当前位置:文档之家› 保险精算第四章

保险精算第四章

保险精算第四章
保险精算第四章

1.设生存函数为()1100

x

s x =-

(0≤x ≤100),年利率i =,计算(保险金额为1元): (1)趸缴纯保费130:10

ā的值。 (2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。

2.设年龄为35岁的人,购买一张保险金额为1000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=,试计算: (1)该保单的趸缴纯保费。

(2)该保单自35岁~39岁各年龄的自然保费之总额。 (3)(1)与(2)的结果为何不同?为什么? (1)法一:4

1

135

36373839234535:5

3511000()1.06 1.06 1.06 1.06 1.06

k k x x k k d d d d d A

v p q l ++===

++++∑ 查生命表353536373839979738,1170,1248,1336,1437,1549l d d d d d ======代入计算:

法二:1

3540

35:5

35

10001000M M A D -= 查换算表1

354035:5

3513590.2212857.61

100010001000 5.747127469.03

M M A D --===g (2)

1

353535:1351

363636:1361373737:1371383838:1

38143.58

100010001000

1000 1.126127469.03144.47

100010001000

1000 1.203120110.22

145.94

100010001000

1000 1.29113167.06100010001000100C p A D C p A D C p A D C p A D ===============g g g 1

393939:1393536373839148.050 1.389

106615.43

150.55

100010001000

1000 1.499100432.54

1000() 6.457

C p A

D p p p p p =====++++=g g (3)

1112131413523533543535:535:1

36:137:138:139:11

3536373839

35:5

A A vp A v p A v p A v p A A

p p p p p =++++∴<++++g g g

3.设0.25x =A ,200.40x +=A ,:200.55x =A ,试计算: (1)1:20

x A 。 (2)1:10

x A 。改为求1:20x A 4.试证在UDD 假设条件下: (1)1

1::x n x n i

δ

=

A A 。

(2)11

:::x x n n

x n

i

δ=+āA A 。 5.(x)购买了一份2年定期寿险保险单,据保单规定,若(x)在保险期限内发生保险责任范围内的死亡,则在死亡年末可得保险金1元,()0.5,0,0.1771x q i Var z ===,试求1x q +。

6.已知,767677770.8,400,360,0.03,D D i ====求A A 。

7.现年30岁的人,付趸缴纯保费5000元,购买一张20年定期寿险保单,保险金于被保险人死亡时所处保单年度末支付,试求该保单的保险金额。

解:1

1

30:20

30:20

5000

5000RA R A =?= 其中

查(2000-2003)男性或者女性非养老金业务生命表中数据3030313249,,,l d d d d L 带入计算即可,或者i=以及(2000-2003)男性或者女性非养老金业务生命表换算表

305030,,M M D 带入计算即可。

例查(2000-2003)男性非养老金业务生命表中数据

8.考虑在被保险人死亡时的那个

1

m

年时段末给付1个单位的终身寿险,设k 是自保单生效起存活的完整年数,j 是死亡那年存活的完整1

m

年的时段数。

(1)求该保险的趸缴纯保费()m x A 。

(2)设每一年龄内的死亡服从均匀分布,证明()()

m x x m i i =

A A 。

9.现年35岁的人购买了一份终身寿险保单,保单规定:被保险人在10年内死亡,给付金额为15000元;10年后死亡,给付金额为20000元。试求趸缴纯保费。

趸交纯保费为11

10|3535:10

1500020000A A + 其中

所以趸交纯保费为1110|3535:10

1500020000178.0518952073.05A A +=+= 10.年龄为40岁的人,以现金10000元购买一份寿险保单。保单规定:被保险人在5年内死亡,则在其死亡的年末给付金额3000元;如在5年后死亡,则在其死亡的年末给付数额R 元。试求R 值。

11.设年龄为50岁的人购买一份寿险保单,保单规定:被保险人在70岁以前死亡,给付数额为3000元;如至70岁时仍生存,给付金额为1500元。试求该寿险保单的趸缴纯保费。

该趸交纯保费为:1 150:2050:20

30001500A A + 其中

查生命表或者相应的换算表带入计算即可。

12.设某30岁的人购买一份寿险保单,该保单规定:若(30)在第一个保单年计划内死亡,则在其死亡的保单年度末给付5000元,此后保额每年增加1000元。求此递增终身寿险的趸缴纯保费。

该趸交纯保费为:

30303030

3030

40001000()40001000M R

A IA D D +=+ 其中

查生命表或者相应的换算表带入计算即可。

13.某一年龄支付下列保费将获得一个n 年期储蓄寿险保单:

(1)1000元储蓄寿险且死亡时返还趸缴纯保费,这个保险的趸缴纯保费为750元。

(2)1000元储蓄寿险,被保险人生存n 年时给付保险金额的2倍,死亡时返还趸缴纯保费,这个保险的趸缴纯保费为800元。

若现有1700元储蓄寿险,无保费返还且死亡时无双倍保障,死亡给付均发生在死亡年末,求这个保险的趸缴纯保费。

解:保单1)精算式为11 1

::::100075017501000750x n x n x n x n

A A A A +=+= 保单2)精算式为

求解得1 1::7/17,1/34x n x n

A A ==,即 14.设年龄为30岁者购买一死亡年末给付的终身寿险保单,依保单规定:被保险人在第一个保单年度内死亡,则给付10000元;在第二个保单年度内死亡,则给付9700元;在第三个保单年度内死亡,则给付9400元;每年递减300元,直至减到4000元为止,以后即维持此定额。试求其趸缴纯保费。

15.某人在40岁投保的终身死亡险,在死亡后立即给付1元保险金。其中,给定

110x l x =-,0≤x ≤110。利息力δ=。Z 表示保险人给付额的现值,则密度()0.8x f 等

于()

A. 0.24

B.0.27

C.已知在每一年龄年UDD 假设成立,表示式

()()x

x

I A I A A

-=()

2

i δ

δ-.

()2

1i δ

+

11d δ-.1i

i δ

δ??- ???

解:

17.在x 岁投保的一年期两全保险,在个体(x )死亡的保单年度末给付b 元,生存保险金为e 元。保险人给付额现值记为Z,则Var(Z)=()

()2

2x x p q v b e +.()2

2x x p q v b e -

()222x x p q v b e -.()222x x v b q e p +

解:

18表示的是(A )

A 、死亡年年末赔付寿险精算现值两全保险

B 、死亡年年末赔付寿险精算现值定期保险

C 、死亡年年末赔付寿险精算现值延期保险

D 、死亡年年末赔付生存保险 19下列哪项不属于非年金保险(A ) A 、定期保险 B 、定期死亡保险 C 、终身死亡保险 D 、两全保险

20设生存函数为s(x)=1-x/100,0≤x ≤100,年利率i=,以保险金额为1元计算趸缴

纯保费1

30:10

A ;Var(Z) (x)=1-x/100

fr(t)=-s ’(x+t)/s(x)=1/(100-x) s=30,f T (t)=1/70

1

30:10

A =∫010

v t

f T (t)dt=∫010e -δt

f T (t)dt=(1/70)∫010t dt=

2

1

30:10

A =(1/70)∫010e -2δt

f T (t)dt=(1/70)[(1/-2δ)e -2δt ∣100][δ=In]=

Var(Z)=2130:10A -(1

30:10

A )2=

最新保险精算第二版习题及答案93020

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100 (5)300180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5 年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值:

保险精算习题及答案

保险精算习题及答案 第一章:利息的基本概念 练习题 21(已知,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,atatb,,,, 在时刻8的积累值。 2((1)假设A(t)=100+10t, 试确定。 iii,,135 n(2)假设,试确定。 An,,1001.1iii,,,,,,135 3(已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 4(已知某笔投资在3年后的积累值为1000元,第1年的利率为,第2年的利率为,i,10%i,8%12第3年的利率为,求该笔投资的原始金额。 i,6%3 5(确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 2226(设m,1,按从大到小的次序排列与δ。 vbqep,,,xx 7(如果,求10 000元在第12年年末的积累值。 ,,0.01tt 8(已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 t9(基金A以每月计息一次的年名义利率12%积累,基金B以利息强度积累,在时刻t (t=0),两笔,,t6 基金存入的款项相同,试确定两基金金额相等的下一时刻。

10. 基金X中的投资以利息强度(0?t?20), 基金Y中的投资以年实际利率积累;现分别,,,0.010.1tit 投资1元,则基金X和基金Y在第20年年末的积累值相等,求第3年年末基 金Y的积累值。 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 nmvviaa,,,1(证明。,,mn 1 2(某人购买一处住宅,价值16万元,首期付款额为A,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首 期付款额A。 3. 已知 , , , 计算。 a,5.153a,7.036a,9.180i71118 4(某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其 每年生活费用。 5(年金A的给付情况是:1,10年,每年年末给付1000元;11,20年,每年年末 给付2000元;21,30年,每年年末给付1000元。年金B在1,10年,每年给付额为K元;11,20年给付额为0;21,30年,每年

保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2 a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在 时刻8的积累值。 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 6.设m >1,按从大到小的次序排列()()m m d d i i δ<<<<。 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。、 8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6 t t δ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。 10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 1.证明() n m m n v v i a a -=-。 2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首期付款额A 。 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。

保险精算第1章习题答案

第1章 习题答案 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 解: 100)0(100)0(.k )0(2=+?==b a a A 或者由1)0(=a 得1=b 180)15(100)5(100)5(2=+?=?=a a A 得032.0=a 以第5期为初始期,则第8期相当于第三期,则对应的积累值为: 4.386)13032.0(300)3(2=+??=A 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 解:(1)A(0)=100;A(1)=100+10×1=110;A(2)=120;A(3)=130;A(4)=140;A(5)=150 ; ; 。 (2)A(0)=100;;;;; 。 ; ; 。 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 解:单利条件下: 得; 则投资800元在5年后的积累值:; 在复利条件下: 得 则投资800元在5年后的积累值:。 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率

为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 解: 得元。 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 解:(1) 元 (2) 得 10000元在第3年年末的积累值为: 元 6.设m >1,按从大到小的次序排列,,,与。 解:,所以,。 ,在的条件下可得。 ,在的条件下可得 。 对其求一阶导数得得 对其求一阶导数,同理得。 由于,所以,同理可得。 综上得: 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。 解:元 8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 解:注意利用如下关系:则 则根据上述关系可得:

保险精算李秀芳1-5章习题答案

第一章 生命表 1.给出生存函数()22500 x s x e -=,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 ()()()10502050(5060)50(60) 50(60) (50) (70)(70) 70(50) P X s s s s q s P X s s p s <<=--= >== 2.已知生存函数S(x)=1000-x 3/2 ,0≤x ≤100,求(1)F (x )(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求q 65。 ()() ()5|605606565(66)650.1895,0.92094(60)(60)65(66) 0.2058 (65) s s s q p s s s s q s -= ===-∴= = 4. 已知Pr [T(30)>40]=0.70740,Pr [T(30)≤30]=0.13214,求10p 60 Pr [T(30)>40]=40P30=S(70)/S (30)=0.7074 S (70)=0.70740×S(30) Pr [T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴10p 60= S(70)/S (60) =0.70740/0.86786=0.81511

5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。 (1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 808081 8080800.07d l l q l l -= == 808081 808080 0.07d l l q l l -= == 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q .

保险精算李秀芳章习题答案

第一章生命表 1.给出生存函数() 2 2500 x s x e- =,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 2.已知生存函数S(x)=1000-x3/2 ,0≤x≤100,求(1)F(x)(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr[5<T(60)≤6]=0.1895,Pr[T(60)>5]=0.92094,求q 65 。 4.已知Pr[T(30)>40]=0.70740,Pr[T(30)≤30]=0.13214,求 10p 60 Pr[T(30)>40]=40P30=S(70)/S(30)=0.7074 S(70)=0.70740×S(30) Pr[T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴ 10p 60= S(70)/S(60)=0.70740/0.86786=0.81511 5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。

(1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q . 612 P =(1-q 61)(1-q 62)=0.96334 60|2q =612P .q 62=0.01937 10. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 13.设01000l =,1990l =,2980l =,…,9910l =,1000l =,求:1)人在70岁至80岁之间死亡的概率;2)30岁的人在70岁至80岁之间死亡的概率;3)30岁的人的取整平均余命。 18. 19.

保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8,125 300*100(5)300180 300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=?= ==?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---====== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---====== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 11132153500(3)500(13)6200.08 800(5)800(15)1120 500(3)500(1)6200.0743363 800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1) (0)794.1A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

第12章--保险精算

第十二章保险精算 本章要点 1.保险精算是以数学、统计学、金融学、保险学及人口学等学科的知识和原理,去解决商业保险和社会保障业务中需要精确计算的项目,如研究保险事故的出险规律、保险事故损失额的分布规律、保险人承担风险的平均损失及其分布规律、保险费和责任准备金等保险具体问题的计算。 2.保险精算的基本任务。在寿险精算中,利率和死亡率的测算是厘定寿险成本的两个基本问题。非寿险精算始终把损失发生的频率、损失发生的规模以及对损失的控制作为它的研究重心。保险精算的首要任务是保险费率的确定,但这并不是保险精算的全部。伴随着金融深化的利率市场化,保险基金的风险也变为精算研究的核心问题。在这方面要研究的问题包括投资收益的敏感性分析和投资组合分析、资产和负债的匹配等。 3.保险精算的基本原理。保险精算其最基本的原理可简单归纳为收支相等原则和大数法则。所谓收支相等原则,就是使保险期内纯保费收入的现金价值与支出保险金的现金价值相等。所谓大数法则,是用来说明大量的随机现象由于偶然性相互抵消所呈现的必然数量规律的一系列定理的统称。 4.在非寿险精算实务中,确定保险费率的方法主要有观察法、分类法和增减法。 5.在一定的要求之下,“大数”由下面的公式来测定: 6.自留额与分保额的决策。假定在原有业务上,赔偿基金为P1,赔偿金额标准差为Q1,则。现将另外接受n个保险单位,保额为x元,纯费率为q,则合并业务后要使K1+2仍维持K1的值,则应有: 当q十分小时,可近似得到: 即要维持原有的财务稳定性,对于新接受的业务,如果保险金额在x以下,则可全部自留;对于保险金额超过x的新业务,自留额以x为限,超过部分予以分保。 7.寿险精算的计算原理及公式。 8.理论责任准备金及其计算。 9.实际责任准备金及其计算。 第一节保险精算概述 一、保险精算的概念和基本任务 所谓精算,就是运用数学、统计学、金融学及人口学等学科的知识和原理,去解决工作中的实际问题,进而为决策提供科学依据。

保险精算习题及答案

第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100(5)300 180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

保险精算基础知识点总结

满期保费指从保单生效日起至统计区间末已经满期的那部分保费。满期保费=保费收入×【min(统计区间末,保险责任终止日)-保单生效日】/【保险责任终止日-保单生效日】。满期保费通常是针对一张保单或者是在一个承保年度内起保的所有保单而言。 已赚保费指在统计区间内所有有效(包括在整个区间有效或在部分区间有效)的保单在统计区间内已经经过的那部分保费。已赚保费=统计区间保费收入+统计区间期初未到期责任准备金-统计区间期末未到期责任准备金。已赚保费是计算统计区间承保利润的基础。反映了新承保保单和部分历史保单的保费对于核算区间的收入贡献。通常在业务保持增长的情况下,已赚保费低于保费收入。 已发生未报告未决赔款准备金(IBNR):指截止至统计区间末已经发生但尚未接到报案的案件的精算评估金额。广义的IBNR还包含已发生未立案准备金、未决估损不足准备金、重立案件准备金以及理赔费用准备金。其中已发生未立案准备金是指为保险事故已经报告但未记录到理赔系统的案件提取的准备金;未决估损不足准备金是指最初立案金额与最终实际赔付之间的差额;重立案件准备金是指已赔付案件,出现新的信息,赔案被重新提起并要求额外增加赔付;理赔费用准备金是指为尚未结案的赔案可能发生的费用而提取的准备金。其中为直接发生于具体赔案的专家费、律师费、损失检验费等而提取的为直接理赔费用准备金;为非直接发生于具体赔案的费用而提取的为间接理赔费用准备金。 未到期责任准备金:指对在统计区间末仍然有效的保单的尚未终止的保险责任提取的保费责任准备金。每张保单的未到期责任准备金=保费收入×【该保单的保险责任终止日-统计区间末】/【该保单的保险责任终止日-保单生效日】。上述计算方法为三百六十五分之一法。统计区间末的未到期责任准备金为在统计区间末仍然有效的所有保单的未到期责任准备金之和。未到期责任准备金是计算统计区间已赚保费的基础 纯风险保费:纯风险保费=出险频度×案均赔款×损失发展因子×趋势发展因子 【损失发展因子:损失在未来的发展。原因:报案的延迟、立案的延迟、理赔的延迟。 趋势发展因子:将经验期中的损失调整到费率有效期,反映未来变化的趋势。原因:通货膨胀、法律环境变化、消费习惯等。 案均赔款:案均赔款=已发生赔款÷出险次数 出险频度:统计区间内每张保单每年的平均出险频度,出险频度=统计区间内报案件数/已赚风险暴露。】 满期赔付率指统计区间内的保单发生的赔案(已决金额与统计区间末的未决金额之和)与相应的满期保费的比率。满期赔付率=(已决赔款+未决赔款)/满期保费,满期赔付率是反映保单质量的重要赔付率指标之一,核保常采用,但是没有考虑已发生未报告案件对应的赔款责任。在反映统计区间的综合赔付水平时存在一定程度的滞后,且短期波动大。【存在一定程度的滞后,短期波动大;不含IBNR】 终极赔付率 费=最终赔付/保费收入,适用于保单年度,全面反映保单的业务品质,包含已发生未报告案件对应的赔款责任(IBNR),能真实、全面和及时的反映承保保单的整体赔付状况。 【赔付状况能较真实、全面和及时的反映】 已报告赔付率已报告赔付率=(已决赔款+未决赔款提转差)/已赚保费,已决赔付率的改善,不含IBNR,主要用于财务年度数据统计。

保险精算学公式

《精算技术》公式 第一章 利息理论 1n n v a i -=; ()11n n n v a a i d -=+=; () ()11 1n n n n i s a i i +-=+= ; ?? ? ?? -=11511000x l x ; 1a i ∞=; 1a d ∞=; 1n n v a δ -= ; ()11 n n i s δ +-= ; ()n n n a nv Ia i -= ; ()()()1n n n n s n Is Ia i i -=+=; ()n n n a Da i -=; ()()1n n n n i s Ds i +-= ; ()211Ia i i ∞ =+。

第二章 生命表 22x x x m q m = +; 1x x x l l d +=-; x x x d q l =; ()11 2 x x x L l l += +; 1 x x x t t T L ?--+== ∑ ; x x x T e l = 。 第三章 生存年金 生存年金的概念及其种类。 生存年金现值计算公式 x a :x n a

x a x a x a x a -2m x a x a -2m :x n a :x n a -2m )x Ia :)x n Ia

)x a :)x n Da 各种年金之间的关系式: x a =:x n a +|n x a | n x a =n x E x n a + x a =1+x a :x n a =1+:1x n a - | n x a =1|n x a - |n m x a =1|n m x a - :x n s =:x n a 1n x E :x n s =:x n a 1n x E ()m x a =()m x a + 1 m ()m x a =():m x n a +()|m n x a () | m n x a =n x E ()m x n a + 转换函数的定义

保险精算第五章

1.设随机变量T =T(x)的概率密度函数为0.015()0.015t f t e -=?(t ≥0),利息强度为δ=0.05 。试计算精算现值x a 。 2.设10x a =, 27.375x a =, ()50T Var a =。试求:(1)δ;(2)x ā。 3.某人现年50岁,以10000元购买于51岁开始给付的终身生存年金,试求其每年所得年金额。 4.某人现年23岁,约定于36年内每年年初缴付2 000元给某人寿保险公司,如中途死亡,即行停止,所缴付款额也不退还。而当此人活到60岁时,人寿保险公司便开始给付第一次年金,直至死亡为止。试求此人每次所获得的年金额。 5.某人现年55岁,在人寿保险公司购有终身生存年金,每月末给付年金额250元,试在UDD 假设和利率6%下,计算其精算现值。 6.在UDD 假设下,试证: (1) ()()||()m x x n x n n a m a m E αβ=- 。 (2) ()()::()(1)m n x x n x n a m a m E αβ=-- 。 (3)()()::1(1)m m n x x n x n a a E m =-- 。 7.试求现年30岁每年领取年金额1200元的期末付终身生存年金的精算现值,且给付方法为:(1)按年;(2)按半年;(3)按季;(4)按月。 8.试证: (1) ()()m x x m a a i δ = (2) ():() :m x n m x n a a i δ= 。 (3) ()lim m x x m a a →∞= 。 (4) 12x x a a ≈- 。 9.很多年龄为23岁的人共同筹集基金,并约定在每年的年初生存者缴纳R 元于此项基金,缴付到64岁为止。到65岁时,生存者将基金均分,使所得金额可购买期初付终身生存年金,每年领取的金额为3 600元。试求数额R 。 10. Y 是x 岁签单的每期期末支付1的生存年金的给付现值随机变量,已知10x a = , 26x a = ,124 i =,求Y 的方差。 11.某人将期末延期终身生存年金1万元遗留给其子,约定延期10年,其子现年30岁,求此年金的精算现值。 12.某人现年35岁,购买一份即付定期年金,连续给付的年金分别为10元、8元、6元、4元、2元、4元、6元、8元、10元,试求其精算现值。 13. 给定 (4) 17.287a ∞= ,0.1025x A =。已知在每一年龄年UDD 假设成立,则(4)x a

保险精算第二版习题及标准答案

保险精算第二版习题及答案

————————————————————————————————作者:————————————————————————————————日期:

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100(5)300 180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5 年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值:

保险精算李秀芳 章习题答案

第一 章 生命表 1.给出生存函数()22500 x s x e -=,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 2.已知生存函数S(x)=1000-x 3/2 ,0≤x ≤100,求(1)F (x )(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求q 65。 4. 已知Pr [T(30)>40]=0.70740,Pr [T(30)≤30]=0.13214,求10p 60 Pr [T(30)>40]=40P30=S(70)/S (30)=0.7074 S (70)=0.70740×S(30) Pr [T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴10p 60= S(70)/S (60)=0.70740/0.86786=0.81511 5.给出45岁人的取整余命分布如下表: 1 2 3 4 5 6 7 8 9 .0050 .0060 .0075 .0095 .0120 .0130 .0165 .0205 .0250 .0300 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。 (1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q . 612 P =(1-q 61)(1-q 62)=0.96334 60|2q =612P .q 62=0.01937 10. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人

再保险精算实务:第一章

第一章再保险概述 1.解释下列名词:合约再保险、比例再保险、成数再保险、溢额再保险. 答:合约再保险又称“固定再保险”、“固定合约再保险”,是由原保险人和再保险人 事先签订再保险合同,约定分保业务范围、条件、额度、费用等.在合同期内,对于约定 的业务,原保险人必须按约定的条件分出,再保险人也必须按约定的条件接受,双方无须逐笔洽谈,也不能对分保业务进行选择,合同约定的分保业务在原保险人与再保险人之间自动分出与分入.合约再保险适用于各种形式的比例和非比例再保险方式.分类:溢 额合约再保险、比率合约再保险、超额赔款合约再保险、超率赔款合约再保险.特点: 合约再保险对于分出公司和接受公司在合约范围内均具有约束力;合约再保险一般是不定期,或者期限较长,分保条件比较优越;合同再保险以分出公司某种险别的全部业务为基础. 比例再保险又称“比例分保”,是以保险金额为计算基础安排的分保方式,是指分出人与分入人相互订立合同,按照保险金额比例分担原保险责任的一种分保方法.在这 种方法中,分出人的自留额和分保额表现为保额的一定比例.比例再保险的最大特点就 是保险人和再保险人按照比例分享保费,分担责任,并按照同一比例分担赔款,同时再保险人按照比例支付手续费.分类:成数再保险 (Quota Share Reinsurance)和溢额再 保险(Surplus Reinsurance). 成数再保险是指原保险人按约定的比例,将每一风险单位的保险金额向再保险人分保的方式.按照这种再保险方式,不论分出公司承保的每一风险单位的保额多少,只要 是在合同规定的限额内,都按照双方约定的固定比率进行保费分配和赔款分摊. 溢额再保险是指原保险人规定一个最大保险金额(称为1线)作为自留额.当任何一 个风险单位的保险金额小于这一金额时,原保险人自留全部责任;当保险金额超过这一金额时,原保险人和再保险人按照自留额和分出保额对总保额的比例来分摊赔款.一般 再保险合约中还规定了以自留额的一定线数(如10线)作为再保险人的赔偿限额. 2.再保险的功能有哪些? 答:资本融通、风险管理和技术传导三大功能. 3.临时分保和合约分保有什么区别? 答:合约再保险的安排大体上与临时再保险相同.所不同的是合约是按照业务年度安排分保的,而临时分保则是逐笔安排的.合约再保险涉及的是一定时期内的一宗或一类业务,缔约人之间的再保险关系是有约束力的,因此协议过程要比临时分保复杂得多.

保险精算第二章习题

1.证明() n m m n v v i a a -=-。 ()11()m n n m m n v v i a a i v v i i ---=-=- 2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初 付1000元,共付10年。年计息12次的年名义利率为8.7%。计算购房首期付款额A 。 120 12011000100079962.96(8.7%/12) 16000079962.9680037.04 v a i i -===∴-= 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算i 。 7 18711110.08299 a a a i i ?? =+ ?+?? ∴= 4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。 10 101015000112968.7123 a x a i x ?? = ?+??∴= 5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知10 1 2 v = ,计算K 。 1020 101010 20 1010 1110002000100011111800 A a a a i i B Ka K a i A B K ???? =++ ? ?++?????? =+ ?+?? =∴= 6.化简() 1020 101a v v ++,并解释该式意义。 ()102010301a v v a ++= 7. 某人计划在第5年年末从银行取出17000元,这5年中他每半年末在银行存入一笔款项,前5次存款每次为1000元,后5次存款每次为2000元,计算每年计息2次的年名义利率。 510 55111000200017000113.355% a a i i i ????+= ? ? ++?????=

保险精算 第四章 人寿保险的精算现值-练习题答案

第四章 人寿保险的精算现值 1、(1) 0.092 (2) 0.055 2、(1)趸缴纯保费为:1 2345353637383935:535 3535353510001000d d d d d A v v v v v l l l l l ?? =?++++ ??? (2)自35岁~39岁各年龄的自然保费的总额为: () 11111 353637383935:136:137:138:139:135 3637383910001000d d d d d A A A A A v v v v v l l l l l ??++++=?++++ ??? (3)有两个不同之处:第一,各年龄的自然保费的精算现值的时刻点不同,但可以通过 () 11213141 2345353637383935:136:137:138:139:135 3637383910001000d d d d d A vA v A v A v A v v v v v l l l l l ??++++=?++++ ? ??解决。第二,分母不同,即平摊的对象不同,趸交纯保费是期初平摊,分母恒定,自然保费 是每年平摊,分母随年龄的增长而减小。 注:因为题目没有给出使用的生命表,所以仅给出公式即可。下同。 3、(1) 0.05 (2) 0.5 注:利用递归公式1 11 20 20:20:20:2020 x x x x x x x A A E A A A A ++=+=+? 4、略 5、()( ) ()2 1 12110 0k k k x x k k x x k k k Var Z v p q v p q ++++==??= ?-? ??? ∑∑ ()()2112 110.50.50.50.50.1771 x x x x x x x x q p q q p q q q ++++=+?-+?=+-+= 10.54x q +?= 6、0.81 7、设该保单的保险金额为P ,由1 30:205000P A ?=?19 1 13030:20 305000 5000 k k k P d A v l ++== =?∑。 8、略 9、1 10354535:101500020000APV A E A =+? 9 1 101354510350 35451500020000k k k k k k d d v v p v l l ∞ ++++===?+???∑∑ 注:(1)这是一份定期寿险复合上一份延期的终身寿险,且保险金额不同,需分两部分计

保险精算李秀芳 章习题答案

保险精算李秀芳章习题 答案 The document was prepared on January 2, 2021

第一章生命表 1.给出生存函数() 2 2500 x s x e- =,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 2.已知生存函数S(x)=1000-x3/2 ,0≤x≤100,求(1)F(x)(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr[5<T(60)≤6]=,Pr[T(60)>5]=,求q65。 4.已知Pr[T(30)>40]=,Pr[T(30)≤30]=,求10p60 Pr[T(30)>40]=40P30=S(70)/S(30)= S(70)=×S(30) Pr[T(30)≤30]=S(30)-S(60)/S(30)= S(60)=×S(30) ∴10p60= S(70)/S(60)== 5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。 (1)5q45=(++++)= 6.这题so easy就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人(1)l39=l36×3P36=l36(1-3q36)=1500×()≈1492 (2)4d36=l36×4q36=1500×(+)≈11 (3)l36×9|5q36=l36×9P35×5q45=1500××=1500×≈33

相关主题
文本预览
相关文档 最新文档