当前位置:文档之家› 复变函数(3.3.1)--原函数与不定积分

复变函数(3.3.1)--原函数与不定积分

详解Matlab求积分的各种方法 一、符号积分由函数int来实现。 该函数的一般调用格式为: int(s): 没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v): 以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b): 求定积分运算。 a,b分别表示定积分的下限和上限。 该函数求被积函数在区间[a,b]上的定积分。 a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。 当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。 当a,b中有一个是inf时,函数返回一个广义积分。 当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。 内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变 量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =57/-

/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2^(3/4) %给出有理数 解>>VF2=vpa(F2) %给出默认精度的数值解VF2 = 224.9 232805二、数值积分 1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。 它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1], i=1,2,…,n,其中x1=a,xn+1=b。 这样求定积分问题就分解为求和问题。 2.数值积分的实现方法基于变步长辛普生法,MATLAB给出了quad函数来求定积分。 该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace)基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。 该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace)其中fname是被积函数名。 a和b分别是定积分的下限和上限。 tol用来控制积分精度,缺省时取tol= 0.0 01。 trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace= 0。

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

几种特殊类型函数的积分 一、有理函数的不定积分 1.化有理函数为简单函数 两个多项式的商所表示的函数)(x R 称为有理函数,即 m m m m m n n n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++= =------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且 0,000≠≠b a . 当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式. 对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一 个真分式之和的形式.例如 1 2)1(11222 4+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题. 设有理函数(1)式中m n <,如果多项式)(x Q 在实数范围内能分解成一次因式和二次质因式的乘积: μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= . 其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式) () (x Q x P 总可以分解成如下部分分式之和,即 β ααα)()()()() (1121b x B a x A a x A a x A x Q x P -++-++-+-=- λ ββ) ()(21 112q px x N x M b x B b x B ++++-++-+ - μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++ ++++++++++ - s rx x S x R s rx x S x R +++++++++ -2 122 2)(μμμ . (2)

浅谈无理函数不定积分的求解方法 摘要:我们将自变量包含在根式之下的函数称为无理函数。这样的特点使得无理函数不定积分,在通常情况下求解较为复杂。对于一个无理函数来说,大多数情况下,较常见的情况是同一个无理函数有多个求不定积分的方法,如何从多种不定积分求解方法中选出最优的解法,就是一个我们需要考虑的问题了。 本文旨在将以往的无理函数不定积分求解方法进行综述,探讨各个方法在求解上的应用与具体使用过程。同时,总结了对一些常见的无理函数不定积分类型的常用解法。为无理函数不定积分的求解提供一种思路。 关键字:无理函数不定积分计算方法 Abstract:We usually call the function which have one or more arguments under the radical as irrational function. The feature of irrational function makes the irrational function integral become tough problem for we to solve. For an irrational function, in most cases, the more common situation is the same irrational function with multiple indefinite integral method. So, how to select an optimal solution from a variety of indefinite integral method, is a problem that we need to consider. This article aims to past the irrational function of indefinite integral solution method to carry on the summary, discusses the application of various methods on solving the use with specific process. At the same time, summarizes the irrational function of some common indefinite integral types of commonly used method. In order to provide a way to solve the irrational function indefinite integral problems. key words:irrational function indefinite integral method

§7.4简单无理函数的不定积分与三角函数的不定积分 一、简单无理函数的不定积分 对被积函数带有根号的不定积分,它的计算是比较麻烦的。但对某些特殊情况,我们可通过作变量替换,将其转化为有理函数的不定积分,这样就可以用上述的方法计算。 下面总假设),(y x R 表示关于变量y x ,的有理函数。 1.??? ? ??++n d cx b ax x R ,型函数的不定积分。其中0≠-bc ad 解法:作变量替换n d cx b ax t ++=,即dt t dx t ct a b dt x n n )(,)(φφ'==--=,于是 []??'=??? ? ??++dt t t t R dx d cx b ax x R n )(),(,φφ, 转化为有理函数的不定积分。 例1.求 ?++dx x x x x 14 158217 1 分析:要把被积函数中的几个根式化为同次根式。 ()2 14 7 7 1x x x = = ,()7 14 2 1x x x = =,() 16 14 7 8 7 8x x x = = ,() 15 14 14 15x x = 作变量替换14x t =,即dt t dx t x 1314 14,==,就可以把原不定积分化为有理函数的不定积分。 解:作变量替换14x t =,即dt t dx t x 1314 14,==,则 =++=?++=++???dt t t dt t t t t t dx x x x x 111414513 15167214 1582 1 71 例2.求 ? -?+-dx x x x 2 3 ) 2(1 22 解:设,223t x x =+- 则33122t t x +-=,dt t t dx 2 32 ) 1(12+-=,所以 ??? =-=+-???? ? ??+--?=-?+- dt t dt t t t t t dx x x x 323223323 1 43) 1(1212221)2(122 2.() c bx ax x R ++2,型函数的不定积分,其中042≠-ac b (即方程02 =++c bx ax 无重根) 分两种情况讨论: (1)042 >-ac b 时,方程02 =++c bx ax 有两个不等的实数根α、β

355 §4 Mathematica 求不定积分与函数作图 4.1 求不定积分 1 用Mathematica 求不定积分有两种方式 (1) 用命令Integrate[f,x] (*其中x 为积分变量*) (2) 直接用工具栏输入不定积分?f(x)dx 。 例4.1 计算不定积分? +dx x x 2 4 11。 解 方法一: ? +=dx x x In 2 4 11:]1[ 2 3 1)3231(]1[x x x Out ++- = 方法二: ),11( Integrate :]2[2 4 x x x In += 23 1)3231(]2[x x x Out ++- = 2 除了指定的积分变量之外,其它所有符号都被作为常数处理 例4.2 计算不定积分dx c bx ax )(2++?。 解 ?++=dx c x b x a In )**(:]3[2 3 2]3[2 2ax bx cx Out + += 3 积分变量不一定是单个的符号变量,也可以是一个函数,在例5.4.3中,积分变量是x sin 。 例4.3 计算不定积分?x d x sin )log(sin 2。 解 ?=][S i n ]][S i n [L o g :]4[2x d x In ][Sin ]][Sin [Log ][Sin 2]4[2x x x Out +-=

356 4 Integrate 命令也能在复数平面上进行积分运算 例4.4 计算不定积分?dx e Ix x )sinh(。 解 ?=dx x x I In ][Exp *]*[Sinh :]5[ =]5[Out i ])[Sin 2 1][Cos 21 (x e x e x x +- 5 Integrate 命令在处理积分运算时会做两个假设。第一个假设已经在例4.2中提到,即Mathematica 假设除了积分变量之外其它符号都被作为常数处理。第二个假设是Mathematica 求得的积分结果是一个通式(generic form),积分结果可能在某些点不成立,这时Mathematica 会告诉?)()(x d x f 的标准结果,并且假设这一结果在哪些点不成立。 例4.5 计算不定积分?dx x n 。 解 dx x In n ?=:]6[ n x Out n += +1]6[1 // 假设n ≠-1. 6 如果积分结果是(或部分是)数学物理特殊函数,结果以特殊函数的形式输出。 例4.6 计算不定积分dx e x x n ?。 解 ]],[Exp ^[Integrate :]7[x x n x In = ),1()1(]7[11x n x Out n n -+Γ--=+-- 7 如果无法积分,Mathematica 会保留积分的原式,若原式中含有常数系数,Mathematica 会把常数系数提到积分之外,保留积不出来的表达式。 例4.7 计算不定积分?++dx hx x a )sec log()4(。 解 ?++=dx x x a In ]][Sech [Log )4(:]8[ ?++=dx x x a Out ]][Sech [Log )4(]8[ 注意:Mathematica 不会在积分结果后面加上积分常数(integration constant )。因此,应注意不定积分的结果还应有一个积分常数C 。

泰山学院信息科学技术学院教案

第八讲 不定积分与定积分的各种计算方法 一、不定积分 1不定积分的概念 原函数:若在区间 上)()(x f x F =',则称)(x F 是的一个原函数. 原函数的个数: 若 是 在区间 上的一个原函数, 则对 , 都是在区间 上的原函数;若 也是 在区间 上的原函数,则必有 . 可见,若 ,则 的全体原函数所成集合为{│ R}. 原函数的存在性: 连续函数必有原函数. 不定积分:的带有任意常数项的原函数称为的不定积分。记作 ?dx x f )( 一个重要的原函数:若)(x f 在区间上连续,I a ∈,则 ? x a dt t f )(是的一个 原函数。 2不定积分的计算 (1)裂项积分法 例1:dx x x dx x x dx x x )1 21(1211122 242 4???++-=++-=++ C x x x ++-=arctan 23 3 。 例2:???+=+=dx x x dx x x x x x x dx )sec (csc sin cos sin cos sin cos 222 22222 例3:22 22 22(1)(1)(1)dx x x dx x x x x +-==++??221arctan 1dx dx x C x x x -=--++?? (2)第一换元积分法 有一些不定积分,将积分变量进行适当的变换后,就可利用基本积分表求出积分。例如,求不定积分cos 2xdx ? ,如果凑上一个常数因子2,使成为 ()11cos 2cos 2cos 2222xdx x xdx xd x = ?=???C x +=2sin 2 1

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一.不定积分的概念与性质 定义1如果F(x)是区间I上的可导函数,并且对任意的x∈I,有F’(x)=f(x)dx则称F(x)是f(x)在区间I上的一个原函数。 定理1(原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数F(x),使得F(x)=f(x)(x∈I) 简单的说就是,连续函数一定有原函数 定理2设F(x)是f(x)在区间I上的一个原函数,则 (1)F(x)+C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2设F(x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数F(x)+C称为f(x)在区间I上 的不定积分,记为?f(x)d(x),即?f(x)d(x)=F(x)+C 其中记号?称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分变量,C称为积分常数。 性质1 设函数f(x)和g(x)存在原函数,则?[f(x)±g(x)]dx=?f(x)dx±?g(x)dx. 性质2设函数f(x)存在原函数,k为非零常数,则?kf(x)dx=k?f(x)dx. 二.换元积分法的定理

如果不定积分?g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[?(x)] ?’(x). 做变量代换u=?(x),并注意到?‘(x)dx=d?(x),则可将变量x的积分转化成变量u的积分,于是有?g(x)dx=?f[?(x)] ?’(x)dx=?f(u)du. 如果?f(u)du可以积出,则不定积分?g(x)dx的计算问题就解决了,这就是第一类换元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。 定理1 设F(u)是f(u)的一个原函数,u=?(x)可导,则有换元公式 ?f[?(x)] ?’(x)dx=?f(u)du=F(u)+C=F[?(x)]+C. 第一类换元法是通过变量代换u=?(x),将积分?f[?(x) ?’(x)dx化为?f(u)du.但有些积分需要用到形如x=?(t)的变量代换,将积分?f(x)dx化为?f[?(t)] ?’(t).在求出后一积分之后,再以x=?(t)的反函数t=?1-(X)带回去,这就是第二类换元法。即 ?f(x)dx={?f[?(t)] ?’(t)dt})(1X . =? t- 为了保证上式成立,除被积函数应存在原函数之外,还应有原函数t=?1-(x)存在的条件,给出下面的定理。 定理 2 设x=?(t)是单调,可导的函数,并且?‘(t)≠0.又设f[?(t)] ?’(t)具有原函数F(t),则?f(x)dx=?f[?(t)] ?’(t)dt=F(t)+C=F[?1-(x)]+C 其中?1-(x)是x=?(t)的反函数。 三.常用积分公式 1 基本积分公式

求定积分中被积函数的原函数 利用微积分基本定理以求定积分的关键是求出被积函数的原函数,即寻找满足()()F x f x '=的函数()F x .如何求出一个被积函数的原函数呢?我们知道求一个函数的原函数与求一个函数的导数是互逆运算,所以要求被积函数的原函数,首先要明确它们之间的关系:原函数的导数就是被积函数,并且导函数是唯一确定的,而被积函数的原函数是不唯一的.即若()()F x f x '=,则被积函数()f x 的原函数为()F x c +(c 为常数). 类型一 被积函数为基本初等函数的导数 求这种类型被积函数的原函数,关键是要记准上述基本初等函数的导数公式,找到对应的被积函数.由基本初等函数的导数公式可知:若()f x 是被积函数,()F x 为原函数,则有: 若()f x k =,则()(,F x kx c k c =+为常数); 若()m f x x =,则11()(1,1m F x x c m m m += +≠-+,c 为常数); 若1()f x x =,则()ln (F x x c c =+为常数); 若()x f x e =,则()(x F x e c c =+为常数); 若()x f x a =,则()ln x a F x c a =+(其中0,1,,a a a c >≠为常数); 若()sin f x x =,则()cos F x x c =-+(c 为常数); 若()cos f x x =,则()sin F x x c =+(c 为常数). 例1 计算以下积分: (1)2 2 11(2)x dx x -?;(2)30(sin sin 2)x x dx π-?. 分析:解决问题的关键是找出被积函数的一个原函数,根据积分的性质,先求出一些简单被积函数的原函数,然后再进行相应的运算.显然,只由熟练掌握常见函数的导数公式,才会比较熟练地找出相应的原函数.2x 的一个原函数为313x ,1x 的一个原函数为ln x ;sin x 的一个原函数为cos x -,sin 2x 的一个原函数为1cos 22 x -. 解:(1)函数212y x x =-的一个原函数是32ln 3 y x x =-, 所以2122311216214(2)(ln )(ln 2)(ln1)ln 23333 x dx x x x -=-=---=-?. (2)函数sin sin 2y x x =-的一个原函数是1cos cos 22 y x x =-+,

Ch4、不定积分 §1、不定积分的概念与性质 1、 原函数与不定积分 定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。 ① 连续函数一定有原函数; ② 若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数; 事实上,())()()('' x f x F C x F ==+ ③ )(x f 的任意两个原函数仅相差一个常数。 事实上,由[]0)()()()()()('2'1' 11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21 故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。 定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为?dx x f )(,?-积分号,-)(x f 被积函数,-x 积分变量。 显然C x F dx x f +=?)()( 例1、 求下列函数的不定积分 ①?+=C kx kdx ②??????-=+-≠++=+1 ln 11 11 μμμμμ C x C x dx x 2、 基本积分表(共24个基本积分公式) 3、 不定积分的性质 ①[]???±=±dx x g dx x f dx x g x f )()()()( ②??≠=)0()()(k dx x f k dx x kf 例2、 求下列不定积分 ①? ? +-=++-==+--C x C x dx x x dx 11)2(11 )2(22

②? ?+=++-= =+--C x C x dx x x dx 21 )21(1 1)21(21 ③?+-=??? ? ??+--C x x dx x x arctan 3arcsin 5131522 ④()()()C x e e x dx dx e dx x e x x x x +-=-=??? ? ?-???ln 21ln 2121ππππ ⑤()???++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2 ⑥????++-=+=+=C x x xdx xdx dx x x x x x x dx tan cot sec csc cos sin cos sin cos sin 2 2222222 ⑦() ??+--=-=C x x dx x dx x cot 1csc cot 22 ⑧???++-=??? ? ?++-=++-=+C x x x dx x x dx x x dx x x arctan 3111111113222424 §2、不定积分的换元法 一、 第一类换元法(凑微分法) 1、()()()()b ax d a dx b ax d b ax f a dx b ax f +=++= +??1 ,1即 例1、求不定积分 ①()C x udu u x x xd xdx +-===???)5cos(5 1 sin 51555sin 515sin ②()()()()??+--=+-+? -=---=-+C x C x x d x dx x 8177 72116 12117121)21(212121 ③()())20(arctan 111222C a x a a x a x d a x a dx +?? ? ??=+=+?? ④()() )23(arcsin 12 2 2 C a x a x a x d x a dx +?? ? ??=-=-? ? 2、()()n n n n n n dx dx x dx x f n dx x x f == --??11,1即 例2、求不定积分 ①( )() () () C x C x x d x dx x x +--=+-+?-=---=-+??2 32 12 12 212 2 12 2 13 1 11 121112 1 1

合肥学院论文 求积分的若干方法 姓名:陈涛 学号:1506011005 学院:合肥学院 专业:机械设计制造及其自动化老师:左功武 完成时间: 2015年12月29日

求积分的几种常规方法 陈涛 摘要:数学分析中,不定积分是求导问题的逆运算,而且是联系微分学和积分学的一条纽带。为灵活运用积分方法求不定积分,本文介绍了求积分的几种重要方法和常用技巧,讨论和分析了求积分的几种方法:直接积分法,换元积分法,分部积分法以及有理函数积分的待定系数法,对于快速求不定积分有重要意义,适当的运用积分方法求不定积分,才可以简捷,准确。 关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法 引言 数学分析是师范大学数学专业必修专业课,微分和积分都是数学分析的重点,而不定积分是积分学的基础,更是关键,直接关系到学习数学的重点。其任务是掌握逻辑思维方法和提高使用数学手段解决问题的能力。一般地,求不定积分要比求导数难很多,运用积分法则和积分公式只能解决一些简单的积分,更多的不定积分要因函数的不同形式和不同类型选用不同的方法,巧妙运用恰当的方法,可以化难为易,从而简单、快捷、准确的求出不定积分。本文为解决求积分的困难问题给出了相应的解决方法,帮助理解不定积分。 1 积分的概念 设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。 记作∫f(x)dx。其中∫叫做积分号(integral sign),f(x)叫做 被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式, C叫做积分常数,求已知函数的不定积分的过程叫做对这 个函数进行积分。 1.1 不定积分

简单无理函数的不定积分与三角函数的不定积分 一、简单无理函数的不定积分 对被积函数带有根号的不定积分,它的计算是比较麻烦的。但对某些特殊情况,我们可通过作变量替换,将其转化为有理函数的不定积分,这样就可以用上述的方法计算。 下面总假设),(y x R 表示关于变量y x ,的有理函数。 1.??? ? ??++n d cx b ax x R ,型函数的不定积分。其中0≠-bc ad 解法:作变量替换n d cx b ax t ++=,即dt t dx t ct a b dt x n n )(,)(φφ'==--=,于是 []??'=??? ? ??++dt t t t R dx d cx b ax x R n )(),(,φφ, 转化为有理函数的不定积分。 例1.求 ?++dx x x x x 14 158217 1 分析:要把被积函数中的几个根式化为同次根式。 ()2 14 7 7 1x x x = = ,()7 14 2 1x x x = =,() 16 14 7 8 7 8x x x = = ,() 15 14 14 15x x = 作变量替换14x t =,即dt t dx t x 1314 14,==,就可以把原不定积分化为有理函数的不定积分。 解:作变量替换14x t =,即dt t dx t x 1314 14,==,则 =++=?++=++???dt t t dt t t t t t dx x x x x 111414513 15167214 1582 1 71 例2.求 ? -?+-dx x x x 2 3 ) 2(1 22 解:设,223t x x =+- 则33122t t x +-=,dt t t dx 2 32 ) 1(12+-=,所以 ??? =-=+-???? ? ??+--?=-?+- dt t dt t t t t t dx x x x 323223323 1 43) 1(1212221)2(122 2.() c bx ax x R ++2,型函数的不定积分,其中042≠-ac b (即方程02 =++c bx ax 无重根) 分两种情况讨论: (1)042 >-ac b 时,方程02 =++c bx ax 有两个不等的实数根α、β

Yi b i n U n i v e r s i t y 毕业论文(设计) 题目常见求积分方法总结 系别数学学院 专业数学与应用数学 学生姓名罗大宏 学号120204036 年级12级4班指导教师刘信东职称xxx 2016 年 3 月10 日

常见求积分方法总结 作者:罗大宏 单位:宜宾学院数学学院12级4班 指导教师:刘兴东 摘要: 微积分是数学分析中的一个重要基础学科,并且微积分中的积分运算是求导的逆运 算,它是连接微分学和积分学的枢纽。因此怎样求积分就显得非常重要,本文讲解了常见求积分的几种方法:直接积分法、分部积分法、换元积分法和有理函数积分的待定系数法,掌握了这些方法,将对我们迅速求解积分来说非常重要。 关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法 引言 数学分析是大学数学与应用数学专业必修专业课,而微积分是数学分析的重点,又不定积分是积分学的基础,会影响到后面学习其它的积分,特别是定积分的求解。它的目的是形成一定的思维方法和解决问题的能力。并且不定积分的求解要比导数的求解复杂很多,运用积分的基本公式只能解决一些容易的积分,更多的不定积分要因函数的差别而采用相应的方法。另外,如果我们掌握了求不定积分的方法,那么求解定积分就变得容易。本文我们就对常见求积分方法进行总结,以便帮助我们解决一些实际问题。 1.积分的概念 1.1、不定积分 若()x F 是函数()x f 在区间I 上的一个原函数,则()x f 在I 的所有原函数()C x F +(C 为任意常数)称为()x f 在区间I 上的不定积分。记作 () ()C x F dx x f +=?。其中?称为 积分号,函数()x f 称为被积函数,x 称为积分变量,()d x x f 称为被积表达式,C 称为积分常数。 另外,求已知函数不定积分的过程就称作对这个函数进行积分。 1.2、定积分

§7.3 有理函数的不定积分 (一) 教学目的: 会求有理函数的不定积分. (二) 教学内容: 化有理假分式为有理真分式, 拆分为分项分式, 有理函数的不定积分. (三) 教学建议: 通过讲练结合,掌握拆分分项分式, 从而掌握求有理函数不定积分的方法. 有理函数是指两个多项式的商表示的函数 m m m n n n b x b x b a x a x a x Q x P ++++++=-- 110110)()( 其中n a a a a ,,,,210 及m b b b b ,,,,210 为常数,且00≠a ,00≠b 。 如果分子多项式)(x P 的次数n 小于分母多项式)(x Q 的次数m ,称分式为真分式;如果分子多项式)(x P 的次数n 大于分母多项式)(x Q 的次数m ,称分式为假分式。利用多项式除法可得,任一假分式可转化为多项式与真分式之和。例如: 1 111223++=+++x x x x x 因此,我们仅讨论真分式的积分。 先介绍代数学中两个定理: 定理1 (多项式的因式分解定理)任何实系数多项式)(x Q 总那个可以唯一分解为实系数一次或二次因式的乘积: v s l k h rx x q px x b x a x b x Q )()()()()(220++++--= 定理2 (部分分式展开定理) v v v s l l k k h rx x H x R h rx x H x R h rx x H x R q px x Q x P q px x Q x P q px x Q x P b x B b x B b x B a x A a x A a x A x Q x P )()() ()()()()()()()()()(222222112112222211221221++++++++++++++++++++++++++++-++-+-++-++-+-=

常见求积分方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Y i b i n U n i v e r s i t y 毕业论文(设计) 题目常见求积分方法总结 系别数学学院 专业数学与应用数学 学生姓名罗大宏 学号 120204036 年级 12级4班 指导教师刘信东职称 xxx 2016 年 3 月 10 日

常见求积分方法总结 作者:罗大宏 单位:宜宾学院数学学院12级4班 指导教师:刘兴东 摘要:微积分是数学分析中的一个重要基础学科,并且微积分中的积分运算是求导的逆运算,它是连接微分学和积分学的枢纽。因此怎样求积分就显得非常重要,本文讲解了常见求积分的几种方法:直接积分法、分部积分法、换元积分法和有理函数积分的待定系数法,掌握了这些方法,将对我们迅速求解积分来说非常重要。 关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法 引言 数学分析是大学数学与应用数学专业必修专业课,而微积分是数学分析的重点,又不定积分是积分学的基础,会影响到后面学习其它的积分,特别是定积分的求解。它的目的是形成一定的思维方法和解决问题的能力。并且不定积分的求解要比导数的求解复杂很多,运用积分的基本公式只能解决一些容易的积分,更多的不定积分要因函数的差别而采用相应的方法。另外,如果我们掌握了求不定积分的方法,那么求解定积分就变得容易。本文我们就对常见求积分方法进行总结,以便帮助我们解决一些实际问题。 1.积分的概念 1.1、不定积分 若()x F是函数()x f在区间I上的一个原函数,则()x f在I的所有原函数 ()C F+(C为任意常数)称为()x f在区间I上的不定积分。记作 x

【导语】 我们知道,已知距离与时间的关系()S S t =,要求速度()v t ,就是求距离关于时间的导数()S t ';反过来,如果已知每时刻的速度()v t ,要求从时刻t a =到时刻t b =的距离,也就是要求一个函数()S S t =,使得()()S t v t '=,则()()S b S a -就是要求的距离。类似的问题还有许多,例如已知曲线()y f x =在每点(,())x f x 处切线的斜率()f x ',要求曲线的方程()y f x =等。 本节将从考虑微分运算的逆运算入手引入原函数的概念,并介绍微分方程的基本概念和一类最基本的一阶微分方程的解法. 本讲将介绍原函数与不定积分的概念、性质。 【正文】 §4.10 原函数与微分方程初步(1) 一、原函数的概念 在初等数学中,已接触过许多互为逆运算的运算,如加法和减法、乘法和除法、乘方和开方、指数和对数等。函数的原函数是通过考虑函数的微分运算的逆运算得到的.求一个未知函数,使其导函数恰好是某个已知函数. 1.原函数的定义 定义8 设()f x 是定义在区间I 上的一个函数.如果存在函数()F x ,对于任意的x I ∈,都有 ()()F x f x '=, 则称()F x 是()f x 在I 上的一个原函数. 例1 求()cos f x x =在(,)-∞+∞上的一个原函数. 解 因为在(,)-∞+∞内,有 (sin )cos x x '=, 所以()sin F x x =是()cos f x x =在),(+∞-∞上的一个原函数. 显然sin 1,sin x x C ++(C 为任意常数)也是()cos f x x =的原函数.

相关主题
文本预览
相关文档 最新文档