1830T400T350T300─T250─T200T150 ISO R185─350300─250─200150

國家代表\規格記號球墨鑄鐵(球狀石墨鑄鐵) 主要規格SFF350SF400SP600SH700SH800米漢納金屬 參考規格SFF350SFF400SF400SF420SFP500SPF600SP700SH800 中華民國CNS G2118FCD 350─FCD 400FCD 450FCD 500FCD 600FCD 700FCD 800中國大陸GB 1348─QT400-18 QT400-15QT450-10QT500-7QT600-3QT700-2QT800-2日本JIS G5502FCD350-22FCD400-18FCD400-15FCD450-10FCD500-7FCD600-3FCD700-2FCD800-2 ASTM A536─60-40-18─60-45-1280-55-06─100-70-2120-90-2美國 SAE J434B─D4018─D4512─D5506D7703DQ&T 英國BS 2789350-22400-18─420-12 /450-10 500-7600-3700-2Gr800-2 德國DIN 1693GGG35.3GGG40.3GGG40─GGG50GGG60GGG70GGG80法國NFA32-201─370-17400-12─500-7600-3700-2800-2澳大利亞AS1831─370-230-17─400-250-12500-320-7600-370-3700-420-2800-480-2 ISO1083─370-17400-12─500-7600-3700-2800-2 國家代表\ 規格記號沃斯回火球墨鑄鐵( ADI ) 米漢納金屬主要規格K295(K9007)K325(K10005)K405(K12003)── 日本JIS G5503 FCAD 900-4 /FCAD 900-8FCAD 1000-5FCAD 1200-2FCAD 1400-1 ─ 美國ASTM A897850/550/101050/700/71200/850/41400/1100/11600/1300/-

常用国内外金属材料--铸铁牌号对照[1]

常用国内外金属材料--铸铁牌号对照 灰口铸铁牌号对照 中国美国德国日本法国英国国际 GB/T 9439-1988 ASTM A48 DIN1691 JIS G5501 NFA32-101 BS1452 ISO/R185 HT150 Class 20B GG15 FC15 Ft.15D Cr.150 Cr.15 HT200 Class 25B GG20 FC20 Ft.20D Cr.180 Cr.20 HT250 Class 35B GG25 FC25 Ft.25D ——Cr.25 HT300 Class 45B/50B GG30 FC30 Ft.30D Cr.300 Cr.30 HT350 Class 55B GG35 FC35 Ft.35D Cr.350 Cr.35 ——Class 60B GG40 ——Ft.40D Cr.400 Cr.40 球墨铸铁牌号对照 中国美国德国日本法国英国国际 GB 1348-1988 ASTM A536 DIN1693 JIS G5502 NFA32-201 BS 2789 ISO/R1083 QT400-18 60-40-18 GGG40 FCD40 FGS370-17 Cr.370-17 Cr.370-17 QT450-10 65-45-12 ————FGS400-12 Cr.420-12 Cr.420-12 QT500-7 80-55-06 GGG50 FCD45/50 FGS500-7 Cr.500-7 Cr.500-7

QT600-3 GGG60 FCD60 FGS600-3 Cr.600-3 Cr.600-3 QT700-2 100-70-03 GGG70 FCD70 FGS700-2 Cr.700-2 Cr.700-2 QT800-2 120-90-02 GGG80 ——FGS800-2 Cr.800-2 Cr.800-2 注:本对照表为抗拉强度近似对照。 常用碳素铸钢成份表 化学成分(%) 牌号 C Mn Si P≤S≤Cr Ni Mo Cu≤残余元素总和≯DT3(电工纯铁)≤0.04≤0.30≤0.200.020 0.020 ≤0.10≤0.20≤0.20Al≤0.50 ZG200-400(ZG15)0.12~0.20 0.50~0.80 0.20~0.45 0.040 0.040 ≤0.35≤0.30≤0.200.30 1.00 ZG230-450(ZG25)0.22~0.30 0.50~0.80 0.20~0.45 0.040 0.040 ≤0.35≤0.30≤0.200.30 1.00 ZG270-500(ZG35)0.32~0.40 0.50~0.80 0.20~0.45 0.040 0.040 ≤0.35≤0.30≤0.200.30 1.00 ZG310-570(ZG45)0.42~0.50 0.50~0.80 0.20~0.45 0.040 0.040 ≤0.35≤0.30≤0.200.30 1.00 常用不锈钢成份表 化学成分(%) 牌号 C Mn Si P≤S≤Cr Ni Mo Cu Ti ZG1Cr17Mn9Ni4Mo3Cu2N(Ni-N) ≤0.128.00~10.0 ≤1.500.060 0.035 16.0~19.0 3.00~5.00 2.90~3.50 2.00~2.50 N 0.16~0.26 ZG0Cr18Ni9Ti(304) ≤0.080.80~2.00 ≤1.50 0.040 0.030 17.0~20.0 8.00~11.00 5(c-0.02)~0.70 ZG0Cr18Ni12Mo2Ti(316) ≤0.080.80~2.00 ≤1.500.040 0.030 16.0~19.0 11.0~13.00 2.00~3.00 5(c-0.02)~0.70 ZG0Cr19Ni10Mo2(1.4408) ≤0.08≤2.00≤1.500.040 0.040 18.0~21.0 9.0~12.00 2.00~3.00 ZG0Cr13Ni6Mo ≤0.08≤0.80≤0.700.030 0.030 12.0~14.0 5.50~6.50 0.40~1.00 ZG2Cr13 0.16~0.24 ≤0.60≤1.000.040 0.030 12.0~14.0 ≤0.60 ZG0Cr25Ni5Mo2(1.4460) ≤0.08 1.0~1.5 0.5~0.8 0.040 0.035 24.0~26.0 4.0~6.0 1.5~2.0 N:0.02~0.10 常用耐磨钢成份表 牌号化学成份 %

灰铸铁的化学成分与抗拉强度的关系

灰铸铁的化学成分与抗拉强度的关系 灰铸铁抡学成分与抗拉强度存在着一定的关系,大致满足如下公式: (1000806)b G C R S σ=- (1) /(4.230.3120.275)C S C Si P =-- (2) 式中G R ——相对强度,是衡量灰铸铁质量的指标,与铸铁的化学成分、浇铸工艺和浇铸环境等因素有关,正常的生产条件下,一个时期内这些因素大致是不变的。 C S ——共晶度,表示灰铸铁的化学成分接近共晶点的程度,C S 越高,石墨化 程度就越强。 具体应用如下: (1) 求出一个时期的共晶度和相对强度的平均值C S 和G R 值。 G R 值计算公式由(1)导出 /(1000806)G C b R S σ=-实测 (3) 1 1i n C ci i S S n ===∑ (4) 1 1i n G G i R R n ===∑ (5) 时期的长短可视具体情况而定,根据铸件生产的稳定情况而定。求平均值时应剔除最大值和最小值,因为最大值和最小值往往包含有偶然因素造成的异常点。应使求得的平均值接近真实情况。 (2) 根据每天铸件的化学成分,用公式(1)、(2)、(3)求得当日铸件的C S 值、 G R 值和b σ值,如果b σ值不符合要求,说明该化学成分不合格,应予以及时调整。 表:铸件化学成分、性能、C S 值及G R 值关系表

(3) 共晶度C S 值和相对强度G R 值控制: 目前国家对灰铸铁的化学成分无统一标准,各工厂大都根据经验确定。一般共晶度C S 以值0.8~1.0,相对强度G R 取值1.0~1.3。共晶成分的灰铸铁具有良好的流动性,具有较强的石墨化能力,这对铸件的质量是有益的。如果共晶度C S >1时,铸件结晶时由于产生了初晶的C 型块状石墨而导致铸件强度下降,使相对强度值也下降。 当相对强度值G R <1时,说明铸铁的孕育不够完善。国外一些工厂认为, G R 1.15~1.20时,铸铁的性能最理想。 由 4.230.3120.275C C S Si P = -- (假设P=0.07%) C S 在所不惜0.8~1.0之间 则有3.3686-0.2496Si <C <4.21075-0.312Si C S 在0.92~0.97之间 则有3.87389-0.28704Si <C <4.0844275-0.3026Si 共晶度 4.260.3() C C S Si P = -+ 相对强度1020825b TS C R S σ= - 相对硬度538355HB C HB R S = - 质量比(正常度)TS Q HB R R R = 由公式(2)P 平均含量约0.06%得出以下两式: 由C S =C/(4.2135-0.312Si ) 取C S =0.93 得Si=13.505-C/0.29016 由HB=538-355 C S 取C S =0.93 得HB=208

球墨铸铁中外牌号对照表

球墨铸铁中外牌号对照表 国别铸铁牌号 中国QT400-18 QT450-10 QT500-7 QT600-3 QT700-2 日本 FCD400 FCD450 FCD500 FCD600 FCD700 美国60-40-18 65-45-12 70-50-05 80-60-03 100-70-03 德国GGG40 —— GGG50 GGG60 GGG70 意大利 GS370-17 GS400-12 GS500-7 GS600-2 GS700-2 法国FGS370-17 FGS400-12 FGS500-7 FGS600-2 FGS700-2 英国400/17 420/12 500/7 600/7 700/2 波兰ZS3817 ZS4012 ZS4505 5002 ZS6002 ZS7002 印度SG370/17 SG400/12 SG500/7 SG600/3 SG700/2 罗马尼亚———————— FGN70-3 西班牙 FGE38-17 FGE42-12 FGE50-7 FGE60-2 FGE70-2 比利时FNG38-17 FNG 42-12 FNG 50-7 FNG 60-2 FNG 70-2 澳大利亚300-17 400-12 500-7 600-3 700-2 瑞典0717-02 —— 0727-02 0732-03 0737-01 匈牙利GOV38 GOV40 GOV50 GOV60 GOV70 保加利亚380-17 400-12 450-5 500-2 600-2 700-2 国际标准(ISO) 400-18 450-10 500-7 600-3 700-2 泛美标准(COPANT) —— FMNP45007 FMNP55005 FMNP65003 FMNP70002 中国台湾 GRP400 —— GRP500 GRP600 GRP700 荷兰GN38 GN42 GN50 GN60 GN70 卢森堡FNG38-17 FNG42-12 FNG50-7 FNG60-2 FNG70-2 奥地利SG38 SG42 SG50 SG60 SG70 耐热铸铁的化学成分和机械性能 化学成分w/ % 耐热温度在室温下的 机械性能 耐热铸铁名称C Si Mn P S Cr ℃sb/MPa HB 含铬耐热铸铁 RTCr-0.8 2.8~3.6 1.5~2.5 <1.0 <0.3 180 207~285 含铬耐热铸铁 RTCr-1.5 2.8~3.6 1.7~2.7 <1.0 <0.3 150 207~285 高铬铸铁0.5~1.0 0.5~1.3 0.5~0.8 ≤1.0 ≤0.08 26~30 1000~1100 380~410 220~207 高硅耐热铸铁 RTSi-5.5 2.2~3.0 5.0~6.0 <1.0 <0.2 100 140~255 高硅耐热 球墨铸铁 RTSi-5.5 2.4~3.0 5.0-6.0 220 228~321

铸铁中外牌号对照表

灰铸铁中外牌号对照 序号国别铸铁牌号 1 中国—HT350 HT300 HT250 HT200 HT150 HT100 2 日本—FC350 FC300 FC250 FC200 FC150 FC100 3 美国— 4 前苏联 C Ч 40 C Ч 3 5 C Ч 30 C Ч 25 C Ч 20 C Ч 15 C Ч1 0 5 德国GG40 GG35 GG30 GG25 GG20 GG15 — 6 意大利—G35 G30 G25 G20 G15 G10 7 法国FGL400 FGL350 FGL300 FGL250 FGL200 FGL150 — 8 英国—350 300 250 200 150 100 9 波兰Z140 Z135 Z130 Z125 Z120 Z115 — 10 印度FG400 FG350 FG300 FG260 FG200 FG150 — 11 罗马尼亚FC400 FC350 FC300 FC250 FC200 FC150 — 12 西班牙—FG35 FG30 FG25 FG20 FG15 — 13 比利时FGG40 FGG35 FGG30 FGG25 FGG20 FGG15 FGG10 14 澳大利亚T400 T350 T300 T260 T220 T150 — 15 瑞典O140 O135 O130 O125 O120 O115 O110 16 匈牙利OV40 OV35 OV30 OV25 OV20 OV15 — 17 保加利亚—Vch35 Vch30 Vch25 Vch20 Vch15 — 国际标准 18 —350 300 250 200 150 100 (ISO) 泛美标准 FG400 FG350 FG300 FG250 FG200 FG150 FG100 19 (COPANT) 20 中国台湾——FC300 FC250 FC200 FC150 FC100 21 荷兰—GG35 GG30 GG25 GG20 GG15 — 22 卢森堡FGG40 FGG35 FGG30 FGG25 FGG20 FGG15 — 23 奥地利—GG35 GG30 GG25 GG20 GG15 —

相关主题
文本预览
相关文档 最新文档