当前位置:文档之家› 摩托车车架结构动力分析

摩托车车架结构动力分析

摩托车车架结构动力分析
摩托车车架结构动力分析

课程设计指导书

摩托车车架结构动力学分析

班级:机制0606

学号:012006008018

姓名:张勇杰指导老师:王彦伟

目录

1. 本课程设计目的 (3)

2.摩托车车架分析条件 (5)

3.分析模型 (8)

4.模态分析 (9)

5.瞬态响应分析 (14)

6.结果分析与总结 (20)

1.本课程设计目的

近年来,我国摩托车工业飞速发展,在短短十几年间己超过日本一跃成为世界第一摩托车生产大国。然而,与急剧增长的产量相比较极不相称的是国产摩托车的设计开发能力和产品技术含量显得很低,相当多的产品仍是低水平的重复,技术含量高、较为先进的车型都是引进技术或在引进技术基础上改进的车型,国内企业尚无能力独立自主地开发自己的产品,仅仅是在模仿测绘国外的产品。造成这种局面的主要原因,一是对知识产权保护力度不够;二是企业对产品开发投入不足,目前一般大型企业开发投入不足销售额的 1.5%,而国外

一般在5%左右:三是缺少高水平的设计开发人才;四是缺乏产品验证手段,至今还没有一个国家级摩托车综合试验场。这就使我国摩托车行业的发展极不健康,如不及时采取措施,面临激烈的市场竞争以及加入世界贸易组织后国外先进车型的冲击,我国摩托车工业将陷入艰难的境地。因此,加大摩托车的科技投入,深入开展提高摩托车设计开发水平的科研工作显得尤为迫切。目前,许多发达国家及我国台湾省等,摩托车产品的开发设计、模拟分析过程全部计算机化和动态化,而国内摩托车的设计水平还停留在测绘仿制、进行传统的静强度校核的静态设计阶段。这种把本属动态性质的问题简化为静态问题来处理的方法,弊病很大.实际摩托车在行驶过程中,受到来自路面连续载荷的冲击及发动机自身工作时运动件惯性力的激励,是在一种振动状态下工作,特别在发生共振时会大大降低结构强度,并增加车体的振动和噪声。传统的方法把整个结构当作刚性系统来设计,用大量试算和试验的方法去弥补与实际为弹性系统的差异,不仅费时耗资大,还难免

发生结构疲劳破坏等可靠性问题。不研究结构的动态特性,而简化为静刚度

来处理,就不能有效地控制结构的振动和噪声。为了提高摩托车行驶的安全可靠性及驾乘人员的舒适性,减少环境噪声污染,对摩托车结构进行动态特性分析就显得十分重要。随着现代基础理论的拓展、计算机的广泛应用和测试技术的发展,现在己有条件从传统的静态设计方法(经验设计、类比设计及尝试设计)向现代动态的“解析” 设计方法过渡了。在科学技术突飞猛进和市场竞争日益激烈的时代,现代产品改进和新产品的开发都经受不起传统方法的拖延,而应该突破“设计—试制—试验”的旧框框,发展预测和分析两个重大环节。有限元方法结合试验模态技术适应了这一形势的发展,成为摩托车结构动态特性分析、结构动态设计的强有力手段。摩托车是由很多不同结构、不同材料、形状各异的零件和部件组装而成,属于一种复杂结构系统。由于车架是摩托车的骨架,本课题将其作为研究对象,运用理论分析和试验研究,即有限元方法和试验模态技术,确定车架结构的动态特性,指出其中的薄弱环节,并提出对结构进行改进的方向,然后对有限元模型进行变参数计算,发现新的模型有更好的动态特性。这启发我们在摩托车蓝图设计阶段就可进行车架的结构分析,提出改进意见,从而降低了设计成本,缩短了设计周期,且对自主开发车架新产品也具有重要的指导意

义。

2.摩托车车架分析条件

摩托车车架横梁、底座的结构材料均为A3钢,材料特性为:

?弹性模量 E = 206GPa;

?泊松比 a = 0.3;

?屈服极限(T s

=

=235MPa;

?强度极限

(T

b :

=461 MPa;

?密度p = 7800kg/m3

摩托车通常使用单缸汽油机,由于要求摩托车发动机结构紧凑,在发动机设计时,通常不采用复杂的平衡一阶和二阶往复惯性力机构,而采用过量平衡的方法,把一部分往复惯性力转移到和气缸中心线垂直的方向。因此在采用过量平衡法的摩托车单缸发动机中实际作

用于车体的力有三个:

a)过量平衡后剩下的一级往复惯性力;

b)过量平衡块产生的离心力在与气缸垂直方向上的分力;

c)二级往复惯性力。

将上述三个力加在摩托车有限元模型相应节点上,即可求出结构动力响应。发动机激励可分为X,Y两个方向随时间变化的力。如下表所

示:

副车架设计说明书

摘要 本文是对侧倾式自卸汽车副车架总成设计的简要说明。 本文首先对自卸车的设计特点以及国内外发展现状做了相关的概述,简要介绍了自卸汽车的历史跟发展前景。文中通过对所给参数进行分析论证,对副车架纵梁的尺寸参数、材料选择,横梁的参数设计、材料选择,纵梁与横梁之间连接结构,举升机构在副车架上的安装方式进行了设计。在设计副车架总成纵梁的的过程中,充分考虑了自卸汽车的经济性跟使用功能。在其他部件的设计过程中,充分考虑了它们之间的相互配合,使它们能够协调工作。 所设计的副车架总成能够满足预期期望。提供车厢、举升机构的安装位置,改善自卸汽车主车架的应力分布情况。 关键字:自卸汽车副车架总成,纵梁,横梁,连接结构安装位置,举升机构安装位置,设计

ABSTRACT That design specification is a simple explanation for the design of a subframe for a roll-type dump truck. In that design specification,a simple but clear view about the roll-type dump truck was given to help people understand the history of the roll-type dump truck better. To achieve that target,in this design specification,the deputy frame rails,the subframe beams,the connection of the deputy frame rails and the subframe beams,the installation location of lifting mechanism must be well designed. This subframe can achieve the expectation of the roll-type dump truck as required.And that subframe also provide some place to install the lifting mechanism and the compartment.As people expect,it also can make the roll-type dump truck have a better work situation. When design the subframe beams,the economic effect and the function was considered.And so on the others. Key words: subframe for a roll-type dump truck,deputy frame rails,subframe beams,location of connection,location of lifting mechanism,design

车身骨架强度分析

客车车身骨架疲劳强度分析 [周俊杰,严伊莉] [郑州大学化工与能源学院,郑州450001] [ 摘要] 运用有限元方法建立了某轻型客车车身骨架的有限元模型,在确定载荷的简化和施加方法后,进行了该车身骨架在满载弯曲工况下的有限元仿真,以此在ANSYS Workbench的 Fatigue(疲劳)模块对其进一步的疲劳分析,为该车车身骨架的优化设计和进一步研究 提供了理论依据。 [ 关键词] 车身骨架;有限元;疲劳分析 Fatigue strength analysis of bus body frame [ZHOU Jun-jie, YAN Yi-li] [School of Chemical and Energy, Zhengzhou University, Zhengzhou 450001,China] [ Abstract ] Finite element modeling of the bus framework is established by using finite element methods. When the simplified load and load way exerting on the framework are ensured,the finite element simulation of bus framework is executed under fully loaded bending condition. And then further fatigue analysis with ANSYS Workbench Fatigue finishes. These results provide theoretical basis for optimization and further study of the bus framework. [ Keyword ] Bus framework;Finite element analysis;Fatigue analysis 1前言 车身骨架是客车的主要承载结构,车身骨架的强度、刚度及疲劳性能都直接影响着客车的使用寿命、安全性、操作稳定性等基本性能。本文运用通用有限元分析软件对某

车架有限元分析

1前言 车架是汽车的主要部件。深人解车架的承载特性是车架结构设计改进和优化的基础。过去汽车设计多用样车作参考,这种方法不仅费用大,试制周于精确解。因此,正确建立结构的力学模型,是分析期长,而且也不可能对多种方案进行评价。现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段。计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。实践证明,有限元法是一种有效的数值计算方法,利用有限元法计算得到的结构位移场、应力场和低阶振动频率可作为结构设计的原始判据或作为结构改进设计的基础。 2车架的静态分析 2.1力学模型的选择 有限元分析的基本思想,是用一组离散化的单元组集,来代替连续体机构进行分析,这种单元组集体称之为结构的力学模型;如果已知各个单元体的力和位移(单元的刚度特性),只需根据节点的变形连续条件与节点的平衡条件,来推导集成结构的特性并研究其性能。有限元的特点是始终以矩阵形式来作为数学表达式,便于程序设计,大量工作是由电子计算机来完成,只要计算机容量足够,单元的剖分可以是任意的,对于任何复杂的几何形状,多样化的载荷和任意的边界条件都能适应。然而,由于有限元是一种数值分析方法,计算结果是近似解,其精度主要取决于离散化误差。如果结构离散化恰当,单元位移函数选取合理,随着单元逐步缩小,近似解将收敛于精确解。因此,正确建立结构的力学模型,是分析工作的第一步目前采用有限元分析模型一般有如下两种:梁单元模型和组合模型等。梁单元模型是将车架结构简化为由一组两节点的梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。其优点是:划分的单元数目和节点数目少,计算速度快而且模型前处理工作量不大,适合初选方案。其缺点是:无法仔细分析车架应力集中问题,因而不能为车架纵、横梁连接方案提供实用的帮助。组合单元模型则是既采用梁单元也采用板壳单元进行离散。在实际工程运用中,由于车架是由一系列薄壁件组成的结构,且形状复杂,宜离散为许多板壳单元的组集,其缺点是前处理工作量大,计算时间长,然而随着计算机技术的不断发展,这个问题已得到了较好的解决,而且由于有大型有限元软件支撑,巨大的前处理工作量绝大部分可由计算机完成,也不是制约板壳元模型实际运用的困难了。这种模型使得对车架的分析计算更为精确,能为车架设计提供更为有利的帮助。 2.2车架的计算方法 汽车车架的主要结构形式为边梁式车架,货车车架纵梁截面多为槽形,横梁截面可为槽

人员结构分析报告

机务人员结构分析报告 在民航行业中,机务维修工作是一项极其重要的工作,是保证飞行安全的基础。机务维修涉及专业面广,工种复杂,技术难度大,质量要求高,是高风险、高技术、高投入的技术密集型的行业。机务维修工作,安全生产是起点,安全飞行是目标,机务维修的一切工作都是紧密围绕安全这个主题,机务维修人员每天所从事的每项工作都与安全息息相关。然而,在支线机场普遍都是一支小小的机务维修队伍来全面担负着航空公司飞机在该航站的短停航线维护维修及其他相应的保障工作。他们工作的好坏不仅会直接影响到机场的服务质量和经济效益,还有关系到航空飞行安全、甚至是旅客的生命财产安全。但目前绝大部分支线机场的机务维修队伍都或多或少地存在着一些建设和发展的困境,困扰着机务维修人员的思想、行动和生活,亟待各方力量一道去共同破解。下面,笔者根据自己多年机务维修基层管理的经验,并结合一些兄弟支线机场机务维修的具体情况,就机务维修队伍建设和发展的问题谈一些个人肤浅的看法,请大家多加指正。 一、支线机场机务维修队伍的现状和困境 安全是机务维修工作永恒的主题,也是民航工作永恒的主题。由于机务维修行业特有的标准和规范要求极为严格,加上支线机场自身条件的限制及社会大环境的影响,使支线机场机务维修队伍建设和发展遇上了前所未有的困境。主要表现在以下几个方面:

第一、机务维修队伍结构普遍不合理,整机放行人员紧缺。 首先从年龄结构上就呈现青黄不接的现象。在大多数支线机场机务维修队伍里,多为四、五十岁的老同志带着一些二十多和三十刚出头的小伙在干活,老同志多为该机场开航就招进来的那一批、并一直坚守留下来的机务维修,目前他们绝大多数都是在技术骨干和管理人员岗位上。新的同志则是近年来由于支线机场航班量快速增长,出现了人手极为紧张的情况下,迫不得已才招进来的。 其次是在支线机场存在整机放行人员与一般勤务人员的比例严重不协调的现象,普遍是机务勤务人员相对多点,整机放行人员却极少,甚至有的支线机场就那么一至两个人顶着,连有事要倒班、替班都没办法开展。 再次,即使这么有限的放行人员也未必有工作积极性。由于很多支线机场在薪酬上考虑的仅仅是同岗同酬,也就是说只要我是整机放行人员、我就可以拿到整机放行人员岗位的工资,至于我持有的机型执照多少与自身岗位工资无关。于是,部分放行机务维修人员考虑到多放飞机多担责任的因素,只要有一两种机型执照,就不愿意再去考取更多的机型执照,从而导致有的支线机场有些执飞的机型机场机务维修没人能签字放行,仍需航空公司自带随机机务维修来放行的现象。 第二、机务维修人员普遍觉得人手紧张、工作任务重压力大。

用有限元方法进行摩托车动力响应分析报告

用有限元方法进行摩托车动力响应分析 文>>月辉史春涛骞郝志勇 摘要本文采用有限元方法对某125型骑式摩托车进行了动力响应分析。文章首先建立了摩托车整车的有限元模型,并利用该模型进行摩托车整车的动态特性计算,取得了和实验模态分析一致的结果。而后分析了摩托车在发动机激励和路面不平度激励下的整车动力学响应特性,得出了具有工程参考价值的结论。 关键词摩托车应力有限元法 本文采用有限元方法研究了摩托车整车结构的动态特性,并进行了在各种激励作用下的动力响应分析,得到了发动机车架的应力场,可用于进一步的摩托车强度分析。 1、摩托车有限元模型的建立 摩托车有限元模型如图1所示。 摩托车的车架结构大多是由各种截面形状的梁组合而成的空间框架结构,而且其截面尺寸,包括直径、壁厚,与构件长度相比很小,因此选用空间的直梁或者曲梁单元来离散车架结构,而车架的一些板件和加强盘可以采用空间板元模拟,各种梁单元的截面力学特性可用有限元程序的前处理模块或CAD软件计算。 摩托车的发动机具有较大质量,同时也具有很大刚度。考虑到发动机在车体结构中所起的作用及变形小的特点,将发动机简化为若干个板单元,这些板的总质量应与发动机的质量相同。然后,根据发动机与车架的实际连接方式,将由这些板单元模拟的发动机与车架组装到一起。 摩托车的减振器主要作用是支撑车体并缓和振动与冲击。考虑到减振器的结构与作用,简化后减振器的模型在受到载荷时应具有较大的轴向位移,同时又要有较大抗弯刚度。本文把减振器简化为一种梁单元和弹簧阻尼单元的综合体——轴向刚度由弹簧阻尼单元提供,而抗弯刚度由梁单元提供。 摩托车车轮主要由轮胎和轮辋组成,其中轮胎直接与路面接触,与摩托车悬挂共同缓和摩托车行驶时所受到的冲击,并协助减振,轮辋是固定轮胎的骨架,它与轮胎共同承受作用在车轮上的负荷。轮辋可以采用若干个梁单元模拟,轮胎

摩托车车架结构动力分析

课程设计指导书——摩托车车架结构动力学分析 班级:机制0606 学号:012006008018 姓名:张勇杰 指导老师:王彦伟

目录 1. 本课程设计目的 (3) 2.摩托车车架分析条件 (5) 3.分析模型 (8) 4.模态分析 (9) 5.瞬态响应分析 (14) 6.结果分析与总结 (20)

1. 本课程设计目的 近年来,我国摩托车工业飞速发展,在短短十几年间己超过日本一跃成为世界第一摩托车生产大国。然而,与急剧增长的产量相比较极不相称的是国产摩托车的设计开发能力和产品技术含量显得很低,相当多的产品仍是低水平的重复,技术含量高、较为先进的车型都是引进技术或在引进技术基础上改进的车型,国内企业尚无能力独立自主地开发自己的产品,仅仅是在模仿测绘国外的产品。造成这种局面的主要原因,一是对知识产权保护力度不够;二是企业对产品开发投入不足,目前一般大型企业开发投入不足销售额的 1.5%,而国外一般在5%左右:三是缺少高水平的设计开发人才;四是缺乏产品验证手段,至今还没有一个国家级摩托车综合试验场。这就使我国摩托车行业的发展极不健康,如不及时采取措施,面临激烈的市场竞争以及加入世界贸易组织后国外先进车型的冲击,我国摩托车工业将陷入艰难的境地。因此,加大摩托车的科技投入,深入开展提高摩托车设计开发水平的科研工作显得尤为迫切。目前,许多发达国家及我国台湾省等,摩托车产品的开发设计、模拟分析过程全部计算机化和动态化,而国内摩托车的设计水平还停留在测绘仿制、进行传统的静强度校核的静态设计阶段。这种把本属动态性质的问题简化为静态问题来处理的方法,弊病很大.实际摩托车在行驶过程中,受到来自路面连续载荷的冲击及发动机自身工作时运动件惯性力的激励,是在一种振动状态下工作,特别在发生共振时会大大降低结构强度,并增加车体的振动和噪声。传统的方法把整个结构当作刚性系统来设计,

车架有限元分析

目录 一结构简介 (1) 二计算载荷工况 (2) 三有限元模型 (5) 四静强度分析结果 (10)

一、结构简介 本次作业以某转向架构架为几何模型,进行静强度分析,下图为本次计算针对的某型转向架几何模型,结构上由侧架、摇枕、转臂座、齿轮箱吊挂、轴箱吊挂、一系减震器座等组成。整个计算主要分为网格划分和静强度计算两个过程。 图1 某型转向架几何模型(a) 图2 某型转向架几何模型(b) 二、计算载荷工况

根据要求,对转向架采取如下的加载方式: 1、约束 图3 约束要求 如下的局部视图中圈出处即为所加的约束之一; 图4 模型中所加约束之一 在此点出建立Z 方向的 位移约束 在此点出建立X 、Z 方 向的位移约束 在此点出建立X 、Y 、Z 方向的位 移约束 在此点出建立Y 、Z 方 向的位移约束

2、载荷 图5 受力要求 模型中加载作用力的局部视图如下(注:图中坐标系中红色为X 轴,绿色为Y 轴,蓝色为Z 轴); 图6 Z 轴正向26.2kN 的力 在此处加26.2KN 的力,力的方向为Z 轴负方向 在此处加26.2KN 的力,力的方向为Z 轴正方向 在此处加45.6KN 的力,力的方向为X 轴正方向中心销半圆内部分(Z 方向距上盖板80mm,距下盖板131mm ,X 方向距离圆心7mm )

图7 Z轴负向26.2kN的力 图8 中心处加载X轴正向45.6kN的力计算工况如下表1所示 表1 工况 工况 横向 (X向) 纵向 (Y 向) 垂向 (Z向) 1 -- -- +

整个模型由两类网格组成:构架采用壳网格单元建立模型,转臂座构件采用六面体网格建立模型;其中壳网格单元以四边形网格为主。有限元模型重量为1422.015kg,结点总数为81382,单元总数为74991。有限元模型如图9~12所示。 图9 壳单元模型(1/4模型) 图10 转臂座实体网格模型

最新某公司人力资源结构分析报告

人力资源分析报告 第一部分:人力资源状况综述 1.公司的人力资源现状 公司现有员工162人,其中,全职人员71人,劳务工及兼职人员91人;管理人员14人,占8.6%;市场人员9人,占5.6%;技术人员16人,占9.9%;行政辅助人员35人,占21.6%;生产人员88人,占54.3%。根据公司人员结构比例,市场人员、技术人员、管理人员基本符合公司议定程度,以及相应管理需求对人才的基本要求,行政辅助人员可适当调减。公司现有人员年龄比例分别是35岁以下人员111人占70%,35—40岁人员18人占9%,40以上人员33人占21%。

(1)管理人员 管理人员是指包括公司董事长、总经理、副总经理和部门经理、车间主任在内的14人。 公司管理队伍的年龄结构较为合理,管理人员年富力强,平均年龄38岁,

(3)市场人员

3.上半年度用人成本 公司上半年度合计发放薪资173.4万元,薪资费用率为9.44%,月平均人数164人,人均薪资0.18万元;与去年同期相比,薪资发放增加了49万元,增长率39.4%,人员增加24人,增长率16.8%,业绩增加266.9万元,增长率20.27%,其中因管理人员增加所占的比重比较大,这与公司的人才结构调整有关。详细见附表 第二部分工作总结 上半年度工作主要围绕公司年度经营目标及考核目标展开,加强人力资源开发管 理,强化优胜劣汰,建立“能者上,庸者下,平者让”的竞争机制,并以劳动合 同续签为契机,完善管理,创造一个良好的用人环境,促进人力资源的优化配置: 1.人事管理工作 企业发展的最终目的是为了争取效益,获得利益最大化,而不合格人员留用将会阻 碍企业的发展,前期通过摆事实讲道理及有效的考核方案,对8人进行劝退工作,让他们走的高高兴兴;同时成功引进12名大学生,其中有5人已作为重点培养对

车架有限元分析word版

以ANSYS软件为分析工具对从国外引进的某重型车的车架进行了有限元分析、模态分析和以路面谱为输入的随机振动分析,通过用壳单元离散车架及MPC单元模拟铆打传力建立计算模型,研究该车架静、动态性能,了解该车架的优缺点。 车架是汽车的重要组成部分,在汽车整车设计中占据着重要位置,车架结构设计历来为广大汽车厂商所重视。本文以某汽车公司从欧洲引进的某重型车车架为研究对象,对该车架结构的动、静态特性进行分析计算,消化、吸收欧洲的先进技术并在此基础上进行自主创新设计。分析手段主要是通过建立正确的有限元分析模型,对车架进行典型工况的静态分析、模态分析和路面不平度引起的随机振动分析,以此了解车架的静态和动态特性,了解该车架的优越性能及其不足之处,为新车架的改型设计提供依据。 1 有限元分析模型的建立 该车架为边梁式,由两根位于两边的纵梁和若干根横梁组成,用铆接或焊接方式将纵梁和横梁联接成坚固的刚性结构,纵梁上有鞍座,其结构如图1 所示。由于车架是由一系列薄壁件组成,有限元模型采用壳单元离散能详细分析车架应力集中问题,可以真实反映车架纵、横梁联接情况,是目前常采用的一种模型。该车架是多层结构,纵梁断面为槽形,各层间用螺栓或铆钉联接,这种结构与具有连续横截面的车架不同,其力的传递是不连续的。 该车架长7m,宽约0.9 m,包括双层纵梁、横梁、外包梁、背靠梁、鞍座、飞机板、铸铁加强板、发动机安装板、三角支撑板和后轴等部分。考虑到车架几何模型的复杂性,可在三维CAD软件UG里建立车架的面模型,导人到Hypermesh软件中进行网格划分等前置处理,然后提交到ANSYS解算。车架各层之间的铆钉联接,可以用Hypermesh-connectors中的bar单元来模拟铆钉联接,对应的是ANSYS的MPC单元,因车架各层间既有拉压应力,又有剪应力,故MPC 的类型应选择Rigid Beam方式。由于该车是多轴车,为超静定结构,为了得到车架结构的真实应力分布,必须考虑悬挂系统的变形情况。整个车架结构应力分析的有限元模型由车架有限元模型和悬挂系统等效有限元模型组成,其中纵横梁、加强板等为薄壁结构,以壳单元shell63离散;钢板弹簧、轮胎以弹簧单元模拟;前悬弹赞的模型为在每边纵梁上采用2个弹簧单元,每个弹簧单元通过MPC 与车架联接,后悬弹簧的模型为在每边纵梁上采用1个弹簧单元与车架后轴联接。离散后,壳单元总数为46 770个,MPC单元为1 338个,材料为欧洲高强度材料,屈服极限500 MPa,杨氏模量为200GPa,泊松比0.3。

人员结构分析总结

2017年1-8月人力资源工作总结 1.公司人力资源基本情况 截至2017年8月31日,公司员工总人数为134人,其中公司领导为2人,行政人事部为14人;销售公司为21人;生产部71人;质检部9人;仓库9人;财务4人;供应部2人;技术部2人。人数最多的部门是生产部,占公司总人数的53%其次是销售公司,占公司总 人数的16% 生产部人员基本情况:管理人员 4人,机修人员5人,复合工段15人,大分切工段12 人,小 分切工段6人,印刷工段7人,制袋 工段9人,包装工段12人,保洁1人。 □公司领导■行政人事部HfflW 16% 公词口生产韶■仓库 ■頂检部■财务 处 口供应、技术 我公司各部门现有人员百分比 1.1性别结构 从整体来看,公司以女性员工居多,占公司员工总人数的 60%其中,公司生产部女性员工占部门总人数的66%销售公司目前以女性居多,占部门总人数的57%主要是因为销售公司内勤人员均为女性;质检部员工皆为女性。仓库从岗位的要求,以男性员工居多。 公司管理层共14人,男性员工居多,为11人,占管理层总人数的78.6%。 1.2学历结构 公司本科及以上学历的人员有20人,占公司总人数的14.9%,大专学历的人员有21人, 占公司总人数的15.7%,高中、中专、技校学历的人员有 36人,占公司总人数的26.9%,初中及以下学历的人员有57,占公司总人数的42.5%。其中,管理层中:大专及以上学历的人员有12人,占管理层总人数的85.7%;销售公司:大专及以上学历的人员占销售公司总人数的81%生产部:高中、中专、技校及以上学历的人员占生产部总人数的41%

综上,大专及以上学历的人员仍集中在管理层及销售公司,相对于实现公司的集团化、_____ 多元化的发展战略仍显管理人才储备不足。我行政人事部在下一阶段工作中须结合公司发展战略,重新审视公司现阶段及未来五年发展所需要的人才,并努力招聘到高素质人才。 本科及以上 ■大专 技校 ■初中及以下 26-乃 上图为我公司各学历层次的人数占公司总人数的百分比 1.3年龄结构 我公司员工年龄在18-32岁的人员有87人,占总公司人数的65% 43岁以上的人员18 人,占公司总人数的13%其中,生产部年龄划分:16-22岁的有9人,23-27岁的有12人, 28-32岁的有27人,33-37岁的有12人,38-42岁的有7人,42岁以上的有4人,年龄在 38岁以上的员工主要集中在制袋和包装工段,这两个工段的技术要求相对较低,聘用年纪稍大的员工对公司的正常运营影响不是很大,但对于提拔技术骨干及班长有一定的难度,不利于公司的持续发展,在以后的招聘中会注意这个问题。 从整体上看,我公司人员处于年轻化状态,但是从各部门实际情况来看,有个别部门年龄结构偏大,如仓库装卸工,行政人事部门卫、食堂人员,主要是基于工作性质的要求,,年纪都在43岁以上,基本能满足现在工作的需要。

摩托车发动机连杆断裂原因分析

摩托车发动机连杆断裂原因分析 陈明,谭莹,曹标,周崎,刘健斌 (广州出入境检验检疫局化矿金属材料检测技术中心,广东广州510623) 要:对断裂的摩托车发动机连杆进行宏观、金相及断口分析。结果表明连杆与输出轴之间曾发生强烈磨擦, 连杆局部区域应力集中及温度过高,降低了该区域的疲劳强度。同时该区域组织中存在的较粗大的碳化物 了基体组织的连续性,加速了裂纹的形成和扩展。 词:连杆;疲劳断裂;失效分析 东某摩托车厂一辆摩托车在运行了2000km后发生机械故障,经拆机检查,发现发动机曲轴连杆断裂。厂家送来断裂连杆要求进行断裂原因分析。据悉该连为20CrMnTi,表面经过渗碳处理。连杆工作原理见图1,连杆的往返运动带动两传动曲轴转动。 图1 曲轴连杆工作示意图 宏观检查 失效连杆件有两个断口,杆身未发现明显变形(图2),在连杆断裂端的轴承弧面可见许多与断口平行的裂纹[图3(a)];断裂端一侧面存在强烈磨擦痕迹[图3(深度达0.5mm;轴承弧面靠近磨擦侧面一端可见蓝灰色的高温氧化痕迹[图3(c)],连杆另一端未发现裂纹。断口1(图2左边的断口)较为光滑平整,断口损,中部可见疲劳弧线[图3(d)];断口2(图2右边的断口)未见疲劳弧线。

图2 曲轴连杆全貌 (a)连杆断裂端的轴承弧面裂纹;(b)连杆的一个侧面受到磨损; (c)曲轴轴承弧面靠近磨擦侧面一端蓝灰色的高温氧化痕迹;(d)断口1全貌 图3 磨损及断裂处的宏观形貌 扫描电镜分析 断口1在扫描电镜下显示疲劳弧线[图4(a)];根据弧线的走向可以找到疲劳源,疲劳源在[图4(d)]右下方拐角处,局部放大,源区的细微组织大部分已磨看到放射棱特征[图4(b)];在疲劳扩展区可见疲劳条纹及二次裂纹[图4(c)];断口2未见疲劳条纹,只有韧窝,可见断口1是最先开始断裂的断口,而断次断口。

轿车后副车架结构强度与模态分析.

轿车后副车架结构强度与模态分析 郑松林王寅毅冯金芝袁锋李丽 (上海理工大学机械工程学院) 【摘要】 根据某轿车后副车架的实际结构,运用有限元软件Hyperworks对后副车架进行有限元建模。 由有限元模型分析后副车架的结构强度,并计算后副车架的模态。从而反映后副车架可能存在的问题。在理论上为结构的进一步改进提供了重要参考二 【主题词】模态分析后副车架汽车 0 引言 随着轿车技术的不断进步,人们对于轿车的 舒适程度提出了更高的要求。副车架作为底盘系 统重要的承载元件,与车身和悬架系统相连,主要作用是提高悬架系统的连接刚度,减少路面震动

的传人,从而带来良好的舒适性。目前,一些中高 档轿车均采用独立式前后悬架系统,后副车架也 应用得越来越广泛。在设计时不仅要考虑到其强度,同时,为了避免振动和噪声,还要将模态特征作为对后副车架设计的约束条件。本文以某轿车后副车架为例,运用有限元软件对后副车架进行强度分析及模态分析,为轿车后副车架的设计改进提供了理论依据。 1 后副车架有限元模型的建立 后副车架三维模型是运用CATIAV5建立 的。后副车架如图1所示,通过4个悬置与车身相连。 使用Hyperworks软件的Hypermesh模块对3D 模型进行网格划分建立有限元模型。为保证有限 元模型的准确性,尽可能采用了四边形壳单元。 收稿日期:2009一∞一21 ?20?图1后副车架三维模型

考虑到模型的结构尺寸及运算效率采用以下划分标准:最小网格边长>10mm,最大网格边长≤ 20 mm;四边形单元的长宽比≤5,最大角150。,最 小角>30。,雅可比>0.6。三角单元的总数占总单元的比例不超过10%;得到有限元模型如图2所示。 图2后副车架有限元模型 有限元模型计算所使用的普通钢的材料参数 上海汽车2009.11 万方数据 为:密度7.8 x 103 kg/m3;弹性模量210GPa;泊松 比0.3。

车架受力分析基础

车架受力分析基础 一、对车架整车的受力要求 二、车架的受力情况具体分析 三、车架的结构分析 1.车架的基本结构形式 2.车架宽度的确定 3.纵梁的形式、主参数的选择 4.车架的横梁及结构形式 5.车架的连接方式及特点 6.载货车辆采用铆接车架的优点 四、车架的计算 1.简单强度计算分析 2.简单刚度计算分析 3.CAE综合分析 五、附表 2000年7月1日

一、整车对车架的要求 车架是整车各总成的安装基体,对它有以下要求: 1.有足够的强度。要求受复杂的各种载荷而不破坏。要有足够的疲劳强度,在大修里程内不发生疲劳破坏。 2.要有足够的弯曲刚度。保证整车在复杂的受力条件下,固定在车架上的各总成不会因车架的变形而早期损坏或失去正常工作能力。 3.要有足够的扭转刚度。当汽车行使在不平的路面上时,为了保证汽车对路面不平度的适应性,提高汽车的平顺性和通过能力,要求车架具有合适的扭转刚度。对载货汽车,具体要求如下:3.1车架前端到驾驶室后围这一段车架的扭转刚度较高,因为这一段装有前悬架和方向机,如刚度弱而使车架产生扭转变形,势必会影响转向几何特性而导致操纵稳定性变坏。对独立悬架的车型这一点很重要。 3.2包括后悬架在内的车架后部一段的扭转刚度也应较高,防止由于车架产生变形而影响轴转向,侧倾稳定性等。 3.3驾驶室后围到驾驶室前吊耳以前部分车架的刚度应低一些,前后的刚度较高,而大部分的变形都集中在车架中部,还可防止因应力集中而造成局部损坏现象。 4.尽量减轻质量,按等强度要求设计。 二、车架的受力情况分析 1.垂直静载荷: 车身、车架的自重、装在车架上个总成的载重和有效载荷(乘员和货物),该载荷使车架产生弯曲变形。 2.对称垂直动载荷: 车辆在水平道路上高速行使时产生,其值取决于垂直静载荷和加速度,使车架产生弯曲变形。 3.斜对称动载荷 在不平道路上行使时产生的。前后车轮不在同一平面上,车架和车身一起歪斜,使车架发生扭转变形。其大小与道路情况,车身、车架及车架的刚度有关。 4.其它载荷 4.1汽车加速和减速时,轴荷重新分配引起垂直载荷。 4.2汽车转弯时产生的侧向力。 4.3一前轮撞在凸包上,车架水平方向上产生箭切变形。 4.4装在车架上总成(方向机、发动机、减振器)产生的作用反力。 4.5载荷作用线不通过纵梁的弯曲中心(油箱、悬架)而使纵梁产生局部受扭。 因此车架的受力是一复杂的空间力系,纵梁和横梁截面形状和连接的多变多样,使车架的受载更复杂化。车架CAE分析时一轮悬空这种极限工况,即解除一个车轮的约束,分析车架弯扭组合情况下的最大应力。

EQ1075G车架有限元分析

EQ1075G车架有限元分析 An FEM Analysis of the EQ1075G Frame 蒋光福刘永超耿广锐李智勇刘道勇 (东风汽车公司技术中心) 摘要: 本文对EQ1075G车架进行自由模态和静态应力有限元分析,针对分析结果给出了改进设计建议方案。 主题词:汽车车架模态应力优化设计有限元分析 Abstract This paper has introduced mode and stress FEM analysis for the EQ1075G frame and has put forward improved design structure on this analyzed resolution. Keywords: Automobile Frame Mode Stress Optimization design FEM analysis 一、前言 根据EQ1075G车架产品开发的需要,本文对车架原设计方案进行有限元模态和应力分析,并根据分析结果,提出了改进设计建议方案;同时,对该改进设计建议方案也进行了有限元模态和应力分析,并作出了相应的评价。 二、结构模型化 由于该车架主要是板材结构,因此模型化时主要采用板单元;车架上所有的铆钉连接用梁单元和刚性单元模拟;钢板弹簧用弹簧单元模拟;车架有限元模型如图1所示。 车架有限元模型规模:节点84900个,单元81318个,其中板单元81062个,弹簧元12个,梁单元24个。

图1 车架有限元分析模型 三、计算参数 钢板弹簧的刚度系数: =86.926N/mm 前钢板弹簧的垂直刚度系数:C 前 后钢板弹簧的主簧的垂直刚度系数:C =92.904N/mm 后主 后钢板弹簧的副簧的垂直刚度系数:C =115.15N/mm 后副 EQ1075G车架采用特高强度热轧冷成型钢Domex 700MC材料,该材料的物理性能为:弹性模量E=210000N/mm2,泊松比μ=0.3;该材料的机械性能为:最小屈服强度是700000KPa,最小抗拉强度是750000KPa,最大抗拉强度是950000KPa.。 本文应力分析时,取动荷系数为1.0。 四、边界条件 本文分析车架应力时,施加了作用于车架上的所有载荷,其中重力包括动力总成5855.5N,油箱及托架1117.2N,水箱及中冷器588N,驾驶室及乘员5880N,蓄电池及其框架686N,贮气筒及其框架980N,车厢9310N以及载荷39200N。 本文分析了三种工况下的车架应力分析规律及其最大应力值,各工况定义如下: 工况1:弯曲工况,汽车满载(4000kg)匀速行驶在水平路面上,只约束前后车轮竖直方向的位移。 工况2:扭转工况,汽车满载(4000kg)匀速行驶在有凸台的路面上,一

两轮摩托车车架强度分析流程

两轮摩托车车架强度分析流程 一、使用范围 本分析流程适用于本公司两轮摩托车车架的强度分析,主要包括骑士车、踏板车、弯梁车的车架主体(见图1)。 图1车架结构示意图 二、分析思路及理念 根据两轮摩托车和两轮轻便摩托车车架技术条件和试验方法,两轮摩托车车架分析中需要模拟三种典型载荷:水平加载F0、后轮中心部位垂直向上加载F z、副座乘员乘座部位垂直向下加载F s。 校核强度分析中,先对车架进行有限元分析,计算车架的应力分布情况。对于出现应力集中的部位,分析其可能产生的原因,并与该部分所用材料的屈服强度进行比较,判断车架是否会发生屈服破坏,计算该处的安全系数。 为了校核车架的强度,应先列出车架各部分所使用的材料和这些材料的力学性能。如表1所示: 表1车架各部分所用材料力学性能 具体部件所用材料屈服强度(MPa)抗拉强度(MPa) 车头管20号钢245410 脊梁板和加强板08F号钢175295 其他(管件)Q215号钢335-450215 最后,通过校核车架的安全系数,分析车架的安全性,并指出需要加强的地方。 三、分析过程 3.1建立车架的有限元模型 (1)检查和清理原始模型,分析车架结构的合理性(如加强板的位置形状是否合理),如有明显不合理之处与设计人员沟通是否有特殊的设计意图,并确定车架结构可改动的位置及余量。在将原始模型导入有限元软件之前,清理原始模型上对车架强度不起作用的附件。 (2)网格划分,根据车架的实际情况,通常将车架的单元网格划为3-4mm,将厚度均匀的管件及钣金件划为shell单元,将形状不规则的铸铁或铸铝(如连接座,铸铝车架等)划为四面体单元,

在进行网格划分前应先对几何进行处理,将细小特征清除或释放,以提高网格划分效率及网格质量。对容易出现强度问题的区域可进行网格局部细化,以提高有限元计算精度。 (3)将减震器,后摇臂等暂不考虑强度的部件简化为截面相同的梁单元;将发动机假定为一刚性很大的部件,简化为MPC与车架相连。见图2、3、4 图2骑士车有限元模型图3踏板车有限元模型图4弯梁车有限元模型 3.2工况的设定 两轮摩托车车架分析中需要模拟三种典型载荷:车架前轮受水平冲击力F0的工况;车架后轮受路面垂直冲击力F z的工况;后乘座受垂直向下载荷F s的工况。 载荷的计算: 式中: G——摩托车整备质量(kg) K——修正常数,骑式车取 160-190,踏板车和弯梁车去130-160。 g——重力加速度 Ψ——轮胎与地面峰值附着系数 载荷的模拟: a)水平工况:通过在前轮轴心处施加水平方向的载荷,模拟摩托车在急刹车和

汽车前副车架模态分析与参数识别

汽车前副车架模态分析与参数识别 摘要:通过了解模态分析的定义及概念,学习模态参数识别的基本方法与技术,在介绍结构模态试验方法的基础上,以汽车前副车架为研究对象,采用锤击激励法和白噪声激励法进行了模态试验,又用3种模态参数识别软件作模态参数识别,并对识别结果进行误差分析。 关键词:前副车架,模态试验,激振,模态参数识别

Modal analysis and parameters identification of car front subframe Abstract:By understanding the definitions and concepts of modal analysis, modal parameter identification of learning the basic methods and techniques, based on the introduction of structural modal test methods, automobile front subframe for the study, using a hammer and a white noise excitation method encourage a modal test method, and use three kinds of modal parameter identification software for modal parameter identification, error analysis and recognition results. Keyword: front subframe, modal test, exciting, identification modal parameters

某商用车白车身结构静强度分析

某商用车白车身结构静强度分析 本论文依据有限元的基本理论,建立某型商用车白车身有限元模型,并在通用有限元分析系统MSC.Patran/Nastran中进行白车身结构的弯曲、单边扭曲、全扭曲三种工况的静态强度分析。 0 前言 从2000年法兰克福国际商用车展到2009年第37届美国中部卡车展,商用车(尤其是重型卡车)在国际主流车市上凸显强劲的增长势头和市场占有率。驾驶室作为商用车辆的一个主要产品总成,由于它是造型和结构功能的有机结合体,同时也是驾驶员和乘员工作和休息的空间,因此它在整车中体现出共性的技术应用和独有的发展特征。 本论文某型商用车驾驶室白车身作为研究对象,首先对白车身结构几何进行网格划分,检查网格划分质量,建立精确的有限元分析模型;进而基于此模型,施加适当约束,使用MSC.Patran/Nastran对白车身结构进行弯曲、单边扭曲、全扭曲等不同工况的静态强度仿真分析。 1 白车身有限元模型的建立 驾驶室白车身含有零件数目众多,并且常含有复杂的曲面,用网格准确描述其几何特征的难度较高,复杂的曲面会产生许多网格上的问题,如单元畸变、网格细小、网格失真等诸多问题。对数目繁多、曲面复杂的零部件划分高质量的网格工作量大、难度高。除此之外,白车身各个部件之间是通过焊接连接起来的,两部件在焊接处具有完全相同的自由度,为刚性连接,可用一维rigid单元模拟表示。在整个白车身模型中焊点多达上万个,需利用rigid 面板在焊点位置逐个施加。并且焊点与焊点、焊点与约束之间很容易出现过约束的情况。 文中将网格的检查标准设为Jacobin=0.6、aspect ratio=5、warpage=15°、skew=40°、min-angle=30°、max angle=120°,经检查后,不合格网格数为162个,网格失效百分比为0.0%,整体上网格的形状较为理想,网格质量较高,为计算结果的准确性提供了一个必要条件。图1为白车身整车的有限元模型。 点击图片查看大图

汽车车架有限元分析参考文献

[1] 曲昌荣, 郝玉莲,戚洪涛. 汽车车架有限元分析[J].轻型汽车技术,2007,12:54~56 [2] 石常青,丁厚明, 杨胜梅. 货车车架的有限元分析及车厢对其性能的影响[J].汽车技术,2004 ,4:5~8 [3] 郭立群, 潘淑华. 中重型汽车车架结构强度有限元建模与分析方法研究[J].汽车技术,2008,6:4~7 [4] 尹辉俊, 韦志林, 黄昶春等. 面向设计的微型车车架强度分析[M].机械设计,2008,1:62~64+67 [5]历辉,李万琼.货车车架的等效载荷简化[J].汽车工程,1994,5:310~314 [6] 黄金陵.有限元法应用于汽车车架结构分析中的几个问题[J].吉林大学学报,1980,1:76~81+83~88 [7] 于学兵, 许先锋..BJ2027型皮卡车车架的有限元分析[D].大连理工大学,2004,2(17) [8] 张勇, 张力等.重型车车架组合结构的有限元分析[J].机械与电子,2005,2:16~18 [9] 张云, 詹隽青等.基于ANSYS的整装整卸挂车车架有限元分析[D].军事交通学院学报,2007,2:39~42 [10] 尹辉俊, 韦志林, 沈光烈. 货车车架的有限元分析[M].机械设计,2005,11:26~28 [11] 李志勋.LT3242重型自卸车车架结构有限元分析[D].农业机械化工程,2009,2(20). [12] 李德信, 吕江涛, 应锦春.SX360自卸车车架异常断裂原因分析[J].汽车工程,2002,4:348~352 [13] 陈铭年, 庄继德.汽车车架计算方法和结构优化变量综述[J].汽车工程,1996,5:285~289+300 [14] 黄金陵.汽车车架结构元件参数的优选[J].汽车技术,1984,1:17~25 [15] M. Barbato and J.P. Conte.Finite element response sensitivity analysis: a comparison between force-based and displacement-based frame element models [J].2005,4(8):1479~1512 [16] M.H. El Haddad.Finite element analysis of infilled frames considering cracking and separation phenomena [D]2003,2

XX公司人员结构分析汇报.

公司人员结构分析汇报 一、人员现状: 公司共有岗位 36个,定编 88人,其中兼职 2人,现有员工 83人。全公司员工平均年龄31岁,其中 45岁以上老员工 12人, 占 14.5%, 35-45岁的 20人,占 24%, 35岁以下青年员工51人, 占 61.5%。从文化结构上来看,大学本科学历 2人,占 2.4%,大专学历 13人,占 15.7%,高中、中专学历 38人,占 45.8%,初中以下学历 30人,占 36.1%。员工构成中以近几年高中、中专毕业生以及 初中学历的中青年员工为主要成份。具体岗位情况详见附表 二、存在问题: 1、人员素质程度不高、个人观念意识太重,缺乏团队意识和协作精神; 事例 :女生换宿舍问题及引起的连锁问题、宿舍内丢失物品问题。 通过分析公司大部分员工学历层次较低,人员素质程度不高,个 人观念意识太重,缺乏团队意识和协作精神才出现了上面的问题。 建议:通过素质培训、知识培训、各层面人员的面谈沟通 , 正确引 导员工思想发展方向,以加强员工的素质 ; 积极组织一些集体活动, 以提高员工的团队意识和协作精神。 2、中层管理人员素质和管理水平较低 ; 体现在:所辖员工不服从工作安排和管理;对非所辖员工随意指示安排工作。 麦肯锡公司的一项调查表明:有的公司能保持持续发展和改革, 达到更高的业绩,关键的因素不在于高级管理者,而在于一批具有高 素质和管理才能的中层管理者和专业人才。可见中层管理人员在企业 中起中流砥柱的作用,他们不同于一般员工,他们的素质高低,在很 大程度上影响一般员工的职业行为。甚至关系企业发展的成败,因此 对中层管理者的素质,要有更高层次的特殊的要求。虽然不同规模的

相关主题
文本预览
相关文档 最新文档