当前位置:文档之家› 圆锥曲线与方程复习课件

圆锥曲线与方程复习课件

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12 22 2 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 2002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线知识点回顾

圆锥曲线知识点回顾1.椭圆的性质 2.双曲线的性质

3.抛物线中的常用结论 ①过抛物线y2=2px的焦点F的弦AB长的最小值为2p ②设A(x1,y),1B(x2,y2)是抛物线y2=2px上的两点,则AB过F的充要条件是y1y2=-p2

③设A,B是抛物线y2=2px上的两点,O为原点,则OA⊥OB的充要条件是 直线AB恒过定点(2p,0) (4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时, 是椭圆,当e>1时,是双曲线,当e=1时,是抛物线. 4.直线与圆锥曲线的位置关系:(在这里我们把圆包括进来) (1).首先会判断直线与圆锥曲线是相交、相切、还是相离的 a.直线与圆:一般用点到直线的距离跟圆的半径相比(几何法),也可以利用方程实根的个数来判断(解析法). b.直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离 c.直线与双曲线、抛物线有自己的特殊性 (2).a.求弦所在的直线方程 b.根据其它条件求圆锥曲线方程 (3).已知一点A坐标,一直线与圆锥曲线交于两点P、Q,且中点为A,求P、Q所 在的直线方程 (4).已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或 者是圆锥曲线上否存在两点关于直线对称) 5.二次曲线在高考中的应用 二次曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。通过以二次曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。本文关注近年部分省的高考二次曲线问题,给予较深入的剖析,这对形成高三复习的新的教学理念将有着积极的促进作用。 (1).重视二次曲线的标准方程和几何性质与平面向量的巧妙结合。 (2).重视二次曲线的标准方程和几何性质与导数的有机联系。 (3).重视二次曲线性质与数列的有机结合。 (4).重视解析几何与立体几何的有机结合。

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

圆锥曲线与方程复习资料

高中数学选修2-1 第二章 圆锥曲线与方程 知识点: 一、曲线的方程 求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ①建立适当的直角坐标系; (),M x y 及其他的点; ③找出满足限制条件的等式; ④将点的坐标代入等式; ⑤化简方程,并验证(查漏除杂)。 二、椭圆 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12 F F )的点的轨迹称为椭圆。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。()12222MF MF a a c +=> 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 第一定义 到两定点21F F 、 的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 第二定义 到一定点的距离和到一定直线的距离之比为常数e ,即 (01)MF e e d =<< 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c

3、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则121 2 F F e d d M M ==。 常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标和离心率. 【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线与方程知识点复习及例题

第二章 圆锥曲线与方程 §2.1椭圆:知识梳理 1、椭圆及其标准方程 (1).椭圆的定义:椭圆的定义中,平面动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F . (2).椭圆的标准方程:12222=+b y a x 122 22=+b x a y (a >b >0) (3).椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2 x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上. 2、椭圆的简单几何性质(a >b >0). (1).椭圆的几何性质:设椭圆方程12 2 22=+b y a x , 线段1A 2A 、1B 2B 分别叫做椭圆的长 轴和短轴.它们的长分别等于2a 和2b , (2).离心率: a c e =2 21b a =- 0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0 时,椭圆就越接近于圆. (3)椭圆的焦半径: ex a MF +=1,ex a MF -=2.2 a =2 b +2 c

典例剖析

(4).椭圆的的外部点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的部2200221x y a b ?+< (5).焦点三角形21F PF ?经常利用余弦定理....、三角形面积公式.......将有关线段1PF 、2PF 、2c ,有关角21PF F ∠结合起来,建立12PF PF +、12PF PF ?等关系. §2.1.1椭圆及其标准方程:典例剖析 题型一 椭圆的定义应用 例1 题型二 椭圆标准方程的求法 例2 已知椭圆的两个焦点为(-2,0),(2,0)且过点53(,)22 -,求椭圆的标准方程 §2.1.2椭圆的简单的几何性质 典例剖析 题型一 求椭圆的长轴和短轴的长、焦点坐标、顶点坐标等. 例 1 已知椭圆2 2 (3)(0)x m y m m ++=>的离心率3 2 e =,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.

高考数学圆锥曲线与方程知识点梳理

高考数学圆锥曲线与方程知识点梳理 一、方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。 点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上?f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上?f(x 0,y 0)≠0。 两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点?{ ),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没 有实数解,曲线就没有交点。 二、圆 1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 2、方程: (1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2 圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2 ,2(E D --半径是2 422F E D -+。配方,将方程x 2+y 2 +Dx+Ey+F=0化为 (x+ 2D )2+(y+2 E )2=4 4F -E D 22+ ②当D 2+E 2-4F=0时,方程表示一个点(- 2D ,-2 E ); ③当D 2+E 2-4 F <0时,方程不表示任何图形.

圆锥曲线知识点全归纳完整精华版图文稿

圆锥曲线知识点全归纳 完整精华版 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

圆锥曲线知识点全归纳(精华版) 圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到 定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 一、圆锥曲线的方程和性质: 1)椭圆 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个小于1的正常数e。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。 标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1?其中a>b>0,c>0,c^2=a^2-b^ 2. 2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2. 参数方程: X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的 考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r) 2)双曲线 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常 数e是双曲线的离心率。 标准方程:

1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)- (y^2/b^2)=1? 其中a>0,b>0,c^2=a^2+b^2. 2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)- (x^2/b^2)=1. 其中a>0,b>0,c^2=a^2+b^2. 参数方程: x=asecθy=btanθ(θ为参数) 3)抛物线 标准方程: 1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px其中p>0 2.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px其中p>0 3.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py其中p>0 4.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py其中p>0 参数方程? x=2pt^2?y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0 直角坐标?

圆锥曲线与方程知识点

圆锥曲线与方程重点、难点、易错点分析 一、相关知识点: 1、曲线与方程 (1)曲线与方程的概念 (2)曲线与方程的判定问题 (3)曲线的对称性 (4)已知方程画曲线 (5)坐标法与解析几何的研究对象 (6)已知曲线求方程 ①直接法 ②相关点法(代入法) ③交轨法 ④定义法 ⑤待定系数法 2、椭圆 (1)椭圆的定义 (2)椭圆的标准方程 (3)椭圆的几何性质 (4)椭圆的定义的应用 (5)利用待定系数法求椭圆的标准方程 3、双曲线 (1)双曲线的定义 (2)双曲线的标准方程 (3)双曲线的简单几何性质 (4)双曲线的定义的应用 (5)双曲线的标准方程的求法 4、抛物线 (1)抛物线的定义 (2)抛物线的标准方程 (3)抛物线的简单几何性质 5、直线与圆锥曲线 (1)直线与圆锥曲线的位置关系 (2)直线与圆锥曲线相交时的弦长公式 (3)弦中点问题 (4)直线与圆锥曲线相交的问题 (5)定值与最值问题 题型: 一、曲线与方程 1、曲线与方程的概念 例1:命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,下列命题中正确的是() A、方程f(x,y)=0的曲线是C B、方程f(x,y)=0的曲线不一定是C C、f(x,y)=0是曲线C的方程 D、以方程f(x,y)=0的解为坐标的点都在曲线C上 例2:设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0 的点都在曲线C上”是不正确的,则下列命题正确的是()

A 、坐标满足方程f(x,y)=0的点都不在曲线C 上 B 、曲线 C 上的点的坐标都不满足方程f(x,y)=0 C 、坐标满足方程f(x,y)=0的点有些在曲线C 上,有些不在曲线C 上 D 、一定有不在曲线C 上的点,其坐标满足f(x,y)=0 2、曲线与方程的判定问题 例1:设A(2,0),B(0,2),能否说线段AB 的方程是A+B-2=0?为什么? 例2:下列4个点中,在曲线xy=1上的是( ) A 、(-1,1) B 、(1,-1) C 、(-1,-1) D 、(0,0) 3、曲线的对称性 例1:曲线f(x,y)=0关于直线x-y-3=0对称的曲线方程为( ) A 、f(x-3,y)=0 B 、f(y+3,x)=0 C 、f(y-3,x+3)=0 D 、f(y+3,x-3)=0 例2:方程y x -=-1||1表示( ) A 、两条线段 B 、两条直线 C 、两条射线 D 、一条射线和一条线段 4、已知方程画曲线 例1:如图2-1-1所示的图形的方程与图中曲线的方程对应正确的是( ) 例2:方程(x 2-4)2+(y 2-4)2=0表示的图形是________. 例3:画方程|x |+|y |=1表示的曲线. 例4:求方程()011=--+x y x 所表示的曲线。 5、坐标法与解析几何的研究对象 1)、坐标法:借助坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x ,y)=0表示曲线,通过研究方程的性质间接地来研究曲线的性质,这就叫坐标法。 2)、由坐标法研究几何图形的知识所形成的学科叫做解析几何,解析几何研究的主要问题是: ①:根据已知条件,求出表示曲线的方程;②通过曲线的方程,研究曲线的性质。 3)、坐标法解题的基本思路 代数问题 直角坐标系 转化 代数方程 几何结论 代数结论 转化 几何意义 几何问题

高中数学选修1-1《圆锥曲线与方程》知识点讲义

高中数学选修1-1《圆锥曲线与方程》知识点讲义

第二章 圆锥曲线与方程 一、曲线与方程的定义: (),C F x y 设曲线,方程=0,满足以下两个条件: ()(),,C x y F x y ?①曲线上一点的坐标满足=0; ()(),,. F x y x y C ?②方程=0解都在曲线上 ()(),,. C F x y F x y C 则曲线称是方程=0的曲线,方程=0是曲线的方程 二、求曲线方程的两种类型: () 1、已知曲线求方程;用待定系数法 ()()() 2,;,x y x y 、未知曲线求方程①设动点②建立等量关系; ③用含的式子代替等量关系;④化简;别出现不等价情况⑤证明;高中不要求

椭圆 一、椭圆及其标准方程 1、画法 {} 121222,2P PF PF a F F a +=<、定义: 3、方程 ()()22 22 22221010x y y x a b a b a b a b +=>>+=>>①或 ② () 22 22+10x y a b a b =>>二、几何性质: 1,. x a y b ≤≤、范围: 2x y O 、对称性:关于、、原点对称. ()()()()12123,0,,0,0,,0,. A a A a B b B b --、顶点 222 4,,a b c a b c =+、之间的关系: () 2 25101c b e e a a ==-<<、离心率: 0, 1e e →→越圆越扁

扩展: ()2222 22222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1 ()() 2222 22221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或 . a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是 12P P F PF ∠④为椭圆上一动点,当点为短轴端点时,最大. 24. AB F ABF a V ⑤为过焦点的弦,则的周长为 ()()1122,,,y kx b A x y B x y l =+⑥直线与圆锥曲线相交于两点,则当直线的斜率存在时,弦长为: ()( )2 22 121 2 12114l k x k x x x x ?? =+-= ++-?? ()2 12121222110114k l y y y y y k k ??=+ -=++-??或当存在且不为时,()2210,0. Ax By A B +=>>⑥当椭圆的焦点位置不确定时,可设椭圆的方程为

圆锥曲线与方程知识点详细

椭圆 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个 交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 22 1=,b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值范围是)10(<

完美版圆锥曲线知识点总结

圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或122 22=+b x a y (0a b >>)(焦点在y 轴 上)。 注:①以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; ②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和2y 的分 母的大小。例如椭圆 22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令 0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -, 2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长

(word完整版)高中数学选修1-1《圆锥曲线与方程》知识点讲义,推荐文档

第二章 圆锥曲线与方程 一、曲线与方程的定义: (),C F x y 设曲线,方程=0,满足以下两个条件: ()(),,C x y F x y ?①曲线上一点的坐标满足=0; ()(),,. F x y x y C ?②方程=0解都在曲线上 ()(),,. C F x y F x y C 则曲线称是方程=0的曲线,方程=0是曲线的方程 二、求曲线方程的两种类型: () 1、已知曲线求方程;用待定系数法 ()()() 2,;,x y x y 、未知曲线求方程①设动点②建立等量关系; ③用含的式子代替等量关系;④化简;别出现不等价情况⑤证明;高中不要求

椭圆 一、椭圆及其标准方程 1、画法 {} 121222,2P PF PF a F F a +=<、定义: 3、方程 ()()22 22 22221010x y y x a b a b a b a b +=>>+=>>①或 ② () 22 22+10x y a b a b =>>二、几何性质: 1,. x a y b ≤≤、范围: 2x y O 、对称性:关于、、原点对称. ()()()()12123,0,,0,0,,0,. A a A a B b B b --、顶点 2224,,a b c a b c =+、之间的关系: () 2 25101c b e e a a ==-<<、离心率: 0, 1e e →→越圆越扁 扩展: ()2222 22222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1 ()() 2222 22221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或 .a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是

圆锥曲线与方程章节复习总结

圆锥曲线与方程章节复习总结 【本讲教育信息】 一. 教学内容: 期末复习专题:圆锥曲线与方程 二. 知识分析: 【本章知识网络】 【学法点拨】 圆锥曲线是解析几何的重点,也是高中数学的重点内容.圆锥曲线试题的类型、特点与学习的方法主要归结如下: 1. 求动点的轨迹方程问题,从来都是高考的热点,试题有一定的难度,学习时应注意一些求轨迹方程的基本方法。 2. 求指定的圆锥曲线的方程是高考命题的重点,试题一般涉及量较多,计算量大。要求较强的运算能力.在计算中,首先要明确运算方向,还要注意运算合理,运算的技巧,使运算简练。 3. 试题注重对解析几何基本方法的考查,要求会建立适当的直角坐标系,把平面几何问题转化为代数问题。 4. 注意用圆锥曲线的定义解题.有关圆锥曲线上的点到焦点的距离,到准线的距离,离心率的问题都可能用到圆锥曲线的定义去解。 5. 对称问题是高考的热点,注意关于原点、x轴、y轴,关于直线y=±x对称的两曲线方程的特点。 6. 在有关直线与圆锥曲线的问题中,注意韦达定理、弦长公式在解题中的应用。 7. 一些试题将解析几何问题与数列问题、极限问题、不等式问题、函数问题综合在一起,对解决数学综合问题的能力要求更高,此时要充分利用解析几何的特点,运用数形结合,用代数的方法解决几何的问题。

【备考建议】 在复习过程中抓住以下几点: 1. 在高考命题中,有关圆锥曲线的试题主要考查两大类问题。 一是根据题设条件,求出圆锥曲线的方程;二是通过方程,研究圆锥曲线的性质。本章考题大多数是课本的变式题,即源于课本,因此掌握双基、精通课本是关键。 2. 加强直线与圆锥曲线的位置关系问题的复习 由于直线与圆锥曲线的位置关系一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想来设。 3. 重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程的目的,如下列思想和方法:(1)方程思想;(2)用好函数思想方法;(3)掌握坐标法;(4)对称思想;(5)参数思想;(6)转化思想。 4. 在注重解题方法、数学思想的应用的同时注意一些解题技巧,椭圆、双曲线、抛物线的定义揭示了各自存在的条件、性质及几何特征与圆锥曲线的焦点、准线、离心率有关量的关系问题,若能用定义法,可避免繁琐的推理与运算.涉及到原点和焦点距离问题用极坐标的极径表示.关于直线与圆锥曲线相交弦则结合韦达定理采用设而不求法.利用引入一个参数表示动点的坐标x、y,间接把它们联系起来,减少变量、未知量采用参数法.有些题目还常用它们与平面几何的关系,利用平面几何知识会化难为易,化繁为简,收到意想不到的解题效果。 第一讲椭圆 一. 椭圆及其标准方程 1. 平面内与两个定点F1,F2的距离的和等于常数(大于|F1 F2|)的点的轨迹叫做椭圆,这两个定点叫椭圆的焦点,两焦点间的距离叫做椭圆的焦距。 一般的:集合,其中,且a、c为常数: (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a<c,则集合P为空集。 2. 椭圆的两种标准方程 焦点在x轴上,焦点为; 焦点在y轴上,焦点为。 都有:(1)a>b>0;(2)。 方程 范围 对称性轴对称、中心对称轴对称、中心对称 顶点(a,0),(-a,0),(0,b), (0,-b) (b,0),(-b,0),(0,a), (0,-a)

高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习 一、椭圆方程. 1. 椭圆的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ 2.椭圆的方程形式: ①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: ) 0(12 22 2 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上: )0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(12 2 B A By Ax =+.③椭圆的参数方程: 2 22 2+ b y a x ?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2 2 21,2b a c c F F -==.⑤准线:c a x 2 ±=或 c a y 2±=.⑥离心率:)10( e a c e =.⑦焦半径: i. 设),(00y x P 为椭圆 )0(12 22 2 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则: 证明:由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起 来为“左加右减”. ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则: ⑧通径:垂直于x 轴且过焦点的弦叫做通径: 2 22b d a =;坐标:22(,),(,)b b c c a a - 4.共离心率的椭圆系的方程:椭圆)0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程 t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆: 12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为 2 tan 2θ b (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . 1020 ,PF a ex PF a ex =+=-1020 ,PF a ey PF a ey =+=-asin α,)α)

相关主题
文本预览
相关文档 最新文档