当前位置:文档之家› 萘系高效减水剂缩合带压工艺改革

萘系高效减水剂缩合带压工艺改革

萘系高效减水剂缩合带压工艺改革
萘系高效减水剂缩合带压工艺改革

萘系高效减水剂缩合带压工艺改革

摘要:萘系高效减水剂是我国外加剂市场的主流产品,但其合成使用大量的甲醛,如何减少甲醛的排放,提高生产转化率是本文的关键。

关键词:萘系高效减水剂带压缩合

随着工程技术的发展和混凝土技术的进步,减水剂已发展成为混凝土的第五大原材料。减水剂是配制高性能混凝土的关键性材料之一,我国的减水剂市场上80%以上为,它以掺量小、减水率高、价格合理而被混凝土用户广泛使用。

做为萘系高效减水剂的合成生产单位,如何生产高质量的产品一直是企业追求的目标。传统的萘系高效减水剂生产全过程需要十几个小时,缩合反应要七小时,生产过程中甲醛的挥发很严重,这不仅对生产造成浪费,而且也不符合现代社会对环保的要求。

1 试验过程

1.1 理论研究

萘系高效减水剂合成使用大量的甲醛,甲醛的挥发给企业增大了生产成本,且给环境造成了巨大影响。根据化学反应可逆原理,在一定压力和温度下分子间距离和分子的活动能力增强,有利于反应的正向进行,即生成的有效产物会更多。带着这种思考我们查阅了相关书籍,与清华大学的有关专家请教,在合成反应机理及设备构造方面有了深

摘要:本文主要阐述在现代化工生产过程中保温层防火安全技术以及如果发生泄漏如何应对等技术,同时结合实际探讨化工装置保温层具体防火措施。关键词:化工设备保温技术材料选择保温层的防火技术及重要性2004年2月1日凌晨,加拿大安大略省帝国炼油厂的20.8万公升有毒化学物质甲基乙基酮和甲基异丁基酮泄漏到附近的圣克莱尔河。加拿大方面紧急敦促附近社区关闭汲水系统。由此使我们深刻认识到,解决化工设备的泄漏问题,已成为当今化工生产的首要问题。由于现代的化工生产是连续过程,如果停车处理,往往会给企业造成巨大的经济损失,因此本文重点讨论不停车带温带压堵漏技术。一、化工装置堵漏技术及方法(一)带压堵漏技术的特点。可不停车、带温带压进行操作;全部封堵过程不需动火、安全可靠;不破坏原来的密封结构,且易于拆卸,是其它密封方法所无法相比的;适应性强,应用范围广,适用于所有流体介质的泄漏;维修费用低,经济效益显著。(二)带压堵漏技术的应用范围:1、泄露部位。法兰、设备及其管道上的孔洞、裂缝、焊接缺陷、螺纹接头、填料函泄漏等。2、泄漏介质。水、水蒸气、空气、氧气、氮气、氢气、煤气、氨、液化气、汽油、柴油、重油、润滑油、酸、碱、酯类、苯类、各种热载体、各种碳氢化合物、各种化学气体、液体等几乎所有介质的泄漏都可用。3、泄漏介质温度。-195℃~800℃4、泄漏介质压力。真空———32Mpa(320Kg/cm2) (三)带压堵漏基本原理。1、注剂式带压密封技术。不停车带温带压堵漏技术是以在动态下建立密封结构理论为基本依据,在装置运行状态下,在泄漏部位装上专用夹具,使之与泄漏部位形成密封腔,然后用高压注胶枪把专用密封剂注入到密封腔中,密封剂固化,使它的挤压力与泄漏介质的压力相平衡,重建一个新的密封结构来堵住空隙和通道,挡住介质外泄,从而消除泄漏。2、卡具式带压补漏技术。在泄漏处用特制专用卡具形成一个固定外套,同时卡具上焊接一个螺帽,并将泄漏点正对卡具上螺帽的中心。然后在泄漏处放置一块高强度、高弹性的耐油橡胶片,最后在螺帽上拧上螺栓,并利用螺栓的推进力和卡具的夹持力将橡胶片紧紧地压在泄漏点上,从而将泄漏点堵死。该技术适用于无法停产时临时应急,泄漏处呈点状或腐蚀面积不大的情况,由于橡胶片的使用寿命不超过一年,在有计划的安排下,使用卡具带压补漏的地方需进行集中的停车焊接补漏,以免产生因橡胶片老化导致的二次泄漏。3、带压粘接补漏技术。根据泄漏部位曲率大小,制作一块与管道外壁能吻合的弧形钢板(最好是利用相同管径和壁厚的钢管制作)。在弧形钢板中央开一个直径约35mm的圆孔,然后在圆孔处焊接一个M30的圆柱形螺帽。带压补漏时,先在钢管管壁和弧形钢板上涂抹上高强度粘接剂,然后将弧形钢板之间螺帽的中心对准管道泄漏点,将弧形钢板粘接在钢管上,此时泄漏从螺帽中泄出,对弧形钢板不产生压力。待粘接剂固化后,再将螺栓拧上,并利用螺栓的端面与螺帽形成密封。因设备表面处理不彻底对粘接的强度影响很大,因此该技术实施前设备表面处理的准备步骤尤其重要。(四)带压堵漏操作。1、堵漏工具。带压堵漏常用的工器具有手动(或电动)高压油泵、高压注胶枪、手动注胶枪、风动注胶枪、高压输油管、各式注胶接头和专用夹具,配以必要的防爆工具、风钻、风铲和防护用品。2、操作方法。(1)根据泄漏介质、温度、泄漏部位设计制作夹具。(2)安装夹具及注胶接头。(3)在剂料筒内装添密封剂,并与枪体联接、拧紧。(4)启动油泵,控制压力表压力均匀上升、下降。(5)当压力表压力只升不降时,表示密封剂已注射完,停油泵。(6)将注胶枪的注射杆恢复原位,松开剂料筒与枪体。(7)注射密封剂时,一般先从泄漏另一侧开始注射密封剂,最后从正面注射密封剂,泄漏一旦停止,应终止注胶,以防密封剂注入到设备和管道中。(五)几种常见的带压堵漏方法。1、法兰堵漏。(1)法兰堵漏方法。法兰泄漏是最常见的,约占全部泄漏的6O%以上。法兰泄漏时,可采用包围式的整体密封法,对于低压和直径较大的法兰也可采用针对泄漏处的局部密封法。a、整体密封法:夹具通常做成两部分或三部分,用液压泵及注胶枪将整个法兰与夹具间的间隙全部注满密封剂。注射时,先从泄漏点的背侧开始逐渐从两侧向漏点包围,最后将泄漏全部堵死。b、局部密封法:对于法兰间隙大于5mm,

舵系安装工艺 1 2 1、本船采用半悬挂舵。 3 2、舵系中心线与轴系理论中心线应同时进行。 3、在舵上轴承上方和销下方安装临时支架,钢丝直径(1mm)能承受足够的4 5 拉力线时一般在清晨傍晚或阴天为宜。 6 4、舵系中心与轴系理论中心线的相交处应不大于3mm垂直度为1:100。 7 5、上舵套管定位,按舵系拉线的中心位置确定上下二点定位,开孔,对称施8 焊,完成上舵套管与船体结构焊接,船套管焊接完工后,重新拉线,偏差±0.5mm。9 6、复核上舵杆与舵叶连接精度,以及舵系配套完整性,上舵杆与舵杆承座,10 舵销与舵销承座等,其间隙应不大于0.03mm。接触面应在65%以上。 11 7、上舵杆锥体与舵杆承座锥孔的相配应满足规定要求,锥孔修刮后用0.03 12 塞尺检查锥体两端连接处,插入深度应不超过10mm宽度应不超过15mm接触面13 应大于65%。 14 8、锥孔修正后,在上舵杆大端平行上做好标记,供安装时参考。 15 9、舵销子锥体与舵销承座锥孔的拂配,每25X25(mm2)面积上应有2~3个接16 触点,接触面应大于60%。 17 10、锥孔修正后,在舵销大端平行平行上做标记,其安装时参考。 18 11、舵杆安装 将舵杆吊装套管中,按上舵和安装位置,装焊上舵承座,以上舵杆在套管中 19 20 转动灵活性为准,确定舵承的准确位置。

21 12、舵叶安装 22 吊装舵叶与上舵杆连接,逐一检查上舵杆,舵销的锥体与锥孔的安装质量要23 求达到设计图纸的要求。 24 13、舵叶完整性安装 按舵转动灵活,紧固上舵承,安装上舵杆轴封,复查舵叶与螺旋桨,艉柱相 25 26 对位置的正确性。 27 14、舵机安装 28 14.1舵机的中心线应与舵杆零位重合,调整垫块钢质,其厚度应大于20mm,29 加工后,要求用色油检查,在25X25(mm2)面积上应有色油接触点2~3点,且30 平面应向外倾1:100,用0.05塞尺检查。局部深度不大于10mm。 31 14.2在舵叶处于零度位置时,舵机液压缸处于中间位置,用舵杆上安装的专32 用工具,用检查舵机液压油缸的中心是否在同一平面上,其偏差应不大于0.5mm。 33 15、空转实验 34 舵机安装完整性检验合格后,注油进行舵机空转实验,检查舵设备,舵35 系运转正确性,准确性,灵活性,平稳性;不得有卡、滞异常抖动现象,舵角36 指示器,舵角限位器可靠限位。应急操作有效达到规范要求。

带压补焊措施 对于连续生产的装置、企业,或者城市公用管道,经常会出现跑冒滴漏的情况,如果采用停产检修堵漏,往往是不可取的。而在不影响生产、不中断运行的前提下,进行带压焊接堵漏处理,对于确保装置和管网的安全、稳定、长周期、满负荷运行,减少因停产、排放系统物料的经济损失,具有重大的意义。 (1)带压焊接堵漏的常用方法 ①短管引压焊接堵漏 泄漏缺陷中较多一类情况是管道的压力表、排放导淋管及其他引出管根部断裂或焊缝出现的砂眼、裂缝所造成的泄漏,这种泄漏状态往往表现为介质向外直喷,垂直方向喷射压力较大而水平方向相应较小。根据这个特点,可在原来的断管外加焊一段直径稍大的短管,再在焊接好的短管上装上阀门,以达到切断泄漏的目的。短管上应事先焊好以断管的根部连接主管道外径为贴合面的马鞭形加强圈,以使焊接引压管更为可靠和容易。阀门以闸板阀为最理想,便于更好引压。这种方法处理时间短、操作简单,可适用于中、高压管道的泄漏故障。 ②螺母焊接堵漏 对一些压力较低、泄漏点较小的管道因点腐蚀造成泄漏的部位,可采用螺母焊接堵漏的方法,即在管道表面漏点处焊上规格合适的螺母,然后拧上螺栓,最后焊死,达到堵漏的目的。这种方法用料简单、影响面小,且无其他车工、管工、钳工交叉作业。 ③挤压焊接堵漏 对于那些易燃、易爆介质,现场不能动焊,如果泄漏量不大,内部介质力不高,泄漏处管道又具有一定壁厚的情况,用挤压堵漏的方法。用铜质防爆榔头、凿子,将漏点周围金属材料锤打,挤进漏缝,用冲击力使管材金属塑性变形,以达到堵漏的目的。如挤压后再辅以粘接、堆焊,其效果更佳。这种方法较为实用。 ④直接焊接堵漏 对于有些泄漏量不大,压力较低,管道有一定的金属厚度或位置又不容许加辅助手段的泄漏点,可采用直接焊接的方法,它主要是通过下挤压法交替使用,边堆焊、边挤压,逐渐缩小漏点,最终达到堵漏的目的。 (2)带压焊接堵漏的针对性技术措施 带压焊接堵漏在操作时应考虑具体的技术和环境条件,考虑现场的压力、温度、工艺介质、管材因素,采取相应的针对性的技术措施: ①焊接管材、板材的材料与原有管道的材料相匹配,焊接材料与原有管材相对应。 ②在焊接堵漏时,考虑到泄漏介质在焊接过程中对焊条的第三作用,打底焊条可采用晚操作、焊接性能较好的材料,而中间层及总总盖面焊条必须按规范要求选用。 ③在直接焊接过程中,可加大焊接电流,使得电弧和作用大于介质泄漏压力,再辅之以挤压,逐层焊接收口,使得电弧喷和作用大于介质泄漏压力,再辅之以挤压,逐层焊接收口,以达到消除泄漏。 (3)注意点 石化企业、城市公用管道处理的泄漏介质往往不是易燃易爆、有毒有害,便是高温或带有一定的压力,稍有不慎,便会导致其他设备或人身伤害事故发生,为此,必须在施工前制定周密的实施方案,包括可靠的安全措施,在施工中认真地加以招待。除此以外,以下几个方面的问题,尤其应该引起注意和考虑: ①在处理管道泄漏之前,要事先进行测厚,掌握泄漏点附近管壁的厚度,以确保作业过程 中的安全。 ②在高中压管道堵漏焊接时,应采用小电流,而且电流的方向应偏向新增短管的加强板, 避免在泄漏管的管壁产生过大的熔深。

金属腐蚀给社会发展带来巨大的经济损失与危害,随着工业与科学技术的发展,腐蚀科学在国民经济中所占地位越来越重要。化学镀非晶态Ni-P合金镀层具有独特的物理、化学和机械性能,尤其是优良的耐蚀性、耐磨性、顺磁性和析氢活性,在各行各业中得到广泛的应用。然而由于化学镀镍磷合金沉积过程是按梗球无规则密堆积模型进行的,镀层中难免会有孔隙。镀层孔蚀是限制镍磷镀层在海洋环境中广泛应用的主要原因。因此,如何有效地增强化学镀镍磷合金的耐蚀性能已是当务之急。本文首先研究了普通工业铁垫片单/双层镍磷合金的化学镀工艺,通过试验发现,在3.5wt% NaCl溶液中,实施双层化学镀镀层合金自腐蚀电位比单层的提高100mV以上,极化电阻明显变大,化学反应电荷转移电阻和钝化膜电阻也明显变大;海水全浸实验中,出现点蚀的时间比单层的延长了1~5h。实验表明,双层化学镀工艺比单层化学镀工艺能更好的提高耐蚀性能。化学镀层不可避免的存在着各种孔隙,当镀层厚度不高或者不能单靠增加镀层厚度来消除化学镀过程中的缺陷时,需要对镀层表面实施封孔处理。本文采用有机硅封孔剂对镀层合金进行封孔处理,由于封孔剂能够很好地渗入孔隙并与镀层及基体交联,达到封闭镀层孔隙的目的,从而增强镀层的耐蚀性能。通过实验发现,封孔后的镀层自腐蚀电位明显提高,在腐蚀环境中出现点蚀的时间明显延长,极化电阻明显变大,电化学反应电阻和表面膜电阻也明显变大,实验结果表明封孔工艺能增强镀层耐蚀性能。同时,封孔温度对封孔效果产生明显影响,电化学实验与海水全浸实验结果表明,不同温度封孔均能够提高镀层的耐蚀性能,在50℃时封孔达到最佳效果。化学镀层在初次封孔后耐蚀性能提高的仍不理想,或者初次封孔后表面缺陷仍未消除,就需要对镀层实施二次封孔处理。本文在有机硅初次封孔后用丙烯酸树脂对化学镀双层镍磷实施二次封孔处理,丙烯酸酯聚合物具有优良的成膜性与粘接性等优质特性,能很好的起到再次封孔的作用,从而再次提高镀层的耐蚀性能。通过实验发现,二次封孔处理后的镀层在海水全浸时腐蚀出现的时间明显延长,极化电阻显著变大,阻抗谱图中电荷转移电阻、表面膜电阻、孔内电阻值也显著变大。通过试验结果解释了二次封孔对耐蚀性能的影响,表明二次封孔能够显著提高镀层的耐蚀性能。同时,二次封孔液的组成对二次封孔效果产生明显影响,实验结果表明不同组成的二次封孔工艺均能显著提高镀层的耐蚀性能,在质量组成为树脂:二甲苯=3:7时二次封孔达到最佳效果。 Metal corrosion causes great economic loss and damage to industry and society. With the progress of industry and technology, anti-corrosion holds more and more important position in the national economy. Due to the unique physical, chemical and mechanical characteristics of Ni-P deposits, such as the anticorrosive property, wear resistance, paramagnetic characteristic, high hardness and the electro-catalytic activity of hydrogen evolution, the Ni-P deposits had been used widely in various fields. But the particles of the Ni-P deposits were unregulated. So it was hard to avoid the pinholes in the deposits especially in brine mediums. Pit corrosion was the main reason why the electroless Ni-P deposits were limited to be used widely. So how to effectively enhance the corrosion resistance of the electroless Ni-P deposits was the urgent affair.This article initially researched the process of single / double nickel-phosphorus electroless deposit(s) on common industry iron mat slices. Through the test it was found that,in 3.5wt% NaCl solution, the corrosion potential of the double Ni-P electroless deposits was higher more than 100mV than the single electroless deposit, the polarization resistance was significantly larger, and the charge transfer resistance and the passivation film resistance also became larger. And in the test on the plates plunging in the sea water completely,the time of the appearance of pitting was longer 1~5h than the latter. Experiment results showed that the double electroless deposits enhanced the corrosion resistance better than the single electroless deposit.Electroless deposits have porosity inevitably. When the thickness of electroless deposits isn’t high, or the disfigurements aren’t eliminated just by increasing the thickness of electroless deposits, the surface of electroless deposits needs to be sealing-treated. Silicone was used for sealing-treatment to electroless deposits in this article. Because the sealing agent could penetrate into the pinholes of the deposit and had good crosslink with the deposit, the number of the pinholes on the corroded deposit decreased after sealing-treatment, thus corrosion resistance is increased. Through experiments it was found that after sealing-treatment, the corrosion potential improved significantly, the time of the appearance of pitting in the corrosive environment was extend significantly, the polarization resistance was significantly larger, and the charge transfer resistance and surface film resistance also

ZG-1萘系高效减水剂(高浓型) 简要 ZG-1萘系高效减水剂(高浓型),是在萘系高效减水剂生产基础上经过深加工提纯的更高性能的混凝土高效减水剂。它不含氯盐,硫酸钠含量5%以下,对钢筋无锈蚀,无毒、无污染。除具备萘系高效减水剂的全部优点外,可免除因集料活性较大或在潮湿环境中混泥土工程产生碱集料反应,延长混泥土使用寿命。它属于低碱高浓非引气型高效减水剂,对水泥粒子具有极强的分散塑化作用;可配制C60以上的高效混泥土。广泛用于铁路、公路、桥梁、水电、港口、码头、工业与民用建筑、预制构件等各种混泥土工程和有硫酸钠含量要求的混泥土。它使萘系高效减水剂的性能得到了进一步的延展和发挥。产品技术指标 1、匀质性指标

2、混泥土物理力学性能 主要技术性能和特点 1、本品对人畜无害、对水泥有广泛的适应性。 2、掺量为胶凝材料的0.5~1.5%,减水率为15~25%。 3、外观为黄棕色粉末或棕褐色液体,易溶于水,化学性能稳定,长期存放不变质。 4、在保持混凝土和易性和强度不变的情况下,可节约水泥15~20﹪;

同配合比条件下,可使混凝土初始坍落度提高10㎝以上。 5、减水效果明显,能在低水灰比情况下改善砼混凝土和易性,提高混凝土的流动性。 6、增强效果显著,可使混凝土1d强度提高50~100%,3d强度提高40~80%,7d强度提高30~70%,28d强度提高30~60%。 7、本品低碱,低硫酸钠、有效避免了混凝土碱骨料反应,低温无沉淀,无结晶。 应用技术要点 1、严格遵照《混凝土外加剂应用技术规范》中的规定应用。 2、在初次使用或更换水泥时,应先做适应性试验和确定最佳掺量。 3、采用后惨法会有更好的经济效益,但要适当延长搅拌时间。 4、宜采用机械搅拌,做好养护工作。 5、掺量按胶凝材料的百分比计算,如果使用液体产品,折固后在配比中减掉所含水量。 包装和贮存 1、粉剂产品用内塑外编织双层包装,每袋25kg;液体采用塑料桶或铁桶包装,每桶50公斤、220公斤或槽车运输,根据用户需要随时调整。 2、粉剂应存放在干燥通风处,结块可粉碎后使用,不影响使用效果,超期经试验合格后仍可使用。

工程号: 标记数量修改单号签字日期版号总面积m2旧底图登记号编制打字 校对 底图登记号审核共页第页标检 审定日期

1.适用范围 本工艺适用“xxxxxxx”轮舵系的拆装程序和修理技术要求。 2.规范性引用文件 CB/T 3680—95 船用转叶式液压舵机修理技术要求 CB/T 3424—92 船舶舵系舵承修理安装技术要求 CB/T 3425—92 船舶舵系舵杆修理安装技术要求 CB/T 3426—92 船舶舵系舵叶修理安装技术要求 3.工艺内容 3.1 初步了解的该轮舵系工程情况: 该轮舵系是转叶式液压舵机,舵机上有两道径向轴承和一道止推轴承,下舵承是一道带有内、外轴承的多重径向轴承。根据船方反映,舵系工作时偶尔有卡滞现象,有噪音。 3.2 该轮进厂后,应在码头做舵效试验和船舶进坞后进行零负荷转舵试验。记录各工况需要的时间(见附表1),通过听声音、观察摇摆方向及实际完成工况情况查找原因,定出修理部位与方案。 3.3拆卸步骤: 3.3.1拆卸前的准备工作 3.3.1.1由于该轮涉及到的舵系资料船方没有找到,所以无论是拆卸、修理还是回装都要做好数据记录。 3.3.1.2 准备好专用工具和需要更换的备件。做好场地的清洁工作。 3.3.1.3用舵杆专用吊鼻旋紧到舵杆顶部,上方用钢丝绳固定、保护舵杆。 3.3.1.4用专用风动葫芦或专用钢丝绳封舵叶,保护舵叶在拆卸过程中不掉落。 3.3.2 拆卸步骤 3.3.2.1拆卸舵叶底部丝堵,将舵叶舵筒内的存油放入盛油器内,禁止随便放泄在坞内。 3.3.2.2打开舵封板,拆除舵杆下部固定螺栓的止动板。松动螺母。用液压泵,采用液压胀毂的方法,使舵杆与舵叶分离。 3.3.2.3用葫芦、钢丝绳及专用吊具吊住舵叶,并逐渐承受舵叶全部重量。拆下舵叶。 3.3.2.4拆除转叶舵机的附属部件。 3.3.2.5 旋松液压螺母,连接液压泵,采用液压胀毂的方法,使液压舵机与舵杆分离,拆下转叶液压舵机部分。 3.3.2.6把舵杆放至坞底或抽至舵机间(无说明书,现不知向下或向上)。 3.3.3 转叶式液压舵机的修理 3.3.3.1液压舵机在现场或进车间解体、清洁、测量、检查。根据CB/T3680—1995规定超出极限或不满足使用要求的零部件,应予以修复或换新。 3.3.3.2 更换轴承。密封件出现划痕、其它机械损坏或老化微裂等现象的,应换新。 3.3.3.3 根据工作有噪声的问题,着重检查以下几个方面: 3.3.3.3.1 检查转舵机构零件是否发生不应有的摩擦,导致机械噪音; 3.3.3.3.2 检查油泵机组是否传动失中,导致机械噪音; 3.3.3.3.3 检查液压回路原件、接头、法兰、仪表、排气设施等是否密封不严,使系统吸气、存气,导致空气压缩,产生水击声响;

带压焊接堵漏技术(通用版) Safety management refers to ensuring the smooth and effective progress of social and economic activities and production on the premise of ensuring social and personal safety. ( 安全管理) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

带压焊接堵漏技术(通用版) 大多数管道都是由金属材料制作而成的。因此,在金属管道发生泄漏时,利用金属材料的可焊性,同样可以实现堵漏的目的。 “带压焊接堵漏技术”是指具有可焊性金属管道一旦出现裂纹,发生介质外泄,在不降低介质温度、压力的条件下(动态条件),利用热能使熔化的金属将裂纹连成整体焊接接头或在金属的泄漏缺陷上加焊一个封闭板,使之达到重新使用的一种特殊技术手段。根据堵漏处理方法的不同,可分为逆向焊接法和引流焊接法。 (1)带压逆向焊接堵漏技术。生产运行中的压力管道一旦发生泄漏,是很难在动态条件下进行补焊的。原因有两个,其一是

熔融的金属在没有得到冷固之前,有可能被喷出的泄漏介质喷跑;其二是泄漏介质本身也有可能威胁施工人员的人身安全,尤其是易燃易爆的泄漏介质,更难以在动态状况下进行补焊。为了能够在有压力介质存在的条件下进行焊接操作,经过无数次试验及实际应用,终于摸索出“带压补焊方法”,打破动态条件下不能补焊的禁区,在此基础上又经过不断努力,总结出一套比较科学、比较完整的带压焊接方法——分段逆向焊接法。采用这种方法已经成功地消除了压力管道运行中出现的裂纹。 ①基本原理带压逆向焊接堵漏技术基础原理是,利用焊接过程中焊缝和焊缝附近的受热金属均受到很大热应力作用的规律,使泄漏裂纹在低温区金属的压缩应力作用下发生局部收严,在收严的小范围内是无泄漏的,补焊过程中只焊已收严不存在泄漏介质的部分,并且采取收严一段补焊一段、补焊一段又会收严一段,这样反复进行,直到全部焊合无泄漏为止。 带压逆向焊接堵漏技术是利用焊接变形的一种补焊方法,它实用于可焊管道上出现的裂纹,但不能用于焊缝缺陷,如气孔、

钻孔封孔工艺 一、下管流程 方法一: 1、将速封式注浆囊袋(8m)整体套入第二根Φ75mmPVC封孔管外(孔内第二根)。 2、缓慢向钻孔内推送第一根Φ75mmPVC封孔管直到第一根Φ75mmPVC封孔管末端所剩距离突出孔外100cm处开始对接第二根套入8m囊袋的Φ75mmPVC封孔管。 3、在第一根Φ75mmPVC封孔管的末端均匀涂抹胶水,然后迅速的将第二根套入8m囊袋的Φ75mmPVC封孔管与第一根相连接。用3个管卡把囊袋固定在第一根Φ75mmPVC封孔管末端0.5m处,人工均匀用力向钻孔内推入固定好囊袋的两根Φ75mmPVC封孔管并把8m囊袋缓慢的向钻孔外端移动。直到第二根套入8m囊袋的Φ75mmPVC封孔管末端所剩距离突出孔外100cm。 4、在第二根套入8m囊袋的Φ75mmPVC封孔管的末端均匀涂抹胶水,将第三根Φ75mmPVC封孔管与第二根Φ75mmPVC封孔管末端对接,两根管对接好后把囊袋向第三根管外侧移动同时把囊袋和PVC封孔管向孔内推送直到8m囊袋充分展开,人工均匀用力将3根PVC管推入钻孔内并将囊袋用3个管卡固定,严禁强塞。 5、根据防喷孔装置段直径确定囊袋尾部固定位置。 (1)防喷孔装置段直径≤200mm,则囊袋端头固定位置距孔口300mm 处;

(2)防喷孔装置段直径>200mm,则囊袋端头固定在孔径≤200mm 往里100mm 处。 方法二: 1、取三根完好的Φ75mmPVC封孔管,并且管内无杂物。 2、将三根Φ75mmPVC首尾相连,首尾连接处内部均匀涂抹胶水,外部用胶带缠好。 3、把速封式注浆囊袋(8m)套在Φ75mmPVC封孔管上充分展开,囊袋首部用3个管卡把固定在第一根PVC封孔管末端0.5m处,囊袋尾部用3个管卡把固定在第三根Φ75mmPVC封孔管末端0.5m处。 4、人工均匀用力将封孔囊袋送入钻孔内,严禁强塞。 5、根据防喷孔装置段直径确定囊袋尾部固定位置。 (1)防喷孔装置段直径≤200mm,则囊袋端头固定位置距孔口300mm 处; (2)防喷孔装置段直径>200mm,则囊袋端头固定在孔径≤200mm 往里100mm 处。 二、注浆流程 1、检查注浆泵,风管,注浆管等现场设备是否完好. 2、向注浆泵搅拌箱内注入少许清水。开启搅拌器调试搅拌叶——打开控制开关,搅拌叶随着开关调控大小力度旋转为正常;再开启注浆泵调试注浆效果——打开控制开关,调控开关打出清水就为正常。 3、试运转正常后,开启搅拌机与注浆泵(注意缓慢开启,不要

萘系高效减水剂与聚羧酸系减水剂的性能比较 一、混凝土减水剂概述及作用机理 减水剂是一种重要的混凝土外加剂,能够最大限度地降低混凝土水灰比,提高混凝土的强度和耐久性。减水剂分为普通减水剂和高效减水剂,减水率大于5%小于10%的减水剂称为普通减水剂,如松香酸钠、木质素磺酸钠和硬脂酸皂等;减水率大于10%的减水剂称为高效减水剂,如三聚氰胺系、萘系、氨基磺酸系、改性木质素磺酸系和聚羧酸系等。在众多高效减水剂中,具有梳形分子结构的聚羧酸系高效减水剂因其减水率高、坍落度保持性能良好、掺量低、不引起明显缓凝等优异性能,成为近年来国内外研究和开发的重点。 减水作用是表面活性剂对水泥水化过程所起的一种重要作用。减水剂是在不影响混凝土工作性的条件下,能使单位用水量减少;或在不改变单位用水量的条件下,可改善混凝土的工作性;或同时具有以上两种效果,又不显著改变含气量的外加剂。目前,所使用的混凝土减水剂都是表面活性剂,属于阴离子表面活性剂。 水泥与水搅拌后,产生水化反应,出现一些絮凝状结构,它包裹着很多拌和水,从而降低了新拌混凝土的和易性(又称工作性,主要是指新鲜混凝土在施工中,即在搅拌、运输、浇灌等过程中能保持均匀、密实而不发生分层离析现象的性能)。施工中为了保持所需的和易性,就必须相应增加拌和水量,由于水量的增加会使水泥石结构中形成过多的孔隙,从而严重影响硬化混凝土的物理力学性能,若能将这些包裹的水分释放出来,混凝土的用水量就可大大减少。在制备混凝土的过程中,掺入适量减水剂,就能很好地起到这样的作用。 混凝土中掺入减水剂后,减水剂的憎水基团定向吸附于水泥颗粒表面,而亲水基团指向水溶液,构成单分子或多分子层吸附膜。由于表面活性剂的定向吸附,使水泥胶粒表面带有相同符号的电荷,于是在同性相斥的作用下,不但能使水泥-水体系处于相对稳定的悬浮状态,而且,能使水泥在加水初期所形成的絮凝状结构分散解体,从而将絮凝结构内的水释放出来,达到减水的目的。减水剂加入后,不仅可以使新拌混凝土的和易性改善,而且由于混凝土中水灰比有较大幅度的下降,使水泥石内部孔隙体积明显减少,水泥石更为致密,混凝土的抗压强度显著提高。减水剂的加入,还对水泥的水化速度、凝结时间都有影响。这些性质在实用中都是很重要的。但是,减水剂在有效地破坏水泥浆体的絮凝结构释放出内部的自由水的同时也削弱了水泥颗粒与水之间的作用。从这个角度来说,它总是会不同程度地加剧拌合物的泌水和沉降离析现象,这是现今混凝土浇注后常在表面出现花斑,严重时则形成蜂窝麻

环境影响评价报告公示:萘系高效减水剂生产线17风险专题环评报告

第十七章环境风险影响评价 17.1概述 本项目生产中部分物料具有易燃易爆的特性以及一定的毒性,整个生产过程中存在事故隐患,生产过程存在着发生有毒有害物料泄漏等突发性风险事故的可能性,以及易燃易爆的可能性。根据《建设项目环境风险评价技术导则》(HJ/T1610-2004)规定:涉及有毒有害、易燃易爆化学品的生产建设项目,应进行环境风险评价。按照国家环境保护总局环发[2005]152号文《关于加强环境风险管理,防范环境风险的通知》的规定和要求,本次环境风险评价采用风险识别、风险分析和对环境后果计算等方法对项目进行评估,全面分析本项目产品、中间产品和原辅材料的规模及物理化学性质、毒理指标和危险性等;针对项目运行期间发生事故可能引起的易燃易爆、有毒有害物质的泄漏,从水、气、环境安全防护等方面考虑并预测环境风险事故影响范围,评估事故对人身安全及环境的影响和损害;同时,提出环境风险应急预案和事故防范、减缓措施,特别要针对特征污染物提出有效的防止二次污染的应急措施,为本工程设计和环境管理提供资料和依据,以期达到降低危险、减少公害的目的。 17.2 评价等级及范围 17.2.1工作等级划分原则 《建设项目环境风险评价技术导则(HJ/T1610-2004)》中规定的环境风险评价的工作等级划分原则见表17-1所示。 表17-1 环境风险评价工作等级划分原则 17.2.2物质危险性判定 根据《建设项目环境风险评价技术导则》HJ/T1610-2004附录A1中物质危险性

判定标准,对本工程主要物质的危险性进行判定,判定结果见表17-2。 17.2.3重大危险源判断 根据《建设项目环境风险评价技术导则》HJ/T1610-2004附录A1中易燃物质临

带油、带水、带压焊条电弧焊的集中补焊方法 1.电源、焊接材料和电源的选用手弧焊电源选用直流焊机。材料根据母材不同的材质进行选用。一般情况选用碱性低氢型焊条,因为这种焊条的粘性较大,熔池内熔化金属不易被吹走,焊接电流比正常情况下各位置的电流高出35%~60%,如附表所示,以增强电弧吹力,提高熔合性,提高熔池、母材的温度。附表焊接电流 2.基本操作技术手弧焊堵漏多用间断熄弧法进行焊接,在平焊位置时,选用较大的电流,在坡口的上端向下以弧形轨迹形成第一个熔池,然后逐渐自后向前拉动电弧,迅速起弧,熔池凝固后,再重复上一步骤。在漏点坡口内停留时间要尽量短,以防止液态金属被吹走。在爬坡位置焊接时,要由上向下焊接,同时加大电流、压低电弧,利用电弧吹力及熔滴自重,将漏点补住。仰焊位置可用直径略大于泄漏管直径的一段套管包住漏点,将不受压的部位焊完,最后在平焊位置完全将漏点堵住。 3.常见的几种泄漏方式及处理方法(1)在泄漏不严重时,可直接用电弧焊进行堵漏。先确定漏点的位置及大小,用小锤敲击泄漏处,尽可能将漏点压缩至最小,然后开始焊接。焊接时电弧不能直接吹到漏点,以免烧穿造成更大的漏点。应在泄漏点周围先焊成圆柱形,随后在圆柱内部逐步填充,使漏点缩小。最后封口时,用小锤即可封口。

如还有泄漏则用点焊的方法进行处理。(2)在泄漏处 压力大但面积较小时,可以用坐骑式马鞍补漏的方法进行堵漏。具体的方法是用同径或直径略小于泄漏钢管的结箍丝堵,先将带内丝扣的结箍修制成马鞍口,然后将马鞍口骑在漏点,随后将马鞍口焊接好,焊好之后上丝堵即可止漏,如图1所示。图1结箍丝堵(3)在泄漏处压力大而且面积 也大时,宜用加套管焊接的方法进行堵漏。具体方法是用直径略大于泄漏钢管的一段套管,先将两头修制出与泄漏钢管外径基本一致的管口,然后顺套管轴向切割成两半,在其中一半管壁上开一个洞,在洞上焊一个小阀门,随后再将两个半边套管扣在漏水处,对齐定位,焊完纵缝后将小阀门打开转到套管下部,开始焊接打底和两端环焊缝,焊完后将阀门关死,如图2所示。图2 加套管堵漏(4)封口是手弧焊补漏的最后一道工序,也是最重要的一个步骤,难度也较大,由于流体从此处喷漏,熔滴易被吹走,与母材熔合困难。故宜采用下述方法进行处理:第一,当漏点呈一小圆孔时,可用石棉绳一段压入小孔,然后用尖头小锤砸紧,再由外向内逐步焊住,焊接时电弧不可直接吹向漏点。 第二,当压力比较大时可插入尖头钢筋,然后用锤砸平,最后将砸平的钢筋焊好。如一次无法完全封住,可在一侧点焊住后再砸平,可反复使用这个方法,直到完全封住口。第三,当有压力,但不太大且漏点面积大时,宜采用加套管焊

舵系安装工艺规程 一.说明 本船舵系是由双舵销式半悬挂舵、扫帚式舵杆、舵柄(进口组合件)、上下舵钮、舵承及舵承座(两者均为成品进口组合件)、液压舵机(进口组合件)等组成。 二.主要参考图纸 1.舵系布置图DNS507-230-16001 2.舵杆加工图DNS507-231-16002-01 3.舵叶结构图DNS507-231-16001 4.舵系附件DNS507-231-16005 5.舵承座布置图DNS507-231-16007 6.挂舵臂铸件图(加工图)DNS507-114-16002-2 7.舵机安装图DNS507-231-16008 8. 舵叶上部铸件加工图DNS507-231-16003-01 9. 舵叶下部铸件加工图DNS507-231-16004-01 10. 上舵钮衬套加工图DNS507-231-16009 11. 下舵钮衬套加工图DNS507-231-16010 12.轴系布置图DNS507-425-16001-00三.基准点的确定(见图一) 1.上基准点:舵机室0#肋位与船体舯线的交点处(用临时槽钢支架及可拆式十字线板)设点,支架的高度距舵机室甲板约1200mm. 2.下基准点:轴系尾基点下端0#肋位与船舯线的垂直交点处,用可拆式十字线板固定。

图一:舵系基准点确定 四.第一次拉线检查(与轴系照光同时进行) 1.舵线与轴线的相对偏移不大于±6mm。 2.舵线至艉管后端面的垂直距离的理论成品尺寸5600 mm。 3.根据拉线检查的数据核算上、下舵钮的机加工余量。 4.在舵机室甲板以舵系中心为基准划圆线φ900 mm及检查圆线φ940 mm,各线均打硬记。 5.舵承座的安装可按照“舵承座布置图DNS507-231-16007”要求进行。 6.按图二所示位置零对零制作舵承座、上、下舵钮孔的机加工用基准点,要求偏差<0.02mm。

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 带压补焊安全操作注意事项(新 版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

带压补焊安全操作注意事项(新版) 带压焊接堵漏技术是在动态条件下应用焊接技术进行堵漏密封作业的一种特殊技术手段。在动态条件下进行焊接作业与正常条件下进行的焊接作业有许多不同之处。正常的焊接作业可以在条件满足的情况下进行,如坡口形式、打磨、焊前清洁、焊前预热、层间温度、焊后热处理、无损检测等等,这样就可以得到合格的焊接焊缝。而带压炸接堵漏技术实现焊接过程则是在生产装置及输送管道中的介质的工艺参数温度、压力、流量等均不降低,整个焊接过程始终受到介质温度、压力.振动、冲刷的影响直到泄漏被消除。因此,带压焊接堵漏技术在安全作业方面除了要按焊接技术的安全要求操作外,还要按动态堵漏技术作业的安全要求进行操作。带压焊接堵漏技术安全注意事项由两部分组成,即焊接技术安全注意事项和动态密封作业安全注意事项。

一、电焊工安全注意事项 1、工作前必须配戴好劳动保护用品,皮手套、面罩.安全帽、绝缘鞋等.检查好焊接设备、工作地点、防护措施是否符合安全要求。 2、电焊机必须有良好的接地装置,不允许用管道或其他金属物代川接地线把线必须绝缘良好,要经常检查防止漏电,其转动部分要有保护策。 3、电焊机安装电源、接线开关.要由电工进行。电焊机要安放在通夕戏凉爽处,严防潮湿,要有防雨及绝缘措施。 4、焊接前,严格遵守动火管理制度,具备动火条件后方可动火,否则不能进行动火作业。 5、焊接前要准备好防火用品,如泡沫灭火器、砂子、四氯化碳灭火器等。 6、高空作业时,必须执行《高空作业安全规定》。焊接时安全带要挂在焊接处的侧上方通道处.必须注意地下和周围的可燃物,避免火星掉落引起燃烧。

铝氧化封孔工艺 铝氧化封孔工艺铝氧化封孔工艺为了提高铝件质量和染着色牢固,着色后必须将氧化膜层的微细孔隙予以封闭,经过封闭处理后表面变的均匀无孔,形成致密的氧化膜。染料沉积在氧化膜内再也擦不掉,且经封闭后的氧化膜不再具有吸附性,可避免吸附有害物质而被污染或早期腐蚀,从而提高了阳极氧化膜的防污染、抗蚀等性能。常用的着色后的封孔方法有水合封孔、无机盐溶液封孔、透明有机涂层封孔。(一)水合封孔水合封孔包括沸水封孔和常压、加压蒸汽封孔。1、水合封孔的原理铝的阳极氧化膜在水中有两种形式的反应;一是,在80度以下,pH<4的水中,与水结合成拜耳体三水合氧化铝,这种结合仅是物理结合,过程是可逆的。另一种是在80度以上的中性水中,氧化铝与水化合成波米体型的一水合氧化铝,这就是通常所指的水合封孔的反应过程,由于一水合氧化铝的密度(3014kg/立方米)比氧化铝(3420kg/立方米)的小,体积增大33%左右,堵塞了氧化膜的孔隙。2、影响沸水封孔的原因(1)时间、温度:在其他条件相对一致的前提下,随封孔时间的延长,膜层结合水量增加,抗蚀性提高;随封孔温度的升高,水化程度提高,抗蚀性增强。(2)pH值、水质:一般在pH值为5.5-6.5的封孔液中封孔,膜层不但有良好的抗蚀性而且耐磨性最好。对水中的杂质含量应加以控制:硫酸根离子<250mg/kg,氯离子<100mg/kg,硅酸根离子<10mg/kg,磷酸根离子<5mg/kg,氟离子<5mg/kg。最好用纯水,其电阻率为5×10Ω·cm。(3)添加剂:在沸水中加入某些添加剂如无水碳酸钠、氨、三乙醇胺等,可增强封孔效果,提高膜层的抗蚀性,甚至相当或超过蒸汽封孔。水合封孔的另一种方法是蒸汽封孔,其所处理的氧化膜抗蚀性、耐磨性与蒸汽压力和封孔时间有关。一般随压力升高、时间延长、抗蚀性提高、耐磨性降低。3、沸水、蒸汽封孔工艺蒸汽(常压、加压)封孔的效果比沸水封孔好,但需用高压容器或专用蒸箱,因此蒸汽封孔特别是加压蒸汽封孔只能用于小型制品的处理,不适合大型制品和流水线生产使用。(1)槽液pH值:一般情况下,在硫酸酸化的沸水里封孔,溶液的pH值总是向碱性增加方向变化,控制办法多采用添加缓冲剂,例如在封孔液中加入磷酸氢胺0.003-0.03g/L+硫酸0.006-0.015ml/L。(2)入槽封孔的制品必须清洗干净,为避免氧化膜产生裂纹,封孔前的清洗使用温水。(3)封孔制品应与槽体金属绝缘,为防止封孔液的大量蒸发,可用φ70mm的尼龙塑料球覆盖液面。(二)金属盐溶液封孔在金属盐溶液中封孔,既发生氧化膜的水化反应,又存在着盐类水解生成氢氧化物或是金属离子与染料分子反应生成新的金属络合物在膜孔隙中沉淀析出的过程,它们共同作用使孔隙封闭。这种处理方法也称为沉淀封孔。某些镍盐溶液使用较为经常,它的封孔效果好。在封孔过程中,镍盐被膜吸引水解生成氢氧化物,由于镍的氢氧化物量少,几乎无色,所以不影响膜的本色,特别适用于着色膜的封孔。

萘系高效减水剂 萘系高效减水剂,学名萘磺酸盐甲醛缩合物,是经化工合成的非引气型高效减水剂,对水泥粒子有很强的分散作用,对配制大流态砼有有很好的使用效果,对具有早强、高强要求的现浇砼和予制构件效果明显,可全面提高和改善砼的各种性能,广泛用于公路、桥梁、大坝、港口码头、隧道、电力、水利及工民建工程、蒸养及自然养护予制构件等。 一、主要技术指标(低浓度萘系高效减水剂): 1、外观:粉剂棕黄色粉末,液体棕褐色粘稠液。 2、固体含量:粉剂≥94%,液体≥40% 3、净浆流动度≥230mm。 4、硫酸钠含量≤10。 5、氯离子含量≤0.5%。 二、性能特点: 1、在砼强度和坍落度基本相同时,可减少水泥用量10-25%。 2、在水灰比不变时,使混凝土初始坍落度提高10cm以上,减水率可达15-25%。 3、对砼有显著的早强、增强效果,其强度提高幅度为20-60%。 4、改善混凝土的和易性,全面提高砼的物理力学性能。 5、对各种水泥适应性好,与其它各类型的混凝土外加剂配伍良好。 6、特别适用于在以下混凝土工程中使用:流态混凝土、塑化混凝土、蒸养混凝土、抗渗混凝土、防水混凝土、自然养护预制构件混凝土、钢筋及预应力钢筋混凝土、高强度超高强度混凝土。 三、掺量范围: 粉剂:0.75-1.5%; 液体:1.5-2.5% 。 四、注意事项: 1、采用多孔骨料时宜先加水搅拌,再加减水剂。 2、当坍落度较大时,应注意振捣时间不易过长,以防止泌水和分层。 萘系高效减水剂根据其产品中Na2SO4含量的高低,可分为高浓型产品(Na2SO4含量<3%)、中浓型产品(Na2SO4含量3%~10%)和低浓型产品(Na2SO4含量>10%)。目前大多数萘系高效减水剂合成厂都具备将Na2SO4含量控制在3%以下的能力,有些先进企业甚至可将其控制在0.4%以下。 萘系减水剂是我国目前生产量最大,使用最广的高效减水剂(占减水剂用量的70%以上),其特点是减水率较高(15%~25%),不引气,对凝结时间影响小,与水泥适应性相对较好,能与其他各种外加剂复合使用,价格也相对便宜。萘系减水剂常被用于配制大流动性、高强、高性能混凝土。

相关主题
文本预览
相关文档 最新文档